Advanced Topics in Machine Learning

Alejo Nevado-Holgado

Lecture 11 (NLP 3) - Classification and neural networks

V 0.6 (15 Feb 2020 - final version)

Feedback so far

>
>
>
>

Define all the technical terms that you use (e.g. hyperparameters) [+1/ 0]
Sometimes you talk too fast [+1/ 0]
The speed/amount of material is good [+3/ 0]

The spoken descriptions of the equations, and why they are used, are very useful [+1/ 0]

Course structure

> Introduction: What is NLP. Why it is hard. Why NNs work well < Lecture 9 (1)

> Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets < Lecture 9 (e 1)
- Embeddings: First trick that boosted the performance of NNs in NLP « Lecture 9 (nip 1)
- Word2vec: Single layer NN. CBOW and skip-gram « Lecture 10 (nLp2)
- Co-occurrence matrices: Basic counts and SVD improvement < Lecture 10 (nLp2)
- Glove: Combining word2vec and co-occurrence matrices idea < Lecture 10 (nLp2)
- Evaluating performance of embeddings < Lecture 10 (np2)

> Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation < Lecture 11 (np3)
- Better loss functions: margin loss, regularisation < Lecture 11 e 3)
- Better initializations: uniform, xavier < Lecture 11 (wp3)
- Better optimizers: Adagrad, RMSprop, Adam... < Lecture 11 (nLp3)

Course structure

> Language modelling: How to represent the meaning of full pieces of text

Old technology: N-grams <« Lecture 12 (nLp 4)

Recursive NNs language models (RNNs) « Lecture 12 (nip4)
Evaluating performance of language models < Lecture 12 (nip4)
Vanishing gradients: Problem. Gradient clipping «— Lecture 13 (i 5)
Improved RNNs: LSTM, GRU « Lecture 13 (wp5)

> Machine translation: How to translate text

Old technology: Georgetown—IBM experiment and ALPAC report < Lecture 16 (nLpe)
Seq2seq: Greedy decoding, encoder-decoder, beam search « Lecture 16 (ire)
Attention: Simple attention, transformers, reformers < Lecture 16 (o)

Evaluating performance: BLEU « Lecture 16 (wp o)

Neural networks

> Machine learning models can be divided into linear and nonlinear
> Linear: Rarely overfit. Better understood. They performance plateau

- Linear statistical models: Very well understood. Use very extensively outside
computer science and statistics (medicine, biology, psychology...). Has many
flavours (mixed effects model, general linear model, generalized linear model...)

- Others: linear discriminant analysis, Support vector machines, ...
> Nonlinear: Often overfit. Better performance when there is a lot of data. Long to train

- Neural networks: Very flexible. An algorithm exists to calculate its gradient
(backpropagation). Currently state of the art. They are black box

- Others: Quadratic statistical models, splines, support vector machines with
kernel trick, genetic algorithms...

Neural networks

Neural networks

Tcnrh-g}_pun..ﬂ

'w&g

\° " \ o

Neural networks Sigmoid.

O'(LL') 1+e—’”

Mathematically, the model used by neural networks to represent tanh
each neuron is a “linear logistic regression” (if f = sigmoid) tanh(z

Z(wo

A
IR
ReLU J
/

*@® synapse max(0, x)
axon from a neuron “_
S WoZo
dendrite \\ Leaky ReLU
max(0.1z, x)
cell body f(Zw,-z,- o
w11 i

Y wizi+b|f .
: output axon Maxout
activation max(w{ = + b1, w3 = + bs)

function

WoX
o ELU b,l/
T z>0
{ae—l z<0

Neural networks

If a single unit is a logistic regression (f : R" — R), then a layer of a NN is a multivariate
logistic regression (f : R" — R"), and a multilayer NN is a concatenation of multivariate
logistic regressions (fofo...of : R" — R")

Neural networks

> Neural networks are concatenations of linear models with nonlinear transformation,
and only with that they can theoretically represent any function (Google has an
amazing tool to visualize and understand how neural networks do this)

X, . Click anywhero 1o edt
Weight is 0.23.

10

Neural networks

FEATURES 1 HIDDEN LAYER OUTPUT
SIS Propes fes Training loss 0.014
do you want to
feed in? o =
3 neurons
1 g, ;
~ “
\ -~ \\\\ ““‘
__________ -
X, 5=----:::::--\<--_-..----.._.Qllull-
- a
~‘~‘s \\
‘“n-:\ e
X e
L)
7/
\
X.© \ This is the output
? from one neuron.
Hover to see it
larger.

XX

11

eural networks

FEATURES 3 HIDDEN LAYERS OUTPUT

Which properties Tralning loss 0.001
do you want ¢

il + - + - + -

Colors shows
data, neuronand !)
weight values.

— Google Cloud tutorial by Kaz Sato:

https://cloud.qoogle.com/bloa/products/agcp/understandin

_. g-neural-networks-with-tensorflow-playground

https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground

Named Entity Recognition (NER)

The problem: Very often (e.g. for many industrial applications) we would need to know
what is the general classification (e.g. person, organization location, country...) of proper

noun words within a piece of text. This is a typical NLP problem called Named Entity
Recognition (NER)

The European Commission [ORG] said on Thursday it
disagreed with Cerman [MISC] advice.

Only France [LOC] and Britain [LOC] backed Fischler [PER]
's proposal

“What we have to be extremely careful of is how other
countries are going to take Germany 's lead”, Welsh

National Farmers ' Union [ORG] (NFU [ORG]) chairman John
Lloyd Jones [PER] said on BBC [ORG] radio

13

Named Entity Recognition (NER)

Applications: Tracking mentions of a particular entity in documents; question answering
(they often focus on named entities); finding relationships between entities; using the
found entities and inputs to other more complex NLP tasks; others.

The European Commission [ORG] said on Thursday it
disagreed with Cerman [MISC] advice.

Only France [LOC] and Britain [LOC] backed Fischler [PER]
's proposal

“What we have to be extremely careful of is how other
countries are going to take Germany 's lead”, Welsh
National Farmers ' Union [ORG] (NFU [ORG]) chairman John
Lloyd Jones [PER] said on BBC [ORG] radio

14

NER is hard

> Hard to know is something is an entity: Is “National Bank” the name of a bank? Or do they
refer to “national bank” in the general sense of the word?

First National Bank Donates 2 Vans To Future School
Of Fort Smith

> Hard to know the boundaries of an entity: Is the name of the bank “National Bank” or
“First National Bank™?
> Hard to know the class of a novel entity: What the heck is “Zig Ziglar”?

To find out more about Zig Ziglar and read features by other Creators Syndicate writers and

> Entity class can change in different contexts: Charles Schwab is a PER here, not ORG

where Larry Ellison and Charles Schwab can
o charles
live discreetly amongst wooded estates. And SCHWAB

15

NER: Applying multilayer NNs

> The previous challenges likely stem from the fact that most of the information that
determines whether a group of words is a Named Entity, and which is its entity class,
resides in the context where that group of words is located. Most of this context is
described in the neighbour words surrounding the named entity.

> |dea: Why don't we create a NN that reads a window of words around each word that we
are evaluating?

> Example: “Not all museums in Paris are amazing”

museums in Paris are amazing
0000 0000 0000 0000 00O0O

- T
Xwindow - [Xmuseums Xin Xparis Xare xamazing]

> “Museums” tend to be inside cities (like Paris, capital of France), not people (like Paris
Hilton, the actress)

16

NER: Applying multilayer NNs

> |nput of the NN: Xwindow & [Xmuseums Xin Xparis Xare Xamazing]
> Output of the NN: whether the central word is [PER] (person), [LOC] (location) or no entity

> Learning: We will go over all words in a corpus, taking the embeddings of the neighbours
as inputs to the NN (as we did in word2vec’s CBOW), and the classification of the central
word as output (different than in word2vec, where the output was the a word embedding).

> Architecture of the NN: 3 layers

g = [TH Method used by
Collobert &
0000 0000 < a = f(2) Weston (2008,

2011). Won ICML
2018 test of time
award

Xwindow =[Xmuseums Xin Xparis Xare xamazing] 17

z = Wxz+b

[..QQ 0000 0000 0000 0000

NER: Applying multilayer NNs

> The middle layer of the NN learns non-linear interactions between input words

s=UTf(Wz +b)
= R?OXI W € R8X20 U e RSXI

T‘ s = Ulqg

(o000 0000)< a = f(2)
z = Wzx4+b

(0000 0000 0000 0000 0000 |

Xwindow =[Xmuseums Xin Xparis Xare xamazing]
> Example of interaction: only if “museums” is first vector, should it matter that “in” is in the

second position
18

Applying multilayer NNs: Margin loss

> |dea: Use 2 types of input samples, one where the central word is you Named Entity
(positive sample), and another one where the central word is not your Named Entity
(negative sample)

= Soget uT f(w Xpos D) < Xpo0s = MUseums in Paris are amazing
- Sy = U F(W oo + b)) < X ;o= Not all museums in Paris
> Then, take a positive and a negative sample, and minimize:
- J=max(0,1+s;-S,5s) < 0onlyif1+s,.<s,,
- Minimizing J will push the NN to make s at least 1 point higher than s ..

> Jis not everywhere differentiable (i.e. not differentiable in “s, .. - s, = 0"), but it is
continuous everywhere, so we can apply Stochastic Gradient Descent (SGD)

> This is similar to negative sampling in skip-gram

19

Applying multilayer NNs: Learning

> Learning: SGD

1) Feed forwards a number of inputs through the neural network - s =U"f(Wx +b)
2) Calculate the total loss of the output produced by those inputs — J = ... X ... Xygg

3) Calculate what “tiny changes” you should make to each parameters of the NN (U, W
and b) for the loss J to be a “tiny bit” better

> How do we do step 3?: Differential calculus!

“tiny” change of variable ‘a’ — differential of ‘@’ — 6a
How much ‘b’ changes if we change ‘a’ a “tiny” bit (6a) — derivative of ‘b’ with respect
to ‘a’ — O6b/0ba

Chain rule of differential calculus = Given a concatenation of functions (like in a NN),
we can calculate the derivatives of any variable given any other variable

20

Applying multilayer NNs: Learning

> How do we do step 3?: with the chain rule, we can calculate derivatives of any variable
given any other variable

g e UTf(Wa: +b) s How muc.h s’
changes if we
z € R20X1 1 ¢ R®*20 7 ¢ R®*1 OW change w’
o s = Ula
T Chain rule
(o000 0000 |< a = f(2)

2= Wetb 55 ds da Oz
(0000 0000 0000 0000 0000 | —
Xwindow =[Xmuseums Xin Xparis Xare xamazing] 5W 50 5z 5 W

> And we can apply this not only to ‘s’, but also to the loss function ‘J’ itself .

Applying multilayer NNs: Backpropagation

> So, step 3 of SGD consist on:
- 3.1) Calculate 8J/8U, 6J/6W and 6J/6b
- 3.2) Modify U, W and b a tiny bit in the direction that maximises 6J. This is
equivalentto: W ., =W, ,-a V,,J =W - a 6J/OW
> But calculating the derivative of J with respect to every parameter (W and b) is very
expensive:
- U and W have as many rows as neurons in the next layer

- W and b have as many columns as number of words in each window (e.g. 5)
multiplied by the number of dimensions in the word embeddings (e.g. 200!). U has
as many columns as neurons in the previous layer

- And you have to do this many many times during learning!

> Solution: dynamics programming applied to NNs — Backpropagation!
22

Applying multilayer NNs: Backpropagation

> |dea: When calculating 6J/6U, 6J/86W and 8J/6b, many terms appear several times. Why
don't we reuse the result every time we calculate any of these repeated terms?

> To best understand this, we represent the NN as a computation graph:
Graph inputs = NN inputs and NN parameters

Graph nodes = NN operations

—u'h
h = f(z)
z=Wx+b

w b b x (input)

23

Applying multilayer NNs: Backpropagation

> |If you know how to apply backpropagation to 3 core simple graphs, to can apply them to

all complex graphs:
Single node
Converging inputs

Diverging outputs

h = f(z)

Z h

%’Q‘J
NS
~~

AN

0z oh

Downstream Local Upstream
gradient gradient gradient

24

Applying multilayer NNs: Backpropagation

>

If you know how to apply backpropagation to 3 core simple graphs, to can apply them to

all complex graphs:
Single node
Converging inputs

Diverging outputs

h = f(z)
VA
oh
< i
Chain [05 _ s Bh‘U
rulel 19z Oh 0z
Downstream Local
gradient gradient

h

v

ds
Oh

Upstream

gradient

25

Applying multilayer NNs: Backpropagation

> |If you know how to apply backpropagation to 3 core simple graphs, to can apply them to
all complex graphs:

- Single node W z=Wx

- Converging inputs

- Diverging outputs <

26

Applying multilayer NNs: Backpropagation

> |If you know how to apply backpropagation to 3 core simple graphs, to can apply them to
all complex graphs:

Single node W z=Wgx
Converging inputs \
Diverging outputs 0s _ 0s 0z A \
oW 0z O0W) !
T < 9s
0z
ds 0s 0z
ox 0z Oz
Downstream Local Upstream

gradients gradients gradient -

Applying multilayer NNs: Backpropagation

> |If you know how to apply backpropagation to 3 core simple graphs, to can apply them to
all complex graphs:

- Single node \ >

- Converging inputs

- Diverging outputs : > +

28

Ap

plying multilayer NNs: Backpropagation

Learning: SGD

1) Feed forwards a number of inputs through the neural
network - s=UTf(Wx+b)

2) Calculate the total loss of the output produced by those

T SIS = = o M on My

3) Calculate what “tiny changes” you should make to each
parameters of the NN (U, W and b) for the loss J to be a
“tiny bit” better
3.1) Calculate 8J/6U, 6J/6W and 6J/6b — Do this with
backpropagation
3.2) Modify U, W and b a tiny bit in the direction that
maximises dJ. This is equivalent to:

WNEW = WOLD -0 VWJ = WOLD -a 6J/6W (XX] 29

Single scalar output 2

Applying multilayer NNs: Backpropagation

> How backpropagation is implemented:

The gradient of the loss WRT any variable ‘a’ (6J/6a)
can be automatically calculated from how the loss
relates to these variables (J = ...a...). You can represent
all computational association between variables as a
graph

Each node in the graph needs to know how to compute
its output from its inputs during forward-propagation (y
= f(x)), and how to compute the gradient of the loss
WRT its inputs (6J/6x) given the gradient of the loss
WRT its outputs (8J/0y) — 6J/6x = 6J/6y x dy/dx

This is how modern libraries work (pytorch, tensorflow)

Single scalar output 2

L L J 30

Applying multilayer NNs: Margin loss

> |dea: Use 2 types of input samples, one where the central word is you Named Entity
(positive sample), and another one where the central word is not your Named Entity
(negative sample)

= Soget uT f(w Xpos D) < Xpo0s = MUseums in Paris are amazing
- Sy = U F(W oo + b)) < X ;o= Not all museums in Paris
> Then, take a positive and a negative sample, and minimize:
- J=max(0,1+s;-S,5s) < 0onlyif1+s,.<s,,
- Minimizing J will push the NN to make s at least 1 point higher than s ..

> Jis not everywhere differentiable (i.e. not differentiable in “s, .. - s, = 0"), but it is
continuous everywhere, so we can apply Stochastic Gradient Descent (SGD)

> This is similar to negative sampling in skip-gram

31

Applying multilayer NNs: Regularisation

> Problem: NNs tend to overfit
because they have many

parameters
> |dea 1: Add a penalisation to the overfitting
loss function that encourages
many parameters to take the
:

value ‘0’ — L1 regularisation model power

> |dear 2: Add a penalisation to the
loss function that encourages

many parameters to take small 1 efui
1 J(9)=N§:—log(zc—)+)\§:9i
k

values — L2 regularisation

32

Applying multilayer NNs: Initialization

> Good basic initialization:
- Initialize biases ‘b’ to 0
- Initialize weights ‘W’ to random values from uniform distribution — Uniform(-r, +r)
- Choose r' such that the values are not too large or too small

> Xavier initialization:

- Choose initial values optimally for the variance of the information to stay stable across
the NN

- On initialization, the variance of the initial weights should be proportional to the size of

the previous layer (fan-in, n.) and to the size of the next layer (fan-out, n_)

2
Nin -+ Nout

Var(W;) =

33

Applying multilayer NNs: Optimizers

> Standard optimizer: SGD

This tends to work OK, but getting good results requires you to carefully
fine-tune the learning rate

> Adaptive optimizers: They automatically fine-tune the learning rate, usually by
monitoring the gradients during learning

Adagrad
RMSprop
Adam

Sparse Adam

34

Course structure

> Introduction: What is NLP. Why it is hard. Why NNs work well < Lecture 9 (1)

> Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets < Lecture 9 (e 1)
- Embeddings: First trick that boosted the performance of NNs in NLP « Lecture 9 (nip 1)
- Word2vec: Single layer NN. CBOW and skip-gram « Lecture 10 (nLp2)
- Co-occurrence matrices: Basic counts and SVD improvement < Lecture 10 (nLp2)
- Glove: Combining word2vec and co-occurrence matrices idea < Lecture 10 (nLp2)
- Evaluating performance of embeddings < Lecture 10 (np2)

> Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation < Lecture 11 (np3)
- Better loss functions: margin loss, regularisation < Lecture 11 e 3)
- Better initializations: uniform, xavier <« Lecture 11 (p3)

- Better optimizers: Adagrad, RMSprop, Adam... < Lecture 11 (nLp3) i

Course structure

> Language modelling: How to represent the meaning of full pieces of text

Old technology: N-grams <« Lecture 12 (nLp 4)

Recursive NNs language models (RNNs) « Lecture 12 (nip4)
Evaluating performance of language models < Lecture 12 (nip4)
Vanishing gradients: Problem. Gradient clipping «— Lecture 13 (i 5)
Improved RNNs: LSTM, GRU « Lecture 13 (wp5)

> Machine translation: How to translate text

Old technology: Georgetown—IBM experiment and ALPAC report < Lecture 16 (nLpe)
Seq2seq: Greedy decoding, encoder-decoder, beam search « Lecture 16 (ire)
Attention: Simple attention, transformers, reformers < Lecture 16 (o)

Evaluating performance: BLEU « Lecture 16 (wp o)

36

Literature

> Papers =

- “Automatic differentiation in machine learning: A survey”, Baydin et al., 2015.
http.//arxiv.org/abs/1502.05767

- “Natural language processing (almost) from scratch”, Collobert et al., 2011.
http://www.jmlr.org/papers/volumel12/collobert11a/collobert11a.pdf

- “Learning representations by backpropagating errors”, Rumelhart et al., 1986.
http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop old.pdf

- “Yes, you should understand backprop”, Karpathy, 2016.
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

37

http://arxiv.org/abs/1502.05767
http://www.jmlr.org/papers/volume12/collobert11a/collobert11a.pdf
http://www.iro.umontreal.ca/
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

