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Lecture 6 Outline

In this lecture we will show how we can combine ideas from
variational inference with deep learning to produce methods for
learning powerful deep generative models

Particular topics:

e Latent variable models

e Learning models

Deep latent variable models

Model learning with the ELBO

e Variational Auto—Encoders



Latent Variable Models



What is a Latent Variable?

e The term latent stems from the Latin to lie hidden

e A latent variable is a thus any variable we don't observe
(think unobserved nodes in a DAG)

e In other words, any parameter in a Bayesian model is a
technically a latent variable
e However, the term is slightly overloaded: people typically use

it to specifically refer to a parameter than has a direct
relationship with a single datapoint

e This is in contrast to a global parameter which effects all the
datapoints



What is a Latent Variable Model?

e A latent variable model (LVM) is a generative model where
each datapoint has a corresponding latent variable
e For data D = {x,}_,, the generative model for any latent

variable model takes the form
N

P8, 2un, D) = p(B)p(zinlf) [ | p(xal2n6) (1)

n=1
where 6 are our global variables (which are sometimes fixed)
and each z, is a latent variable associated with datapoint x,

e The underlying assumption behind LVMs is that each
datapoint can be explained by its latent variable in
conjunction with the global parameters

e Often, the latent variable is much lower dimensional or simpler
than the datapoint. It may also have interpretable meaning.



Example: Gaussian Mixture Model

Prior:
7 ~ Dirichlet(«)
Nx ~ Wishart(Ao,v) Vk e {1,...,K}
k| A ~ N0, (BA)™) Vke{l,...,K}
z,,’w ~ Categorical(r) Vne {1,...,N}
Likelihood:

N
p(D|0, z1.n) = p(m; ) (H p(znlﬁ)p(xn\uzn,/\zn)>

n=1

K
(HP Nk No, v)p(ik| Ak 5))

k=1



Example: Gaussian Mixture Model
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Example: Latent Dirichlet Allocation for Topic Modeling
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Example: Images of Faces
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1G Perarnau et al. “Invertible conditional gans for image editing”. In: arXiv preprint arXiv:1611.06355 (2016).



Example: Hidden Markov Models

Not all LVM models have conditionally independent latents given 6

® @ @ @

e Consider tracking a lion's movement.

e The activity they are performing is a latent state, e.g.
sleeping, hunting

e Consecutive latent states are not independent: they stay in
states for a while, eating tends to follow hunting, etc



Factorized Latent Variable Models

e |If we assume that our data is i.i.d. given
0, this implies that all the latent variables
are also conditionally independent given 6

e This is a reasonable assumption whenever
their is no natural ordering to the data a

e The resulting modal is known as a
factorized LVM and has joint distribution

N
p(0, 21.n, D) = p(0) [ | P(2l0)p(%n|2n, 0)

n=1

)

e For the rest of the lecture, our focus will
be on these factorized LVMs



Learning Models



What If We Can’t Manually Construct a Generative Model?

How could we manually construct a LVM for faces?

This would be almost impossible even with a huge about of prior
expertise and time to carefully construct the model

LPerarnau et al., “Invertible conditional gans for image editing”. 10



What If We Can’t Manually Construct a Generative Model?

e If we have little data and can't manually write a good
generative model we give up

e But if we have a lot of data, we can learn a generative model
instead

e We can do this my defining a flexible class of models and then
optimizing to find the best model within this class

11



Recap: What Makes a Good Model?

The marginal likelihood, or evidence, p(D|m) gives a means of
measuring how good a model is.

The model with highest evidence is the one that is powerful
enough to explain that data but not anything more complicated.

B
8
Q.

datasets: D Do

Image credit: Maneesh Sahani
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Type—-Il Maximum Likelihood

e If we have a parametrized model, we can
try to directly optimize the marginal
likelihood to learn a model

e This is know as type—Il maximum
likelihood
e For our factorized LVM models, we will

presume 6 is fixed for any particular model

e As such, we can perform model learning

by optimizing for 6:

)

0" = arg max py(D)
e

= argmax By (7, ) [Po(Dlz1:n)]
oy
13



Example: Choosing the Degree of Polynomial

We have already come across an example of type—ll maximum
likelihood: choosing the degree of the polynomial in Bayesian
polynomial regression (note this is not a factorized LVM though)
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Image credit: Maneesh Sahani 14



Type—-Il Maximum Likelihood for Factorized LVMs

For factorized LVMs, we can simplify the form of our optimization
by working with the log evidence and exploiting the independences

0* = argmax py(D)
=

= argmax log py(D)
ey

N
= argmax log (H pg(x,,)>
n=1

ey

= arg max Z log po(xn)
0y

= arg max Zlog e [pg(x,,|z,,)])
ey n—1
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Alternative View: Divergence to The True Distribution

As the data is i.i.d. in a factorized LVM, we can think of the
generative model as being defined using only a single arbitrary
datapoint, i.e. our model is

pol2)pa(x]2) )

We can now think of type-Il maximum likelihood as minimizing a
Monte Carlo estimate of the KL divergence from the true data

generating distribution pirue(x) to the marginal of our model py(x)

16



Alternative View: Divergence to The True Distribution

6" = argmin KL(Puue(x) || po(x))
Oey

= ar% rSIn Eptrue(x) [log Ptrue(x)] - Eptrue(x) [log PQ(X)]
S

= argmaxE, . (x) [log po(x)]
0

N

1
A arg max Z log pg(x,) where X, ~ prrue(x)
gev N =

N

= arg maxz log pg(xn) where X, ~ Prrue(x)

by 14

= arg max py(D)
0ev
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Deep Latent Variable
Models



Deep Latent Variable Models

A deep latent variable model is simply a LVM where the
likelihood py(x|z) is based on a flexible deep neural network

Typically py(z) is a fixed distribution, e.g. pg(z) = N (z;0,1)
e We will drop the # subscript

Most deep LVMs operate in an unsupervised manner: we
have no labels associated with our datapoints x,

Note that z, and x,, do not themselves need to be factorized:
the factorization is over different datapoints, not dimensions

18



e Learn rich and powerful generative models for
high—dimensional data for which handcrafted models are
inappropriate

e Such data is ubiquitous, but applications in computer vision
(i.e. image based data) is particularly prominent

19



Example Applications: Generating New Data

These are not real faces: they are samples from a learned model!

pp Kingma and P Dhariwal. “Glow: Generative flow with invertible 1x1 convolutions”. In: NeurlPS. 2018.

20



Example Applications: Manipulating Images

2Kingma and Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions” .
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Example Applications: Deep Fakes

Which image is real?

Images credit: Stefano Ermon and Aditya Grover
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Example Applications: Deep Fakes (2)

Neither!

No glasses! No smile!

Images credit: Stefano Ermon and Aditya Grover 23



Example Applications: Machine Translation

Encoder G0 o] 01 ===l ©; e 03 === 04 |E==| ©f =] ©¢

Decoder d > d, — d: - > ds

Images credit: Google Al research blog
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Example Applications: Text Generation

https://talktotransformer.com

25


https://talktotransformer.com

Mathematical Example: Spirals Data

Fixed parameters: my.x, S1.x
Generative model for single data-
point:
i ] >
71 ~ CATEGORICAL(1,2,3,4,5) ’"& : R \ 1
2 ~ N(z2; my, Sz,) *b"&a---_:‘" ) :
X NN(X;M9(21722)729(217Z2)) ' :,.} .
where 19 and Xy are deep neural j 1
networks taking in (z1, z2) and re- . R

turning a mean and covariance for
an individual datapoint

26



Model Learning as Gradient—Based Optimization

e Recap: we want to learn the model by maximizing

N
|Og pQ(D) = Z |Og (Ep(zn)[pQ(xn|zn)])

n=1
e Given we are using neural networks, we obviously want to do
this with gradient—based methods
e We thus need the gradient:

N
Vo log pg(D) =Y _ Vg log (Ep(z,)[Po(xnlzn)])

n=1

27



Recap from Previous Course: Stochastic Gradient Ascent

We can maximize a function f(6) using approximate gradients
Vef(#) to carry out stochastic gradient ascent (SGA) updates:

Orp1 = 0 + Pt@(?f(e) (3)

provided that E[Vyf(0)] = V£(6) (i.e. our gradient estimate is
unbiased) and our step sizes p; diminish according to the
Robbins-Monro conditions.

In other words:

e We don't need the gradient, we only need an unbiased
estimate of it

e Our step sizes need to get smaller over time

28



Problem 1: Lack of an Unbiased Estimator

e There are unfortunately a lot of problems if we want to apply
SGA to Vylog ps(D)

e Perhaps to most significant is that we cannot generate the
required unbiased gradient estimates

e By Jensen's inequality E[log 2] = IogE[f] if and only if the
variance of Z is zero

e Thus if we take a Monte Carlo estimate to construct our

gradients

N
Vg log po(D) = ) _ Vglog (Epz,)[po(xal20)])
n=1

N M
1 on
~ nz_; Vg log (M mz_:lpg(xnfmm)) where Zp, , g p(zn)

we get biased gradients that do not converge to what we want



Problem 2: High Variance

A second major issue is that actually providing reliable

estimates for py(x) or its gradients is insurmountably
challenging
e The Monte Carlo estimated we considered on the last slide

P(Z )[p9(xn‘zn ~ M Z Po xn‘zmn

is effectively an importance sampllng estimate that uses the
prior as a proposal

e We know from the last lecture that this will not work well
when z is high—dimensional which will usually be the case

e We could try a different proposal, but this will still fall foul of
the curse of dimensionality

30



Problem 3: Large Dataset

e A third problem is that we will typically have a large number
of datapoints and it so it is not practical to update 6 using all
of them at once

e We can get around this using a mini-batch of datapoints

e This involves only using a subset of the datapoint to make
each update:

Vg log pyp(D) = HBHzWIogpe(xn) (4)

where B C {1,..., N} is our mini-batch

e As as B[V log pp(D)] = Vg log pg(D), this does not introduce
bias and so is fine for SGA

e But we need to be careful that how we combat the first two

problems is compatible with doing our updates this way
31



Model Learning with the
ELBO



Recap: The ELBO

Let's revisit the ELBO from the last lecture with a slight change in
notation to match our current discussions, using the i.i.d. nature of
our data to define it for a single datapoint:

L(0,¢,x) =Eg () {"’g pgiz(;))()]
= log py(x) — KL(qy(2) [| po(z|x))

< log py(x)

This is now a function of both our model parameters 6 and our

variational parameters ¢

32



The ELBO as a Proxy for the log Evidence

Given we could not optimize log py(D) directly, could we work with
the lower bound

N
L(0,$,D) :=>_ L(0,$,x,) < log py(D)
n=1

instead?

Let's for now presume that ¢ is fixed. We could try the following
optimization:

N
0* =argmax Y L(0, ¢, x, 5
gm ; (0, b, xn) (5)
. Po(Zn, Xn)
= arg max E log =22 207 6
g Eu [ ©
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The ELBO as a Proxy for the log Evidence (2)

This objective has a critical difference to the log evidence: we can
construct unbiased gradient updates for it and run SGA

Namely we have

Zna xn
VoLl(0,$,D ZW Eq,(z0) [ p"()}

q¢(zn)
N
po(Zn, Xn)
=S E,, Vglog]
nz::l q¢(z){ (2n)

(6 ¢7 : ||B” Zv0| Po znaxn)

neB )

where each 2, ~ qy(2,) and E[VyL(6, ¢, D)] = V4L(6, ¢, D) such
that it is a valid SGA gradient!

22
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Will This Give Us Anything Sensible Though?

Will this give us anything sensible though? Let's break it down
using the other form of the ELBO

VoL(0, b, x) = Vi log pop(x) — Vo KL(q5(2) || po(2]x))

We thus see we have two competing terms, optimizing the ELBO
whats to:

e Increase the evidence log py(x)
e Reduce the divergence between py(z|x) and g4(z)
(remembering we are assuming the later is fixed for now)

As the KL is bounded, there is only so much we can gain by
reducing it: we should expect at least some improvements in the
true log evidence

35



Variational EM

o Nonetheless, if g4(z) is kept fixed,this KL term is going to be
restrictive to what we learn: we can only learn models whose
posterior is close to gy(z)

e We can alleviate this issue by instead alternating between
updating our model and finding a new variational
approximation, i.e. cycle between

1. Update 6 using SGA with fixed ¢
2. Update ¢ by running variational inference with fixed 6

e This is known as (stochastic) variational expectation
maximization (EM)

e Note that both steps improve the ELBO

36



Variational EM (2)

KL(ql|p)

L(q,0) Inp(X|0)

Images credit: Bishop Section 9.4
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Variational EM (2)

KL(¢g|lp) =0

E(q, aold) lnp(X|001d)

Images credit: Bishop Section 9.4
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Variational EM (2)

KL(q||p)

SIS N R B

£<q, oneW) 1np<X|0neW)

37

Images credit: Bishop Section 9.4



Variational EM (2)

Inp(X[0)

001(1 Onew

Images credit: Bishop Section 9.4 37



The ELBO Through Importance Sampling Eyes

Working with the ELBO has solved our problem of needing
unbiased estimates of the gradient to perform SGA.

What about our second problem though: that our estimates where
very high variance?

Let's consider using g4(z) to estimate the marginal likelihood
versus using it in the ELBO:

S 02 = B 55 ] ves Bagoe (75)]

The ELBO is like working with log weights instead of the normal

weights

This means its has much lower relative variance

38



A Closer Look at the Weights

As a simple example, let g,(¢)(z) = N(z;2,1.12) and
po(x,z) x N(z;0,1). The distribution of the weights and log

weights is as follows:

0.3 0.2
0.25
0.15
0.2
Z 0.15 Z 01
<5 o)
A A
0.1
0.05
0.05
0 0 ] b
0 200 400 600 800 20 -10 0 10

w(z) = po(x,2)/95(2) log w(z) = log(ps(x, 2)/q4(2))
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Have we Solved our Problems?

e Problem 1: having an unbiased SGA gradient estimator
e Problem 2: having low variance estimates

e Problem 3: Dealing with large datasets X

40



Dealing with Large Datasets

e Our current setup does not allow updates for g4(z) that are
both scalable and effective

e If we use a single g4(z) shared across datapoints, then it can't
simultaneously be a good fit for all of them

e We could instead use a different ¢, for each datapoint, but
then we either have to regularly cycle through our whole
dataset to update them, or they won't get properly updated
as 0 changes

e Solution: learning a mapping from datapoints to ¢ instead,
i.e. use a variational distribution of the form g,(z|x)

e This is known as an amortized proposal

41



Amortized Inference

q¢(z|X)

22 42



Amortized Inference (2)

e More concretely, in amortized inference g4(z|x) is a mapping
from datapoints to proposal parameters

e This parameterized mapping takes the form of a deep neural
network

e g4(z|x) is often known as an inference network

e One common choice is to use a parameterized Gaussian:

qs(2|x) = N(2; pp(x), Zo(x))

where 114 and ¥4 are deep neural networks

e The upshot of this is that learning ¢ now corresponds to
learning a mapping rather than a particular variational
approximation

43



Variational Auto—Encoders



Variational Auto—Encoders

R
- - - > <—0
qs(2|) ( Y po(z|2)
Inference Generative
Network Network
N

Maximize

£(6,6,D ZE% 2aben) [Iog(pg("”’z")ﬂ (7)

95 (Zn|xn)

with respect to both 6 and 10}
44



A Complication: Gradients for the Inference Network

As before, we naturally wish to maximize £(6, ¢, D) using SGA

However, a complication arises with this when we try and take
derivatives with respect to ¢: these also effect the distribution the
expectation is taken with respect to

po(Xn, zn) Po(Xn, 2)
Vo Eay(zl) {'°g <%(Zn!xn))} = Bag(anlen) [W 2 (%(ann)

+/|og <pg(x,,,z,,)) V 494 (2zn|xn)dz,

95 (2n|Xn)

This second term is not an expectation so we have extra work to
do to estimate it

45



The Score Function Estimator

One simple way to deal with this is to note that Vx = xV log x,
such that we have

po(Xn, 2n)
Vi Eq,(2o/x,) {'Og ()] =

q4(2n|xn)

p@(xnazn)> <p6'(xnazn)>
E Vglog [ S50 ) 1 log | “5 210 4 log Gy (2a| %
%‘Z"'*”{ ’ g<q¢(zn|xn> =\ qulanian) ) Vo o8 9el)

This is known as the score function estimator or the reinforce
estimator.

Unfortunately, it tends to have very high variance and so is rarely
used in practice.
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The Reparameterization Trick

An alternative approach which is lower variance but which can
cause issues if there are discrete variables is to reparameterize z

The key idea is to express g4(z|x) in the form € ~ g(e),

z = g(e, x, @), such that g(e) is a simple, fixed, distribution and g
is a deterministic mapping that ensures z has distribution q,(z|x)

We can then express the expectation in terms of € and thus move
the gradient inside as follows

Py (Xn, Zn)
eEater o8 (GE)] -

oo v (S )|

47



Putting it All Together: the VAE Algorithm

The VAE training algorithm cycles through the following steps
(presuming a reparameterization approach)

1. Sample a mini-batch of datapoints B C {1,..., N}
2. Construct a gradient estimate of the ELBO using B

- naxn)
Voo L(0,6, Y 8
04£00.00) = g7 3 Voslog g A (9

where each 2, = g(en, xn, ¢) and g, ~ q(&)
3. Update the parameters using these gradient estimates and
step sizes p; and 7
0« 0+ peNVoL(0,6,D) (9)
¢+ ¢ +1:VyL(0, 9, D) (10)

4. Repeat until convergence
48



The Auto-Encoder View of VAEs

We can also view the VAE as a stochastic auto—encoder where the

inference network=encoder and the generative network=decoder:

Input

Probabilistic Encoder

a4 (2[x)

Mean
Std. dev |Z|

zZ=p+o®e
e~ N(0,I)

Sampled
latent vector

<]

An compressed low dimensional
representation of the input.

Probabilistic
Decoder

Po(x|2)

Image adapted from one by Lilian Weng

Reconstruction




The Auto-Encoder View of VAEs (2)

From this perspective, we can think of VAEs as a representation
learning approach. We can think about manipulating images by
encoding them and adjusting the latents before reconstructing, e.g.

interpolating between two points>

2Kingma and Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions” .

3Note these are not actually from a VAE, they are just demonstrative
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Disentanglement: Learning Meaningful Latents
X
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Disentanglement: Learning Meaningful Latents (2)

s FFAFAAAAAAAA

e (HAAAAAACA
=4
o AAAAAAAAA
- @AAAAAAAA
3333A3AAA
24
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~AAAAAAAAA

- (AAAAAAAAA

4Hyunjik Kim and Andriy Mnih. “Disentangling by Factorising”. In: /CML. 2018.

253 KL=255 KL=264 KL=282 KL=288 KL=294
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Further Reading

e The are no additional lecture notes for this lecture: you need
to go investigate for yourself

e Training VAEs in Pyro:
https://pyro.ai/examples/vae.html and https:
//www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s

e Tutorial paper on VAEs: Carl Doersch. “Tutorial on
variational autoencoders”. In: arXiv preprint
arXiv:1606.05908 (2016)

e Video tutorial on deep generative models by Shakir Mohamed
and Danilo Rezende
https://www.youtube.com/watch?v=Jr05fSskISY

e GANs, one of the main alternatives to VAEs: lan Goodfellow
et al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014 53
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