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Course structure

> Introduction: What is NLP. Why it is hard. Why NNs work well < Lecture 9 (1)

> Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets < Lecture 9 (e 1)
- Embeddings: First trick that boosted the performance of NNs in NLP « Lecture 9 (nip 1)
- Word2vec: Single layer NN. CBOW and skip-gram « Lecture 10 (nLp2)
- Co-occurrence matrices: Basic counts and SVD improvement < Lecture 10 (nLp2)
- Glove: Combining word2vec and co-occurrence matrices idea < Lecture 10 (nLp2)
- Evaluating performance of embeddings < Lecture 10 (np2)

> Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation < Lecture 11 (np3)
- Better loss functions: margin loss, regularisation < Lecture 11 e 3)
- Better initializations: uniform, xavier < Lecture 11 (wp3)
- Better optimizers: Adagrad, RMSprop, Adam... < Lecture 11 (nLp3)



Course structure

> Language modelling: How to represent the meaning of full pieces of text

Old technology: N-grams <« Lecture 12 (nLp 4)

Recursive NNs language models (RNNs) « Lecture 12 (nip4)
Evaluating performance of language models < Lecture 12 (nip4)
Vanishing gradients: Problem. Gradient clipping «— Lecture 13 (i 5)
Improved RNNs: LSTM, GRU « Lecture 13 (wp5)

> Machine translation: How to translate text

Old technology: Georgetown—IBM experiment and ALPAC report < Lecture 16 (nLpe)
Seq2seq: Greedy decoding, encoder-decoder, beam search « Lecture 16 (ire)
Attention: Simple attention, transformers, reformers < Lecture 16 (o)

Evaluating performance: BLEU « Lecture 16 (wp o)



Embeddings: word2vec

> Word2vec very successfully implemented word embeddings using this
context-meaning idea.

We start with a very large corpus of text (e.g. all of Wikipedia)
Every word is represented by a vector in R" space (n~200 dimentions)

You have a model (e.g. a NN) that tries to predict the vector of a word (i.e. the central
word) given the vectors of the words around it (i.e. its context). In probability terms,

the NN models the probability P(w_|W_,, W_,, W_,,W_,.,W_., W_,.)

Go through each central word - context pair in the corpus

In each iteration, modify the NN and vectors a little bit for words with similar
contexts to have similar vectors

Repeat last 2 steps many times



Embeddings: word2vec

There are two versions of
word2vec:

> CBOW:
context — centre

A NN learns to model the

central word P(w_|w_, ...

)
> Skip-gram:
centre — context

A NN learns to model the
context P(w_,. [w_)
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Word2vec: Skip-gram

> The NN uses a single hidden layer, a single weight matrix (W, ), the transpose of this
weight matrix (W', ), and a single activation function (softmax)
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Word2vec: Skip-gram
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Word2vec: learning

> OK, awesome, then we use a NN to implement the model... but how do we learn the
model? How do we find the values of W, ? This is the matrix that contains all our
vector embeddings

> We apply stochastic gradient descent (SGD) on a very very large corpus:
- Go through each central word - context pair in the corpus

- In each iteration, modify the NN and vectors a little bit for words with similar
contexts to have similar vectors

- Repeat last 2 steps many times

. . exp( [x1X{WX{ W] exp (7, 7.

> But there is a problem: The denominator of =[y] ..., OF: :
Z exp( W]x W ])




Word2vec: learning

> The normalization factor is computationally too expensive:
exp([.x]x[%]x[tg?]‘) exp(w,xw,

Z, expl'[if}x[%]x[\gff]') [¥] D exp(w,xw,)

> To bypass this problem, rather than calculating the denominator exactly, we calculate
and approximation of it by using “negative sampling”

> |dea: train binary logistic regressions for a true pair (center word and word in its context
window) versus several noise pairs (the center word paired with a random word).

> We take N negative samples (using word probabilities).

> Maximize probability that true word is predicted by the NN from its pair, minimize
probability that noise word is predicted by the NN from its pair.

> “Distributed Representations of Words and Phrases and their Compositionality" (Mikolov
et al. 2013)



Word2vec

> The main end result of word2vec (and other embedding algorithms) is that words of
similar meaning end up being place nearby to each other in RP space
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Word2vec

> A surprising side result, is that specific directions in RP space also encode meaning

> Both properties are very useful for building further ML on top of the embeddings
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Co-occurrence matrices

> Idea: But if all what word2vec is doing is extracting the meaning of words from their
context, why don't we simply count how often words appear together?

> This is called a “co-occurrence matrix”, and it also gets quite far capturing the
meaning of words

> Asthe NN in word2vec, this very simple matrix of co-occurrence counts can be
calculated:

- Go through each central word - context pair in the corpus (context window length is
commonly anything between 1 and 5)

- In each iteration, update in the row of the count matrix corresponding to the central
word by adding +1 in the columns corresponding to the context words

- Repeat last 2 steps many times
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Co-occurrence matrices

> Example corpus:
- ... after a few days the fur of the dog was unkept and dirty, and this spread ...
- ... you will soon realise that walks in the park are dog's priority, and they will ...
- ... he was worried that his neighbour’s dog kept barking during all night ...
- ...the warden had a labrador of brown fur who kept chasing squirrels in ...
- ... breeders recommend to daily take your labrador to the park to tempter ....

- .. at the end of the day, a labrador barks less than other breeds, but he also ...
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Co-occurrence matrices
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Co-occurrence matrices

> While word2vec was able to encode the meaning of the words in a matrix W, of
size VXD, the co-occurrence C,,, matrix has size VXV

But there are some problems with this basic approach:

The co-occurrence matrix increase very fast (as V?) with the size of the
vocabulary

This requires a lot of storage
This requires a lot of computation (e.g. to calculate distance between words)
Rare words will have very few counts

ML algorithms built on top of the co-occurrence matrix have sparsity problems

> Three are some methods to ameliorate these problems
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Co-occurrence matrices

> Idea: Store the most important information of R in a fixed small number of
dimensions (usually 25-1000, as in word2vec), rather than in V dimensions.

> There are many methods to reduce dimensionality while preserving the most
important information: Principal Component Analysis, Independent Component
Analysis...

> One commonly used to reduce C,,, is Singular Value Decomposition (SVD):
[M]=[U]X[Z]x[V]
=[UJx[Z]x[V]
> Why do we use this very complicated method?
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Co-occurrence matrices

>

If M _were a linear transformation “M: r¥ — R"” then:

U = rotates the basis of M: ¥ — RY
> =rescales the basis
V = rotates the basis again
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Co-occurrence matrices

> And the magic comes from the fact that, if
(1%) we decompose M in its singular values

C -U x2 xV
\'A% vV vV vV

(2"9) keep only the ‘d’ largest of such singular
values

va - va X zvv X Vvv - va X zvd X Vdd

and (3') recalculate M_

va X zvd X Vdd - Cvd

We obtain the closest approximation of M__
according to mean square error
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Co-occurrence matrices
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Co-occurrence matrices

> (Co-occurrence models:
- LSA, HAL (Lund & Burges) i

- COALS, Hellinger-PCA (Rohde, Lebert & )
Collobert

> Pros and cons:
- Fast training
- Efficient use of statistics
- Primarily used to capture word similarity

- Disproportionate importance given to large
counts

NN based models:
Skip-gram, CBOW (Mikolov)

NNLM, HLBL, RNN (Bengio, Collobert &
Weston, Huang, Mnih & Hinton)

Pros and cons:

Not too fast training

Inefficient use of statistics

Gives improved performance on other tasks

Can capture complex patterns beyond word
similarity
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Glove

> Rather than word counts C_, people often used the probabilities of one word
appearing in the context of another: P(v.|v,)

> Both word counts in C_ and probabilities P(v.|v,) depend very strongly on the
frequency of words: frequent words will have much larger counts and probabilities

> The authors of Glove suggest that ratios of probabilities between words are much
better suited to create good embeddings

> The authors of Glove introduce 2 further heuristic arguments:
- The distance between words d(v.,v,) should be a linear function

- The Distance between words should be symmetric between context and
central words. Namely d(v,,v,) when v_ is a central word and v, a context word
should be the same than d(v,,v,) when v. is a context word and v,, a central

word
21



Glove

> The embeddings w. that best fulfill those three rules, are those whose scalar
product (w'w,) approximates (log(C, )) minus two constant values that depend only
on the 2 words being multiplied (b, & bj):

whw, + b, +b ~log([C,](ij))

> You can obtain these embeddings w. for all words by minimising the error function:

2
7 =3 ramp( [C](i.) )([(] [p,~1+b,-+bj—log(ii(’\'ju../)))
Ei ;

i,=1

> The function ramp(...) is defined heuristically — 10
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Glove

> You can obtain these embeddings wi for all words by minimising the error function:

J = Zramp {(J i,7) )([(] [(’J]+b + b; —log(t(J( )))2

i,5=1

> The advantages of Glove:
- Fast training
- Scalable to huge corpora

- Good performance even with small corpus and small vectors
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Evaluating quality of embeddings

> Intrinsic methods: Measure some statistical property of the embeddings that
should correlate with quality (e.g. similar words should be close to each other)

Fast to compute
Helps to understand the system

The method does not fully ensure that the embeddings are going to perform well when
sent to another real world task

> Extrinsic methods: Use the embeddings in a real NN and on a real task to evaluate
embeddings (e.g. named entity recognition)

Slow to compute

Unclear what part of the performance on the real task comes from the embedding and
which part comes from the rest of the NN... and which from the embeddings - NN
interaction
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Evaluating quality of embeddings

Intrinsic methods:

> Word Vector Analogies:

>

4

- aistob as cistox
- manistowoman as Kkingis to x

Evaluates word vectors by how well their
difference vector (w -w_) captures meaning
consistently when moved to another word

(w,)
Discards the input words from the search

Problem: What if the information is there but
it is nonlinear

(wy — wa + we)Twy
T = argmazx
d ||lwp — wa + we|

woman 7) queen

€
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Evaluating quality of embeddings
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Evaluating quality of embeddings
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Evaluating quality of embeddings

Intrinsic methods:
> There are datasets available to run intrinsic evaluation:

- https://qithub.com/nicholas-leonard/word2vec/questions-words.txt — Word
relationships

- https://github.com/nicholas-leonard/word2vec/blob/master/questions-phrase
s.txt — phrase relationships

- http://www.cs.technion.ac.il/~qgabr/resources/data/wordsim353/ — Word

similarities
Athens Greece Bangkok Thailand d( cup, coffee ) — 6.6
Fresno California Anchorage Alaska d( cup, article) — 2.4
free freely usual usually d( Noon, string) — 0.5

clear unclear certain uncertain d( Midday, noon ) — 0.3
28
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Evaluating quality of embeddings
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Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by
the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram
(b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 +
Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

— Glove: Global vectors for word representation.

Pennington et al. EMNLP. 2014
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Evaluating quality of embeddings

- Semantic - Syntactic - Overall

85

Accuracy [%]

— Glove: Global vectors for word representation.

Pennington et al. EMNLP. 2014

e e ) Gigaword5 +
Wiki2010 Wiki2014 Gigaword5 Wiki2014 Common Crawl
1B tokens 1.6B tokens 4.3B tokens 6B tokens 428 tokens
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Evaluating quality of embeddings

Table 4: F1 score on NER task with 50d vectors.
Extrinsic methods: Discrete 1s the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.
Named Entity Recognition Model | Dev Test ACE MUC7
Discrete | 91.0 854 774 734
SVD | 90.8 857 773 @ 73.7

> Typical benchmark tasks:

- Parts Of Speech tagging

- Sentiment analysis SVD-S | 91.0 855 77.6 743
. . HPCA | 92.6 88.7 817 80.7

- .. basically, anything HSMN | 90.5 857 787 747
meaningful CW |922 874 817 802

CBOW | 93.1 882 822 8lI.1
GloVe | 93.2 883 829  82.2
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Course structure

> Introduction: What is NLP. Why it is hard. Why NNs work well < Lecture 9 (1)

> Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets < Lecture 9 (e 1)
- Embeddings: First trick that boosted the performance of NNs in NLP « Lecture 9 (nip 1)
- Word2vec: Single layer NN. CBOW and skip-gram « Lecture 10 (nLp2)
- Co-occurrence matrices: Basic counts and SVD improvement < Lecture 10 (nLp2)
- Glove: Combining word2vec and co-occurrence matrices idea < Lecture 10 (nLp2)
- Evaluating performance of embeddings < Lecture 10 (np2)

> Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation < Lecture 11 (np3)
- Better loss functions: margin loss, regularisation < Lecture 11 e 3)
- Better initializations: uniform, xavier <« Lecture 11 (p3)

- Better optimizers: Adagrad, RMSprop, Adam... < Lecture 11 (nLp3) .



Course structure

> Language modelling: How to represent the meaning of full pieces of text

Old technology: N-grams <« Lecture 12 (nLp 4)

Recursive NNs language models (RNNs) « Lecture 12 (nip4)
Evaluating performance of language models < Lecture 13 (nLps)
Vanishing gradients: Problem. Gradient clipping < Lecture 13 (nips)
Improved RNNs: LSTM, GRU « Lecture 13 (wp5)

> Machine translation: How to translate text

Old technology: Georgetown—IBM experiment and ALPAC report < Lecture 16 (nLpe)
Seq2seq: Greedy decoding, encoder-decoder, beam search « Lecture 16 (ire)
Attention: Simple attention, transformers, reformers < Lecture 16 (o)

Evaluating performance: BLEU « Lecture 16 (wp o)
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2017, https://transacl.org/ojs/index.php/tacl/article/viewFile/1346/320
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https://arxiv.org/pdf/1812.04224
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