
Advanced Topics in Machine Learning

Alejo Nevado-Holgado

Lecture 10 (NLP 2) - Embeddings 2
V 0.6 (15 Feb 2020 - minor improvements after lecture)

Course structure
➢ Introduction: What is NLP. Why it is hard. Why NNs work well ← Lecture 9 (NLP 1)

➢ Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets ← Lecture 9 (NLP 1)

- Embeddings: First trick that boosted the performance of NNs in NLP ← Lecture 9 (NLP 1)

- Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)

- Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)

- Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)

- Evaluating performance of embeddings ← Lecture 10 (NLP 2)

➢ Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation ← Lecture 11 (NLP 3)

- Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)

- Better initializations: uniform, xavier ← Lecture 11 (NLP 3)

- Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)
2

Course structure

➢ Language modelling: How to represent the meaning of full pieces of text
- Old technology: N-grams ← Lecture 12 (NLP 4)

- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)

- Evaluating performance of language models ← Lecture 12 (NLP 4)

- Vanishing gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)

- Improved RNNs: LSTM, GRU ← Lecture 13 (NLP 5)

➢ Machine translation: How to translate text
- Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 16 (NLP 6)

- Seq2seq: Greedy decoding, encoder-decoder, beam search ← Lecture 16 (NLP 6)

- Attention: Simple attention, transformers, reformers ← Lecture 16 (NLP 6)

- Evaluating performance: BLEU ← Lecture 16 (NLP 6)

3

Embeddings: word2vec

➢ Word2vec very successfully implemented word embeddings using this
context-meaning idea.

- We start with a very large corpus of text (e.g. all of Wikipedia)

- Every word is represented by a vector in ℝn space (n~200 dimentions)

- You have a model (e.g. a NN) that tries to predict the vector of a word (i.e. the central
word) given the vectors of the words around it (i.e. its context). In probability terms,
the NN models the probability P(wc | wc-3, wc-2, wc-1, wc+1, wc+2, wc+3)

- Go through each central word - context pair in the corpus

- In each iteration, modify the NN and vectors a little bit for words with similar
contexts to have similar vectors

- Repeat last 2 steps many times

4

Embeddings: word2vec

There are two versions of
word2vec:

➢ CBOW:

context → centre

A NN learns to model the
central word P(wc | wc-3 ...
)

➢ Skip-gram:

centre → context

A NN learns to model the
context P(wc+i | wc)

5

Word2vec: Skip-gram
➢ The NN uses a single hidden layer, a single weight matrix (WVD), the transpose of this

weight matrix (WT
VD), and a single activation function (softmax)

6

Word2vec: Skip-gram

7

Word2vec: learning

➢ OK, awesome, then we use a NN to implement the model… but how do we learn the
model? How do we find the values of WVD? This is the matrix that contains all our
vector embeddings

➢ We apply stochastic gradient descent (SGD) on a very very large corpus:

- Go through each central word - context pair in the corpus

- In each iteration, modify the NN and vectors a little bit for words with similar
contexts to have similar vectors

- Repeat last 2 steps many times

➢ But there is a problem: The denominator of ..., or:

8

Word2vec: learning
➢ The normalization factor is computationally too expensive:

➢ To bypass this problem, rather than calculating the denominator exactly, we calculate
and approximation of it by using “negative sampling”

➢ Idea: train binary logistic regressions for a true pair (center word and word in its context
window) versus several noise pairs (the center word paired with a random word).

➢ We take N negative samples (using word probabilities).
➢ Maximize probability that true word is predicted by the NN from its pair, minimize

probability that noise word is predicted by the NN from its pair.
➢ “Distributed Representations of Words and Phrases and their Compositionality" (Mikolov

et al. 2013)
9

Word2vec
➢ The main end result of word2vec (and other embedding algorithms) is that words of

similar meaning end up being place nearby to each other in ℝD space

10

Word2vec
➢ A surprising side result, is that specific directions in ℝD space also encode meaning

➢ Both properties are very useful for building further ML on top of the embeddings

11

Co-occurrence matrices
➢ Idea: But if all what word2vec is doing is extracting the meaning of words from their

context, why don’t we simply count how often words appear together?

➢ This is called a “co-occurrence matrix”, and it also gets quite far capturing the
meaning of words

➢ As the NN in word2vec, this very simple matrix of co-occurrence counts can be
calculated:

- Go through each central word - context pair in the corpus (context window length is
commonly anything between 1 and 5)

- In each iteration, update in the row of the count matrix corresponding to the central
word by adding +1 in the columns corresponding to the context words

- Repeat last 2 steps many times

12

Co-occurrence matrices

➢ Example corpus:

- … after a few days the fur of the dog was unkept and dirty, and this spread ...

- … you will soon realise that walks in the park are dog’s priority, and they will ...

- … he was worried that his neighbour’s dog kept barking during all night ...

- … the warden had a labrador of brown fur who kept chasing squirrels in ...

- … breeders recommend to daily take your labrador to the park to tempter

- … at the end of the day, a labrador barks less than other breeds, but he also …

13

Co-occurrence matrices

... cat dog labrador fur park bark ...

... ...

cat 23 4 0 12 0 0

dog 4 28 23 13 22 28

labrador 0 23 25 16 23 22

fur 12 13 16 16 0 0

park 0 22 23 0 21 3

bark 0 28 22 0 3 16

... ...

14

Co-occurrence matrices

➢ While word2vec was able to encode the meaning of the words in a matrix WVD of
size V✕D, the co-occurrence CVV matrix has size V✕V

- But there are some problems with this basic approach:

- The co-occurrence matrix increase very fast (as V2) with the size of the
vocabulary

- This requires a lot of storage

- This requires a lot of computation (e.g. to calculate distance between words)

- Rare words will have very few counts

- ML algorithms built on top of the co-occurrence matrix have sparsity problems

➢ Three are some methods to ameliorate these problems

15

Co-occurrence matrices

➢ Idea: Store the most important information of ℝV in a fixed small number of
dimensions (usually 25-1000, as in word2vec), rather than in V dimensions.

➢ There are many methods to reduce dimensionality while preserving the most
important information: Principal Component Analysis, Independent Component
Analysis…

➢ One commonly used to reduce CVV is Singular Value Decomposition (SVD):

➢ Why do we use this very complicated method?

16

Co-occurrence matrices
➢ If Mmn were a linear transformation “M: ℝv → ℝv” then:

- U = rotates the basis of M: ℝv → ℝv

- Σ = rescales the basis
- V = rotates the basis again

17

Co-occurrence matrices

➢ And the magic comes from the fact that, if
(1st) we decompose Mmn in its singular values

Cvv → Uvv ⨉ Σvv ⨉ Vvv

(2nd) keep only the ‘d’ largest of such singular
values

Cvv → Uvv ⨉ Σvv ⨉ Vvv → Uvv ⨉ Σvd ⨉ Vdd

and (3rd) recalculate Mmm

Uvv ⨉ Σvd ⨉ Vdd → Cvd

We obtain the closest approximation of Mmm
according to mean square error

18

Co-occurrence matrices

“An improved model of semantic similarity based on lexical co-occurrence” Rohde, 2005
19

Co-occurrence matrices

➢ Co-occurrence models:

- LSA, HAL (Lund & Burges)

- COALS, Hellinger-PCA (Rohde, Lebert &
Collobert

➢ Pros and cons:

- Fast training

- Efficient use of statistics

- Primarily used to capture word similarity

- Disproportionate importance given to large
counts

➢ NN based models:

- Skip-gram, CBOW (Mikolov)

- NNLM, HLBL, RNN (Bengio, Collobert &
Weston, Huang, Mnih & Hinton)

➢ Pros and cons:

- Not too fast training

- Inefficient use of statistics

- Gives improved performance on other tasks

- Can capture complex patterns beyond word
similarity

20

Glove
➢ Rather than word counts Cvv, people often used the probabilities of one word

appearing in the context of another: P(v1|v2)

➢ Both word counts in Cvv and probabilities P(v1|v2) depend very strongly on the
frequency of words: frequent words will have much larger counts and probabilities

➢ The authors of Glove suggest that ratios of probabilities between words are much
better suited to create good embeddings

➢ The authors of Glove introduce 2 further heuristic arguments:

- The distance between words d(v1,v2) should be a linear function

- The Distance between words should be symmetric between context and
central words. Namely d(v1,v2) when v1 is a central word and v2 a context word
should be the same than d(v1,v2) when v1 is a context word and v2 a central
word

21

Glove

➢ The embeddings wi that best fulfill those three rules, are those whose scalar
product (wT

iwk) approximates (log(Cvv)) minus two constant values that depend only
on the 2 words being multiplied (bi & bj):

wT
iwj + bi + bj ~ log([Cvv](i,j))

➢ You can obtain these embeddings wi for all words by minimising the error function:

➢ The function ramp(...) is defined heuristically →

22

Glove

➢ You can obtain these embeddings wi for all words by minimising the error function:

➢ The advantages of Glove:

- Fast training

- Scalable to huge corpora

- Good performance even with small corpus and small vectors

23

Evaluating quality of embeddings
➢ Intrinsic methods: Measure some statistical property of the embeddings that

should correlate with quality (e.g. similar words should be close to each other)

- Fast to compute

- Helps to understand the system

- The method does not fully ensure that the embeddings are going to perform well when
sent to another real world task

➢ Extrinsic methods: Use the embeddings in a real NN and on a real task to evaluate
embeddings (e.g. named entity recognition)

- Slow to compute

- Unclear what part of the performance on the real task comes from the embedding and
which part comes from the rest of the NN… and which from the embeddings - NN
interaction

24

Evaluating quality of embeddings
Intrinsic methods:

➢ Word Vector Analogies:

- a is to b as c is to x

- man is to woman as king is to x

➢ Evaluates word vectors by how well their
difference vector (wb-wa) captures meaning
consistently when moved to another word
(wc)

➢ Discards the input words from the search

➢ Problem: What if the information is there but
it is nonlinear

25

Evaluating quality of embeddings

26

Evaluating quality of embeddings

27

Evaluating quality of embeddings
Intrinsic methods:

➢ There are datasets available to run intrinsic evaluation:

- https://github.com/nicholas-leonard/word2vec/questions-words.txt → Word
relationships

- https://github.com/nicholas-leonard/word2vec/blob/master/questions-phrase
s.txt → phrase relationships

- http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/ → Word
similarities

Athens Greece Bangkok Thailand
Fresno California Anchorage Alaska
free freely usual usually
clear unclear certain uncertain

d(cup, coffee) → 6.6
d(cup, article) → 2.4
d(Noon, string) → 0.5
d(Midday, noon) → 0.3

28

https://github.com/nicholas-leonard/word2vec/questions-words.txt
https://github.com/nicholas-leonard/word2vec/blob/master/questions-phrases.txt
https://github.com/nicholas-leonard/word2vec/blob/master/questions-phrases.txt
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Evaluating quality of embeddings

→
 G

lov
e:

Gl
ob

al
ve

cto
rs

for
 w

or
d r

ep
re

se
nta

tio
n.

Pe
nn

ing
ton

 et
 al

. E
MN

LP
. 2

01
4

29

Evaluating quality of embeddings

→
 G

lov
e:

Gl
ob

al
ve

cto
rs

for
 w

or
d r

ep
re

se
nta

tio
n.

Pe
nn

ing
ton

 et
 al

. E
MN

LP
. 2

01
4

30

Evaluating quality of embeddings

Extrinsic methods:

➢ Typical benchmark tasks:

- Named Entity Recognition

- Parts Of Speech tagging

- Sentiment analysis

- Translation

- … basically, anything
meaningful

→
 G

lov
e:

Gl
ob

al
ve

cto
rs

for
 w

or
d r

ep
re

se
nta

tio
n.

Pe
nn

ing
ton

 et
 al

. E
MN

LP
. 2

01
4

31

Course structure
➢ Introduction: What is NLP. Why it is hard. Why NNs work well ← Lecture 9 (NLP 1)

➢ Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets ← Lecture 9 (NLP 1)

- Embeddings: First trick that boosted the performance of NNs in NLP ← Lecture 9 (NLP 1)

- Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)

- Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)

- Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)

- Evaluating performance of embeddings ← Lecture 10 (NLP 2)

➢ Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation ← Lecture 11 (NLP 3)

- Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)

- Better initializations: uniform, xavier ← Lecture 11 (NLP 3)

- Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)
32

Course structure

➢ Language modelling: How to represent the meaning of full pieces of text
- Old technology: N-grams ← Lecture 12 (NLP 4)

- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)

- Evaluating performance of language models ← Lecture 13 (NLP 5)

- Vanishing gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)

- Improved RNNs: LSTM, GRU ← Lecture 13 (NLP 5)

➢ Machine translation: How to translate text
- Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 16 (NLP 6)

- Seq2seq: Greedy decoding, encoder-decoder, beam search ← Lecture 16 (NLP 6)

- Attention: Simple attention, transformers, reformers ← Lecture 16 (NLP 6)

- Evaluating performance: BLEU ← Lecture 16 (NLP 6)

33

Literature
➢ Papers =

- GloVe: Global vectors for word representation, Pennington et al., 2014.
http://nlp.stanford.edu/pubs/glove.pdf

- Improving distributional similarity with lessons learned from word embeddings”,
Levy et al., 2015. http://www.aclweb.org/anthology/Q15-1016

- Evaluation methods for unsupervised word embeddings, Schnabel et al., 2015.
http://www.aclweb.org/anthology/D15-1036

- A latent variable model approach to PMI-based word embeddings, Arora et al., 2016.
http://aclweb.org/anthology/Q16-1028

- Linear algebraic structure of word senses, with applications to polysemy, Arora et al.,
2017, https://transacl.org/ojs/index.php/tacl/article/viewFile/1346/320

- “On the dimensionality of word embedding”, Yin et al., 2018.
https://arxiv.org/pdf/1812.04224

34

http://nlp.stanford.edu/pubs/glove.pdf
http://www.aclweb.org/anthology/Q15-1016
http://www.aclweb.org/anthology/D15-1036
http://aclweb.org/anthology/Q16-1028
https://transacl.org/ojs/index.php/tacl/article/viewFile/1346/320
https://arxiv.org/pdf/1812.04224

