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Lecture 6 Outline

In this lecture we will show how we can combine ideas from

variational inference with deep learning to produce methods for

learning powerful deep generative models

Particular topics:

• Latent variable models

• Learning models

• Deep latent variable models

• Model learning with the ELBO

• Variational Auto–Encoders
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Latent Variable Models
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What is a Latent Variable?

• The term latent stems from the Latin to lie hidden

• A latent variable is a thus any variable we don’t observe

(think unobserved nodes in a DAG)

• In other words, any parameter in a Bayesian model is a

technically a latent variable

• However, the term is slightly overloaded: people typically use
it to specifically refer to a parameter than has a direct
relationship with a single datapoint

• This is in contrast to a global parameter which effects all the

datapoints
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What is a Latent Variable Model?

• A latent variable model (LVM) is a generative model where

each datapoint has a corresponding latent variable

• For data D = {xn}Nn=1, the generative model for any latent

variable model takes the form

p(θ, z1:N ,D) = p(θ)p(z1:N |θ)
N∏

n=1

p(xn|zn, θ) (1)

where θ are our global variables (which are sometimes fixed)

and each zn is a latent variable associated with datapoint xn
• The underlying assumption behind LVMs is that each

datapoint can be explained by its latent variable in

conjunction with the global parameters

• Often, the latent variable is much lower dimensional or simpler

than the datapoint. It may also have interpretable meaning.
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Example: Gaussian Mixture Model

Prior:

π ∼ Dirichlet(α)

Λk ∼Wishart(Λ0, ν) ∀k ∈ {1, . . . ,K}
µk
∣∣Λk ∼ N

(
0, (βΛk)−1

)
∀k ∈ {1, . . . ,K}

zn
∣∣π ∼ Categorical(π) ∀n ∈ {1, . . . ,N}

Likelihood:

p(D|θ, z1:N) = p(π;α)

(
N∏

n=1

p(zn|π)p(xn|µzn ,Λzn)

)

×
(

K∏

k=1

p(Λk ; Λ0, ν)p(µk |Λk ;β)

)
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Example: Gaussian Mixture Model

�

↵

xn

zn⇡

N K

⇤k

µk

⇤0, ⌫

Global parameters:

θ = {π, µ1:K ,Λ1:K}

Latent variables z1:N

5



Example: Latent Dirichlet Allocation for Topic Modeling

Image Credit: David Blei
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Example: Images of Faces

1G Perarnau et al. “Invertible conditional gans for image editing”. In: arXiv preprint arXiv:1611.06355 (2016).
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Example: Hidden Markov Models

Not all LVM models have conditionally independent latents given θ

z1 z2 • • • zT -1 zT

x1 x2 xT -1 xT

θ

• Consider tracking a lion’s movement.

• The activity they are performing is a latent state, e.g.

sleeping, hunting

• Consecutive latent states are not independent: they stay in

states for a while, eating tends to follow hunting, etc
8



Factorized Latent Variable Models

• If we assume that our data is i.i.d. given

θ, this implies that all the latent variables

are also conditionally independent given θ

• This is a reasonable assumption whenever

their is no natural ordering to the data

• The resulting modal is known as a

factorized LVM and has joint distribution

p(θ, z1:N ,D) = p(θ)
N∏

n=1

p(zn|θ)p(xn|zn, θ)

• For the rest of the lecture, our focus will

be on these factorized LVMs

xn

znθ

N
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Learning Models
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What If We Can’t Manually Construct a Generative Model?

How could we manually construct a LVM for faces?

This would be almost impossible even with a huge about of prior

expertise and time to carefully construct the model

1Perarnau et al., “Invertible conditional gans for image editing”. 10



What If We Can’t Manually Construct a Generative Model?

• If we have little data and can’t manually write a good

generative model we give up

• But if we have a lot of data, we can learn a generative model

instead

• We can do this my defining a flexible class of models and then

optimizing to find the best model within this class
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Recap: What Makes a Good Model?

The marginal likelihood, or evidence, p(D|m) gives a means of

measuring how good a model is.

The model with highest evidence is the one that is powerful

enough to explain that data but not anything more complicated.

Image credit: Maneesh Sahani

12



Type–II Maximum Likelihood

• If we have a parametrized model, we can

try to directly optimize the marginal

likelihood to learn a model

• This is know as type–II maximum

likelihood

• For our factorized LVM models, we will

presume θ is fixed for any particular model

• As such, we can perform model learning

by optimizing for θ:

θ∗ = arg max
θ∈ϑ

pθ(D)

= arg max
θ∈ϑ

Epθ(z1:N) [pθ(D|z1:N)]

xn

znθ

N
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Example: Choosing the Degree of Polynomial

We have already come across an example of type–II maximum

likelihood: choosing the degree of the polynomial in Bayesian

polynomial regression (note this is not a factorized LVM though)

Image credit: Maneesh Sahani 14



Type–II Maximum Likelihood for Factorized LVMs

For factorized LVMs, we can simplify the form of our optimization

by working with the log evidence and exploiting the independences

θ∗ = arg max
θ∈ϑ

pθ(D)

= arg max
θ∈ϑ

log pθ(D)

= arg max
θ∈ϑ

log

(
N∏

n=1

pθ(xn)

)

= arg max
θ∈ϑ

N∑

n=1

log pθ(xn)

= arg max
θ∈ϑ

N∑

n=1

log
(
Epθ(zn) [pθ(xn|zn)]

)
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Alternative View: Divergence to The True Distribution

As the data is i.i.d. in a factorized LVM, we can think of the

generative model as being defined using only a single arbitrary

datapoint, i.e. our model is

pθ(z)pθ(x |z) (2)

We can now think of type-II maximum likelihood as minimizing a

Monte Carlo estimate of the KL divergence from the true data

generating distribution ptrue(x) to the marginal of our model pθ(x)
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Alternative View: Divergence to The True Distribution

θ∗ = arg min
θ∈ϑ

KL(ptrue(x) ‖ pθ(x))

= arg min
θ∈ϑ

Eptrue(x) [log ptrue(x)]− Eptrue(x) [log pθ(x)]

= arg max
θ∈ϑ

Eptrue(x) [log pθ(x)]

≈ arg max
θ∈ϑ

1

N

N∑

n=1

log pθ(xn) where xn ∼ ptrue(x)

= arg max
θ∈ϑ

N∑

n=1

log pθ(xn) where xn ∼ ptrue(x)

= arg max
θ∈ϑ

pθ(D)
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Deep Latent Variable
Models
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Deep Latent Variable Models

• A deep latent variable model is simply a LVM where the

likelihood pθ(x |z) is based on a flexible deep neural network

• Typically pθ(z) is a fixed distribution, e.g. pθ(z) = N (z ; 0, I )

• We will drop the θ subscript

• Most deep LVMs operate in an unsupervised manner: we

have no labels associated with our datapoints xn
• Note that zn and xn do not themselves need to be factorized:

the factorization is over different datapoints, not dimensions
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Motivation

• Learn rich and powerful generative models for

high–dimensional data for which handcrafted models are

inappropriate

• Such data is ubiquitous, but applications in computer vision

(i.e. image based data) is particularly prominent
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Example Applications: Generating New Data

Glow: Generative Flow
with Invertible 1⇥1 Convolutions

Diederik P. Kingma*†, Prafulla Dhariwal⇤
*OpenAI

†Google AI

Abstract

Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to
tractability of the exact log-likelihood, tractability of exact latent-variable inference,
and parallelizability of both training and synthesis. In this paper we propose Glow,
a simple type of generative flow using an invertible 1⇥ 1 convolution. Using our
method we demonstrate a significant improvement in log-likelihood on standard
benchmarks. Perhaps most strikingly, we demonstrate that a flow-based generative
model optimized towards the plain log-likelihood objective is capable of efficient
realistic-looking synthesis and manipulation of large images. The code for our
model is available at https://github.com/openai/glow.

1 Introduction

Two major unsolved problems in the field of machine learning are (1) data-efficiency: the ability to
learn from few datapoints, like humans; and (2) generalization: robustness to changes of the task or
its context. AI systems, for example, often do not work at all when given inputs that are different

⇤Equal contribution.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

These are not real faces: they are samples from a learned model!

2D P Kingma and P Dhariwal. “Glow: Generative flow with invertible 1x1 convolutions”. In: NeurIPS. 2018.
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Example Applications: Manipulating Images

Figure 4: Random samples from the model, with temperature 0.7.

Figure 5: Linear interpolation in latent space between real images.

between the latents to obtain samples. The results in Figure 5 show that the image manifold of the
generator distribution is smooth and almost all intermediate samples look like realistic faces.

Semantic Manipulation. We now consider modifying attributes of an image. To do so, we use the
labels in the CelebA dataset. Each image has a binary label corresponding to presence or absence of
attributes like smiling, blond hair, young, etc. This gives us 30000 binary labels for each attribute.
We then calculate the average latent vector zpos for images with the attribute and zneg for images
without, and then use the difference (zpos � zneg) as a direction for manipulating. Note that this is a
relatively small amount of supervision, and is done after the model is trained (no labels were used
while training), making it extremely easy to do for a variety of different target attributes. The results
are shown in Figure 6 (appendix).

Effect of temperature and model depth. Figure 8 (appendix) shows how the sample quality and
diversity varies with temperature. The highest temperatures have noisy images, possibly due to
overestimating the entropy of the data distribution; we choose a temperature of 0.7 as a sweet spot
for diversity and quality of samples. Figure 9 (appendix) shows how model depth affects the ability
of the model to learn long-range dependencies.

7 Conclusion

We propose a new type of generative flow and demonstrate improved quantitative performance in
terms of log-likelihood on standard image modeling benchmarks. In addition, we demonstrate that
when trained on high-resolution faces, our model is able to synthesize realistic images.

References
Deco, G. and Brauer, W. (1995). Higher order statistical decorrelation without information loss.

Advances in Neural Information Processing Systems, pages 247–254.

3For 128⇥ 128 and 96⇥ 96 versions, we centre cropped the original image, and downsampled. For 64⇥ 64
version, we took random crops from the 96 ⇥ 96 downsampled image as done in Dinh et al. (2016)

8

2Kingma and Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions”.
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Example Applications: Deep Fakes

Which image is real?

DeepFakes

Which image is real?

Images credit: Stefano Ermon and Aditya Grover
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Example Applications: Deep Fakes (2)

DeepFakes
Neither!

No glasses! No smile!

Images credit: Stefano Ermon and Aditya Grover 23



Example Applications: Machine Translation

Machine Translation

Conditional generative model  P( English text| Chinese text)

14

Figure from Google AI research blog.

Images credit: Google AI research blog
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Example Applications: Text Generation

https://talktotransformer.com

25
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Mathematical Example: Spirals Data

Fixed parameters: m1:K , S1:K

Generative model for single data-

point:

z1 ∼ Categorical(1, 2, 3, 4, 5)

z2 ∼ N (z2;mz1 , Sz1)

x ∼ N (x ;µθ(z1, z2),Σθ(z1, z2))

where µθ and Σθ are deep neural

networks taking in (z1, z2) and re-

turning a mean and covariance for

an individual datapoint
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Model Learning as Gradient–Based Optimization

• Recap: we want to learn the model by maximizing

log pθ(D) =
N∑

n=1

log
(
Ep(zn)[pθ(xn|zn)]

)

• Given we are using neural networks, we obviously want to do

this with gradient–based methods

• We thus need the gradient:

∇θ log pθ(D) =
N∑

n=1

∇θ log
(
Ep(zn)[pθ(xn|zn)]

)
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Recap from Previous Course: Stochastic Gradient Ascent

We can maximize a function f (θ) using approximate gradients

∇̂θf (θ) to carry out stochastic gradient ascent (SGA) updates:

θt+1 = θt + ρt∇̂θf (θ) (3)

provided that E[∇̂θf (θ)] = ∇f (θ) (i.e. our gradient estimate is

unbiased) and our step sizes ρt diminish according to the

Robbins-Monro conditions.

In other words:

• We don’t need the gradient, we only need an unbiased

estimate of it

• Our step sizes need to get smaller over time
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Problem 1: Lack of an Unbiased Estimator

• There are unfortunately a lot of problems if we want to apply

SGA to ∇θ log pθ(D)

• Perhaps to most significant is that we cannot generate the

required unbiased gradient estimates

• By Jensen’s inequality E[log Ẑ ] = logE[Ẑ ] if and only if the

variance of Ẑ is zero

• Thus if we take a Monte Carlo estimate to construct our

gradients

∇θ log pθ(D) =
N∑

n=1

∇θ log
(
Ep(zn)[pθ(xn|zn)]

)

≈
N∑

n=1

∇θ log

(
1

M

M∑

m=1

pθ(xn|ẑm,n)

)
where ẑm,n

i .i .d .∼ p(zn)

we get biased gradients that do not converge to what we want
29



Problem 2: High Variance

• A second major issue is that actually providing reliable

estimates for pθ(x) or its gradients is insurmountably

challenging

• The Monte Carlo estimated we considered on the last slide

Ep(zn)[pθ(xn|zn)] ≈ 1

M

M∑

m=1

pθ(xn|ẑm,n)

is effectively an importance sampling estimate that uses the

prior as a proposal

• We know from the last lecture that this will not work well

when z is high–dimensional which will usually be the case

• We could try a different proposal, but this will still fall foul of

the curse of dimensionality
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Problem 3: Large Dataset

• A third problem is that we will typically have a large number

of datapoints and it so it is not practical to update θ using all

of them at once

• We can get around this using a mini-batch of datapoints

• This involves only using a subset of the datapoint to make

each update:

∇̂θ log pθ(D) =
N

‖B‖
∑

n∈B
∇θ log pθ(xn) (4)

where B ⊂ {1, . . . ,N} is our mini-batch

• As as E[∇̂θ log pθ(D)] = ∇θ log pθ(D), this does not introduce

bias and so is fine for SGA

• But we need to be careful that how we combat the first two

problems is compatible with doing our updates this way
31



Model Learning with the
ELBO
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Recap: The ELBO

Let’s revisit the ELBO from the last lecture with a slight change in

notation to match our current discussions, using the i.i.d. nature of

our data to define it for a single datapoint:

L(θ, φ, x) = Eqφ(z)

[
log

pθ(z , x)

qφ(z)

]

= log pθ(x)− KL(qφ(z) ‖ pθ(z |x))

≤ log pθ(x)

This is now a function of both our model parameters θ and our

variational parameters φ
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The ELBO as a Proxy for the log Evidence

Given we could not optimize log pθ(D) directly, could we work with

the lower bound

L(θ, φ,D) :=
N∑

n=1

L(θ, φ, xn) ≤ log pθ(D)

instead?

Let’s for now presume that φ is fixed. We could try the following

optimization:

θ∗ = arg max
θ∈ϑ

N∑

n=1

L(θ, φ, xn) (5)

= arg max
θ∈ϑ

N∑

n=1

Eqφ(zn)

[
log

pθ(zn, xn)

qφ(zn)

]
(6)
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The ELBO as a Proxy for the log Evidence (2)

This objective has a critical difference to the log evidence: we can

construct unbiased gradient updates for it and run SGA

Namely we have

∇θL(θ, φ,D) =
N∑

n=1

∇θ Eqφ(zn)

[
log

pθ(zn, xn)

qφ(zn)

]

=
N∑

n=1

Eqφ(zn)

[
∇θ log

pθ(zn, xn)

qφ(zn)

]

≈ ∇̂θL(θ, φ,D) :=
N

‖B‖
∑

n∈B
∇θ log

pθ(ẑn, xn)

qφ(ẑn)

where each ẑn ∼ qφ(zn) and E[∇̂θL(θ, φ,D)] = ∇θL(θ, φ,D) such

that it is a valid SGA gradient!
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Will This Give Us Anything Sensible Though?

Will this give us anything sensible though? Let’s break it down

using the other form of the ELBO

∇θL(θ, φ, x) = ∇θ log pθ(x)−∇θ KL(qφ(z) ‖ pθ(z |x))

We thus see we have two competing terms, optimizing the ELBO

whats to:

• Increase the evidence log pθ(x)

• Reduce the divergence between pθ(z |x) and qφ(z)

(remembering we are assuming the later is fixed for now)

As the KL is bounded, there is only so much we can gain by

reducing it: we should expect at least some improvements in the

true log evidence
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Variational EM

• Nonetheless, if qφ(z) is kept fixed,this KL term is going to be

restrictive to what we learn: we can only learn models whose

posterior is close to qφ(z)

• We can alleviate this issue by instead alternating between
updating our model and finding a new variational
approximation, i.e. cycle between

1. Update θ using SGA with fixed φ

2. Update φ by running variational inference with fixed θ

• This is known as (stochastic) variational expectation

maximization (EM)

• Note that both steps improve the ELBO
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Variational EM (2)

9.4. The EM Algorithm in General 451

Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q‖p) ! 0, we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q‖p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q‖p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1.

From (9.72), we see that KL(q‖p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q‖p) ! 0, with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as

Images credit: Bishop Section 9.4
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Variational EM (2)

452 9. MIXTURE MODELS AND EM

Figure 9.12 Illustration of the E step of
the EM algorithm. The q
distribution is set equal to
the posterior distribution for
the current parameter val-
ues θold, causing the lower
bound to move up to the
same value as the log like-
lihood function, with the KL
divergence vanishing. ln p(X|θold)L(q, θold)

KL(q||p) = 0

shown in Figure 9.13. If we substitute q(Z) = p(Z|X, θold) into (9.71), we see that,
after the E step, the lower bound takes the form

L(q, θ) =
∑

Z

p(Z|X, θold) ln p(X,Z|θ) −
∑

Z

p(Z|X, θold) ln p(Z|X, θold)

= Q(θ, θold) + const (9.74)

where the constant is simply the negative entropy of the q distribution and is there-
fore independent of θ. Thus in the M step, the quantity that is being maximized is the
expectation of the complete-data log likelihood, as we saw earlier in the case of mix-
tures of Gaussians. Note that the variable θ over which we are optimizing appears
only inside the logarithm. If the joint distribution p(Z,X|θ) comprises a member of
the exponential family, or a product of such members, then we see that the logarithm
will cancel the exponential and lead to an M step that will be typically much simpler
than the maximization of the corresponding incomplete-data log likelihood function
p(X|θ).

The operation of the EM algorithm can also be viewed in the space of parame-
ters, as illustrated schematically in Figure 9.14. Here the red curve depicts the (in-

Figure 9.13 Illustration of the M step of the EM
algorithm. The distribution q(Z)
is held fixed and the lower bound
L(q, θ) is maximized with respect
to the parameter vector θ to give
a revised value θnew. Because the
KL divergence is nonnegative, this
causes the log likelihood ln p(X|θ)
to increase by at least as much as
the lower bound does.

ln p(X|θnew)L(q, θnew)

KL(q||p)

Images credit: Bishop Section 9.4
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Variational EM (2)
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Figure 9.13 Illustration of the M step of the EM
algorithm. The distribution q(Z)
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to the parameter vector θ to give
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ln p(X|θnew)L(q, θnew)

KL(q||p)

Images credit: Bishop Section 9.4 37



Variational EM (2)
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The ELBO Through Importance Sampling Eyes

Working with the ELBO has solved our problem of needing

unbiased estimates of the gradient to perform SGA.

What about our second problem though: that our estimates where

very high variance?

Let’s consider using qφ(z) to estimate the marginal likelihood

versus using it in the ELBO:

Ep(z) [p(x |z)] = Eqφ(z)

[
p(x , z)

qφ(z)

]
versus Eqφ(z)

[
log

(
p(x , z)

qφ(z)

)]

The ELBO is like working with log weights instead of the normal

weights

This means its has much lower relative variance
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A Closer Look at the Weights

As a simple example, let qφ(φ)(z) = N (z ; 2, 1.12) and

pθ(x , z) ∝ N (z ; 0, 1). The distribution of the weights and log

weights is as follows:
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Have we Solved our Problems?

• Problem 1: having an unbiased SGA gradient estimator X
• Problem 2: having low variance estimates X
• Problem 3: Dealing with large datasets ×
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Dealing with Large Datasets

• Our current setup does not allow updates for qφ(z) that are

both scalable and effective

• If we use a single qφ(z) shared across datapoints, then it can’t

simultaneously be a good fit for all of them

• We could instead use a different φn for each datapoint, but

then we either have to regularly cycle through our whole

dataset to update them, or they won’t get properly updated

as θ changes

• Solution: learning a mapping from datapoints to φ instead,

i.e. use a variational distribution of the form qφ(z |x)

• This is known as an amortized proposal
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Amortized Inference

q�(z|x)

q�(z|x)
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Amortized Inference (2)

• More concretely, in amortized inference qφ(z |x) is a mapping

from datapoints to proposal parameters

• This parameterized mapping takes the form of a deep neural

network

• qφ(z |x) is often known as an inference network

• One common choice is to use a parameterized Gaussian:

qφ(z |x) = N (z ;µφ(x),Σφ(x))

where µφ and Σφ are deep neural networks

• The upshot of this is that learning φ now corresponds to

learning a mapping rather than a particular variational

approximation
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Variational Auto–Encoders
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Variational Auto–Encoders

Maximize

L(θ, φ,D) :=
N∑

n=1

Eqφ(zn|xn)

[
log

(
pθ(xn, zn)

qφ(zn|xn)

)]
(7)

with respect to both θ and φ
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A Complication: Gradients for the Inference Network

As before, we naturally wish to maximize L(θ, φ,D) using SGA

However, a complication arises with this when we try and take

derivatives with respect to φ: these also effect the distribution the

expectation is taken with respect to

∇φ Eqφ(zn|xn)

[
log

(
pθ(xn, zn)

qφ(zn|xn)

)]
= Eqφ(zn|xn)

[
∇φ log

(
pθ(xn, zn)

qφ(zn|xn)

)]

+

∫
log

(
pθ(xn, zn)

qφ(zn|xn)

)
∇φqφ(zn|xn)dzn

This second term is not an expectation so we have extra work to

do to estimate it
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The Score Function Estimator

One simple way to deal with this is to note that ∇x = x∇ log x ,

such that we have

∇φ Eqφ(zn|xn)

[
log

(
pθ(xn, zn)

qφ(zn|xn)

)]
=

Eqφ(zn|xn)

[
∇φ log

(
pθ(xn, zn)

qφ(zn|xn)

)
+ log

(
pθ(xn, zn)

qφ(zn|xn)

)
∇φ log qφ(zn|xn)

]

This is known as the score function estimator or the reinforce

estimator.

Unfortunately, it tends to have very high variance and so is rarely

used in practice.
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The Reparameterization Trick

An alternative approach which is lower variance but which can

cause issues if there are discrete variables is to reparameterize z

The key idea is to express qφ(z |x) in the form ε ∼ q(ε),

z = g(ε, x , φ), such that q(ε) is a simple, fixed, distribution and g

is a deterministic mapping that ensures z has distribution qφ(z |x)

We can then express the expectation in terms of ε and thus move

the gradient inside as follows

∇φ Eqφ(zn|xn)

[
log

(
pθ(xn, zn)

qφ(zn|xn)

)]
=

Eq(ε)

[
∇φ log

(
pθ(xn, g(εn, xn, φ))

qφ(g(εn, xn, φ)|xn)

)]
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Putting it All Together: the VAE Algorithm

The VAE training algorithm cycles through the following steps

(presuming a reparameterization approach)

1. Sample a mini-batch of datapoints B ⊆ {1, . . . ,N}
2. Construct a gradient estimate of the ELBO using B

∇̂θ,φL(θ, φ,D) =
N

‖B‖
∑

n∈B
∇̂θ,φ log

pθ(ẑn, xn)

qφ(ẑn|xn)
(8)

where each ẑn = g(εn, xn, φ) and εn ∼ q(ε)

3. Update the parameters using these gradient estimates and

step sizes ρt and ηt

θ ← θ + ρt∇̂θL(θ, φ,D) (9)

φ← φ+ ηt∇̂φL(θ, φ,D) (10)

4. Repeat until convergence
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The Auto-Encoder View of VAEs

We can also view the VAE as a stochastic auto–encoder where the

inference network=encoder and the generative network=decoder:

Image Credit: Lilian Weng

Input Reconstruction

Image adapted from one by Lilian Weng 49



The Auto-Encoder View of VAEs (2)

From this perspective, we can think of VAEs as a representation

learning approach. We can think about manipulating images by

encoding them and adjusting the latents before reconstructing, e.g.

interpolating between two points3Figure 4: Random samples from the model, with temperature 0.7.

Figure 5: Linear interpolation in latent space between real images.

between the latents to obtain samples. The results in Figure 5 show that the image manifold of the
generator distribution is smooth and almost all intermediate samples look like realistic faces.

Semantic Manipulation. We now consider modifying attributes of an image. To do so, we use the
labels in the CelebA dataset. Each image has a binary label corresponding to presence or absence of
attributes like smiling, blond hair, young, etc. This gives us 30000 binary labels for each attribute.
We then calculate the average latent vector zpos for images with the attribute and zneg for images
without, and then use the difference (zpos � zneg) as a direction for manipulating. Note that this is a
relatively small amount of supervision, and is done after the model is trained (no labels were used
while training), making it extremely easy to do for a variety of different target attributes. The results
are shown in Figure 6 (appendix).

Effect of temperature and model depth. Figure 8 (appendix) shows how the sample quality and
diversity varies with temperature. The highest temperatures have noisy images, possibly due to
overestimating the entropy of the data distribution; we choose a temperature of 0.7 as a sweet spot
for diversity and quality of samples. Figure 9 (appendix) shows how model depth affects the ability
of the model to learn long-range dependencies.

7 Conclusion

We propose a new type of generative flow and demonstrate improved quantitative performance in
terms of log-likelihood on standard image modeling benchmarks. In addition, we demonstrate that
when trained on high-resolution faces, our model is able to synthesize realistic images.

References
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Advances in Neural Information Processing Systems, pages 247–254.
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Disentanglement: Learning Meaningful Latents (2)
.Bb2Mi�M;H2K2Mi

Disentangling by Factorising
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Figure 13. Same as Figure 11 but for CelebA.

7. Conclusion and Discussion
We have introduced FactorVAE, a novel method for disen-
tangling that achieves better disentanglement scores than
�-VAE on the 2D Shapes data set for the same reconstruc-
tion quality. Moreover, we have identified weaknesses of
the commonly used disentanglement metric of Higgins et al.
(2016), and proposed an alternative metric that is concep-
tually simpler, is free of hyperparameters, and avoids the
failure mode of the former. Finally, we have performed
an experimental evaluation of disentangling for the VAE-
based methods and InfoWGAN-GP, a more stable variant
of InfoGAN, and identified its weaknesses relative to the
VAE-based methods.

One of the limitations of our approach is that low Total
Correlation is necessary but not sufficient for disentangling
of independent factors of variation. For example, if all
but one of the latent dimensions were to collapse to the
prior, the TC would be 0 but the representation would not
be disentangled. Our disentanglement metric also requires
us to be able to generate samples holding one factor fixed,
which may not always be possible, for example when our
training set does not cover all possible combinations of
factors. The metric is also unsuitable for data with non-
independent factors of variation.

For future work, we would like to use discrete latent vari-
ables to model discrete factors of variation and investigate
how to reliably capture combinations of discrete and contin-
uous factors using discrete and continuous latents.
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Further Reading

• The are no additional lecture notes for this lecture: you need

to go investigate for yourself

• Training VAEs in Pyro:

https://pyro.ai/examples/vae.html and https:

//www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s

• Tutorial paper on VAEs: Carl Doersch. “Tutorial on

variational autoencoders”. In: arXiv preprint

arXiv:1606.05908 (2016)

• Video tutorial on deep generative models by Shakir Mohamed

and Danilo Rezende

https://www.youtube.com/watch?v=JrO5fSskISY

• GANs, one of the main alternatives to VAEs: Ian Goodfellow

et al. “Generative adversarial nets”. In: Advances in neural

information processing systems. 2014 53

https://pyro.ai/examples/vae.html
https://www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s
https://www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s
https://www.youtube.com/watch?v=JrO5fSskISY

