Advanced Topics in Machine Learning

Alejo Nevado-Holgado

Lecture 12 (NLP 4) - Language models and vanilla RNNs

V 0.3 (15 Feb 2020 - final version)

Course structure

> Introduction: What is NLP. Why it is hard. Why NNs work well < Lecture 9 (1)

> Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets < Lecture 9 (e 1)
- Embeddings: First trick that boosted the performance of NNs in NLP « Lecture 9 (nip 1)
- Word2vec: Single layer NN. CBOW and skip-gram « Lecture 10 (nLp2)
- Co-occurrence matrices: Basic counts and SVD improvement < Lecture 10 (nLp2)
- Glove: Combining word2vec and co-occurrence matrices idea < Lecture 10 (nLp2)
- Evaluating performance of embeddings < Lecture 10 (np2)

> Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation < Lecture 11 (np3)
- Better loss functions: margin loss, regularisation < Lecture 11 e 3)
- Better initializations: uniform, xavier < Lecture 11 (wp3)
- Better optimizers: Adagrad, RMSprop, Adam... < Lecture 11 (nLp3)

Course structure

> Language modelling: How to represent the meaning of full pieces of text

Old technology: N-grams <« Lecture 12 (nLp 4)

Recursive NNs language models (RNNs) « Lecture 12 (nip4)
Evaluating performance of language models < Lecture 12 (nip4)
Vanishing gradients: Problem. Gradient clipping «— Lecture 13 (i 5)
Improved RNNs: LSTM, GRU « Lecture 13 (wp5)

> Machine translation: How to translate text

Old technology: Georgetown—IBM experiment and ALPAC report < Lecture 16 (nLpe)
Seq2seq: Greedy decoding, encoder-decoder, beam search « Lecture 16 (ire)
Attention: Simple attention, transformers, reformers < Lecture 16 (o)

Evaluating performance: BLEU « Lecture 16 (wp o)

Language modelling

The problem: Having a method to accurately represent the meaning of individual words
(e.g. word embeddings), enormously helps to solve the simpler NLP tasks, but falls short
in complex ones. Having a more advanced method that represents the meaning of full
pieces of text (rather than separated words), helps to solve the more challenging tasks.

We created good word

. . books
representations by predicting the / laptops
presentation of the central word the students opened their g
from the representations of a few \\- exams
neighbouring words (CBOW). We minds
can create good representations
of full pieces of text by predicting Pz 20 . 2d)

each word from all the preceding
ones — Language models

Language modelling

> Alanguage model itself is simply an algorithm that assigns probabilities to the next

books

/ / laptops

\\‘ exams

minds

the students opened their

> More formally: Given a sequence of words w, w®, w®, _ w and their
representations x(", x@, x®, . x® what the model calculates is an approximation of:

Pz O (M)

Language modelling

Applications: Predicting the next word in a piece of text has some direct applications

© limeetyou atthe © » GO gle

what is the |

=

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search I'm Feeling Lucky

Language modelling

Applications: But predicting the next word in a piece of text is not the most useful thing
itself. What is more useful is (1) the numerical representation that your method builds
from all preceding text in order to accurately predict the next word, and (2) the method
that accurately predicts the next word.

Both the presentation (1) and the books
method (2), when they solve / Ll
accurately the language the students opened their il

. \\ exams
modelling problem, they also

. . . minds
work well in other applications:

NER, translation, question

T ’ t+1 t 1
answering, conference P(a:()| ‘13()7 .o aw())
resolution...

Old technology: N-grams

>

Idea: Assume that the probability of the next word, depends mostly from the
previous ‘n’ words, rather than from the full preceding text. Then, rather than
calculating the probability of every possible imaginable meaningful sequence of
words, we only need to calculate the probability of each sequence of 'n’ words

P(X(t‘”) | X(t), X(t-1), X(t-2), - X(1)) ~ P(X(t‘H) | X(t), X(t-1), X(t-Z)' - X(t'n))

Higher ‘n” will theoretically be able to become more accurate... but would require very
large amounts of data:

- Unigrams: P(“the”), P(“students”), P(“opened”), P(“their”)...

- Bigrams: P(“the students”), P(“students opened”), P(“opened their")...
- Trigrams: P(“the students opened”), P(“students opened their”)...

- 4-grams: P(“the students opened their”)...

Old technology: N-grams

>

Implementation: For an n-gram of size ‘n’, count the number of times that each
combination of ‘n" and ‘n-1’ words appear in your corpus. Then apply the formula
definition of “conditional probability”

_ P(ANnB)
P(AIB) = — 5
Pz |g®), 50 | et = count(at), 20, g0-0 glt-n)
’ Y count(z®),x(t=-1) x(t-n))

count(students opened their w)

P(w | students opened their) =
L) r) count(students opened their)

Old technology: N-grams

> Problems: N-gram generated text is often surprisingly gramatical, but incoherent

- 0 probabilities: P(w | students opened their) will be 0 if ‘W’ never appears in your
corpus. You can partially solve this with smoothing, which adds a small number 6 to
all counts

- Undefined probabilities: P(w | students opened their) will be ‘0/0’ if ‘students
opened their' never appears in your corpus. You can partially solve this with backoff,
using a ‘'n-1-gram when the problem arises - i.e. counting ‘opened their’

- Storage: You need to store counts for all ‘n’ and ‘n-1’ combinations. Size = V" + V"

- Sparsity: Increasing ‘n’ to improve accuracy, makes the previous problems worse

count(students opened their w)

P(w | students opened their) =
| v) count(students opened their)

10

eural networks

FEATURES 3 HIDDEN LAYERS OUTPUT

Which properties Tralning loss 0.001
do you want ¢

il + - + - + -

Colors shows
data, neuronand !)
weight values.

— Google Cloud tutorial by Kaz Sato:

https://cloud.qoogle.com/bloa/products/agcp/understandin

_. g-neural-networks-with-tensorflow-playground

https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground

New technology: NNs

the students opened their

discard (out of window) process (window)

books

> Qutput distribution: laptops
y = softmax(Uxh+b,) € R i.d-

> Hidden layer: AU
h=f(Wxe+b,) € R" (e0co0cc0cc00)
> Concatenated word embeddings: %
e=[eld) et ot o] =g e B e®] & (cc0e 0000 0000 0000)]
1]
> One-hot word vectors: the students opened their
D 2@ e @

X = [Xt xt2 xtN) xO] =[x x@ x@ x@®] = R4V 12

New technology: NNs

the students opened their

discard (out of window) process (window)

> Advantages of window-NNs over n-grams:

- No sparsity problem
- Don’t need to store all combinations of n words

> Remaining problems:

- Fixed window width is too small... and we can never
make it large enough!

- Enlarging window increases the size of W

- No symmetry in how words are processed: Each word
(e.g. X1 and x@) are multiplied by completely different
weights in W

books
laptops

U
|eeec00000000|
w

o000 0000 0000 0000]

LT

the students opened their

Recursive NNs (RNNs)

> Idea: Recursively process one word at a time rather than all words within a window — No
window limit, no increase in size of W, processing symmetry (all words are processed in
the same manner)

(1) 72 g3 g(4)

h<j

<<

outputs
(optional) {

- >
S
=
>
o

R]
4 0 O o
hidden states - LA o W o W o W
o 0) o
input sequence T T T T
(any length) { Y x(? x(3) 1)

14

Recursive NNs (RNNs)

as the teacher started the clock the students opened their

MS

laptops
> Qutput distribution: i i

y® = softmax(Ux h® +b,) € RY :
:) U
> Hidden layer: o) A R R h(i
h®=f(W, xhtV+W_xe®+b) € R W, E w, |e| W, |9| W |o
o o 0
> One word embedding at a time: o s o b
: e o o
e = Ex x e 2F o o o o
e : e : e® : e :
> One one-hot word vector at a time: % % _% %
E E E FE
X(t) € @V the students opened their

2D 22 (3 =@ 15

Recursive NNs (RNNs)

as the teacher started the clock the students opened their

process

> Advantages of RNNs over window-NNs: i i

- No window limit, can process any number of words

- Noincrease in size of W when processing more words

- Processing symmetry, all words are processed in the h©) h
same manner Wi,

—
[

h(2) h3) h“)

Wi, Wy,

> Remaining problems:

- Recurrent computation is slow
- In practice, RNNs have problems using information from
many words back (e.g. x*199) —, short memory span

®
—
™
-

1) e el

{0000 (s0s0]
{000 (e0se
{9000 (sese
wleves)(e0ee) -

the students opened their
2 x(2 x®) @ 16

Learning in word2vec word model

> Word2vec very successfully implemented word embeddings using this
context-meaning idea.

We start with a very large corpus of text (e.g. all of Wikipedia)
Every word is represented by a vector in R" space (n~200 dimentions)

You have a model (e.g. a NN) that tries to predict the vector of a word (i.e. the central
word) given the vectors of the words around it (i.e. its context). In probability terms,

the NN models the probability P(w_|W_,, W_,, W_,,W_,.,W_., W_,.)
Go through each central word - context pair in the corpus

In each iteration, modify the NN and vectors a little bit for words with similar
contexts to have similar vectors

Repeat last 2 steps many times

17

Learning in RNNs language model

> Word2vec very successfully implemented word embeddings using this
context-meaning idea.

We start with a very large corpus of text (e.g. all of Wikipedia)
Every word is represented by a vector in R" space (n~200 dimentions)

You have a model (e-g—a-NN- i.e. a RNN) that tries to predict the vector of a word (i-e-
the-eentrabword i.e. the next word) given the vectors of the words areund-it{i-e—its
eentext) before it. In probability terms, the NN models the probability P&wc-l—w _;

W W W oW P(W W, W, W, W,)

t+1 1 2 T3

Go through each central word - context pair in the corpus

In each iteration, modify the NN and vectors a little bit for words with similar
contexts to have similar vectors — We now know we do this with backpropagation

Repeat last 2 steps many times
18

Recursive NNs (RNNs)

> With backpropagation we want our RNN to gradually learn to approximate the probability

P(Wt+1 ¢ Weqr Wi Wigr -)

> But backpropagation needs an error function that represents numerically how far our

RNN is from perfectly approximating P(w,,, | W, W, ., W, ,, W o, ...)

> Error functions used before:

- CBOW (word2vec): Negative Sampling!@™Xiv1310.4546] (simplified version of Negative
Contrastive Samplinglarxiv:1206.6426]y

J = log sig([Ycentre| - [€context]) + Z log sig([1/,] [econsezt])
E E E

i~ Py,

[something] — 'something’ is a vector of V elements E — number of embedding dimensions

€30 ing] — embeddi £ thing’
[something](v) — element v’ of vector [something] [S""’;}’”"-"] sl
v

[Ysomething] —> output of CBOW NN when input is [€5omething)
E E 19

Recursive NNs (RNNs)

> More error functions used before:

- Glove (hybrid of NN and co-occurrence matrix): Error function based on 3 heuristic

considerations
2 V' — size of vocabulary
J = Z ramp (2,7)) ([(] [()J] + bi + b - log((’ J7))) b; — arbitrary constant for word i’
i,j=1 " ramp(...) —> almost a ramp function

[something] —> ’something’ is a matrix of R rows and C columns ('] — co-occurrence count matrix

A%
('] (7, j) — count of how many times word i’ is near word ’j
v,

[something|(r,c) — element in row 'r’ and column ¢’ of [something]
R.C R.C %

- NER: Margin loss

snyea — output of NER NN when input is [z xg¢]
5E

spos — output of NER NN when input is [2p0 5]
5E

J=maz(0, 1+ snpg — spos)

20

Recursive NNs (RNNs)

> New error function:

- Cross-entropy

J = =[z111] - log([yr]) = —log([v:] (i))
Vv | %4 |4
[z l+1] — one hot vector of the real next word (word number 't+1’)

[y,] — output of the neural network after reading up to word ’t’

i —) the only position of [z,,,] different than 0 ([z,41](k) =1 <= k=1)
v v

21

Recursive NNs (RNNs)

= negative log prob

of “students”

Loss =—— | J()(0) J2(9) J®) () JD(0)
T
Predicted
(1) ;(2) ;(3) ;(4)
. T— Yy Yy Yy
prob dists £ 7 AU 7
B 0) h(i h(2) h(3) h“”I
[@ @ ®
W, (@ W, [@|Wr |@| Wr |@®| Wi _
1@ [@ [N
o e O O
L K
w. w. w. w
2| of8] off] 3
(1) (2) 3| © (1)
e|le| ¢|le| ¢ ol ¢ |@
o o O @)
Corpus = the students opened their
1) x(2) (3 @

exams

Recursive NNs (RNNs)

= negative log prob
of “opened”

Loss —— J)(9) J@(9) J®(0) JD(0)
A

Predicted T T
—_— (D ;7(2) (3) ;(4)
prob dists e g Zf\ Y
U U U U
h©) AL h(2) h(3) h4)
(@) e O @ O
oW, (0(W, |@| Wi |@| Wr |@| W, _
0 o le[‘le[e[
® ® ©} O @
4 2)
w. we we WL
3| ol cofe] wof8
(1) (2) 3| © (1)
€’lel “le| “le| ¢ e
o 0] (0] @)
Corpus =—» {the students opened their exams
2 x(2) 3 @

23

Recursive NNs (RNNs)

= negative log prob

of “their”

Loss —— JM)(9) J@ () J®(0) J1(0)

[

Predicted

(1) ;(2) ;(3) 7(4)
prob dists - 4 ¥ e
U T U U
R0 AL h(2) h3) h4)
e O O O
W, || W, |@|Wr [@| Wr @] Wi _
e O 1® 1@ .
o O [O
4 3 K y Y
We We We We
2| of8] cofg] ofS
(1) (2) 3) © (1)
lof o] “|lo| € |®
O (@] O o
Te T2 J& e
Corpls e the students opened their exams
21 x (2 x3) @

24

Recursive NNs (RNNs)

= negative log prob
of “exams”

Loss —— JM(9) J@(0) J®(6) JD(6)

T T

Predicted A
s (1)

;(2) 7(3) (4)
prob dists 4 ¥ o/
U U U U
h(©) A h(®2) h3) h(4)
® ® O O O
oW,y |0 W, |l@|Wr |@| Wr |@| W,
® 1@ O 1@ O i
[O (@] (@) e
L Y, Y,
We We We We
o .o/8| o/8| .o
(1) (2) 3) © (1)
c’le|l ¢ le| el € |®
o o o o
Te & & (=
Corpus —— the students opened their exams
(1) x(2) 3 @

25

Recursive NNs (RNNs)

T
Loss = JW@) + JA@) + JO@G) + JD@O) +.. = JO)= %ZJU)(O)
[T
Predicted ;
—_—) 7(2) ;(3) (4
prob dists Y y ?f\ Yy
U 5 U U
h(0) AL h(2) h®) h4)
O O ® (@} O
oW, |0 W, |l@|Wr [@| Wr |@®| W, _
® 1® o] @ 0 :
O @ (€] @ e
4) N Y
We We We We
8 «of8] «f3] .ofe
(1) (2) 3)| © (1)
e (5] e o e o e)
° o ¢} o
e & & |z
Corpus =— the students opened their exams
1) x(2) 23 1)

26

Recursive NNs (RNNs)

> Minibatch learning: Computing >J®(8) over all possible values of t (i.e. over all word
positions in the corpus) in each iteration of Stochastic Gradient Descent (SGD) is too
expensive. We rather computer 3J(8) only for a few random sentences in each iteration

of SGD.

> Backpropagation through time: If we unfold the RNN along the previous time steps (-1,
t-2, t-3, ...), we can apply the chain rule to calculate the gradient of $J®(8) like in any
other standard NN

JB(0)

h(t=3) h(t=2) h(t—1) h(‘)T 9J® zt: oJ®
e O @ (@) (@) =
oW, Wh |@| Wi ([@| Wr |@| Wr |@]| Wi _ OWh OWh (4)
o ©} | @ 1@ 1@ .
e () @) () (@)

27

Recursive NNs (RNNs)

> The chain rule in RNNs: Given a function f(x,y) that is a function of other two different
functions of ‘t' x(t) and y(t) (making f(x,y) = f(x(t),y(t))), according to the chain rule the

gradient of f is:

d Of dz Of dy
\d_tf(w(t)’y(t)z = d oyt

=
Derivative of composition function

One final output f(z(¢), y(¢))

o (i)llll'}(]‘wl;llltl;‘(li““l x (t) y (t)
One input t

28

Recursive NNs (RNNs)

5z dt | By dt

%mmwp=

Derivative of composition function

In our example:

> The chain rule in RNNs: Given a function f(x,y) that is a function of other two different

functions of ‘t' x(t) and y(t) (making f(x,y) = f(x(t),y(t))), according to the chain rule the
gradient of f is:

Apply the multivariable chain rule:

=1

P i

OWil

oWy,

Recursive NNs (RNNs)

> The chain rule in RNNs: Given a function f(x,y) that is a function of other two different
functions of ‘t' x(t) and y(t) (making f(x,y) = f(x(t),y(t))), according to the chain rule the

gradient of f is:

d Of dz Of dy
\d_tf(w(t)’y(t)z = d oyt

>
Derivative of composition function

h(0)

0000
v

30

Recursive NNs (RNNs)

> Once trained on a large favorite season is spring
corpus, you can generate text Tsample Tsample sample Tsample
with a RNN language model g y(z) e g
by sgmp.llng thg output | TU U TU
distribution y® in each time h(©) A1) h<‘~’> 3) h)
nd using that wor ® ® o) o) @)
step.t,a d using that word ol W, el w. el W el W.l|e| W
for time step t+1 ¢) | @ 0 ’l @ o *
(@] @) (@) @) @
We /\We 'We I\We
8| of8] cof8] of8
(2) (3) (4)
eVle| ¢lo| “lo| o
o ¢} o o)

R-

spring
31

favorite season

3
<

Recursive NNs (RNNs)

> RNN trained on obama speeches!Samin @ Medium].

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

> RNN trained on Harry Potter!Max Deutsch @ Medium.

“Sorry,” Harry shouted, panicking—“I'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the

common room perched upon it, four arms held a shining knob from when the
spider hadn’t felt it seemed. He reached the teams too.
32

Recursive NNs (RNNs)

> RNN trained on paint color namesl/anelle Shanel.

U Ghasty Pink 231 137 165 " Sand Dan201 172 143
I Power Gray 151 124 112 B Grade Bat 48 94 83
7 Navel Tan 199 173 140 I Light Of Blast 175 150 147
Bock Coe White 221 215 236 B Grass Bat 176 99 108
~ Horble Gray 178 181 196 Sindis Poop 204 205 194
I Homestar Brown 133 104 85 Dope 219 209 179
I snader Brown 144 106 74 I Testing 156 101 106
Golder Craam 237 217 177 I Stoner Blue 152 165 159
Hurky White 232 223 215 "~ Burble Simp 226 181 132
~ BurfPink 223173 179 ' Stanky Bean 197 162 171
Rose Hork 230 215 198 U Turdly 190 164 116

> This RNNs runs at the character level, not word level
33

Evaluating quality of language models

> Perplexity: This is the standard evaluation metric for language models. It measures
how ‘surprised’ the NN is of finding that the real word at step t+1 is x™") after reading as
input all previous words x®, xt, xt2), x®3) "

T 1 /T T 1/T
perplexity(t) =
]:[PRNN(‘”“H) |t %)]'_‘[[It+1 yt]

> Surprisingly enough, if we apply the exponential rules e®=e?+e” and e'°9(®=a , it turns
out that perplexity is equal to the exponential of the total loss J:

T 1 1/T] T
H (—) = ez‘p(f Z —log([;r,‘jd] : [3{/:])) = exp(J(9))

34

Evaluating quality of language models

> Language models have greatly improved perplexity during the last years!¢rave & Joulinl

Model Perplexity
n-gram model »| Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 51.3
RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3
Sparse Non-negative Matrix factorization (Shazeer et
2 52.9
Increasingly al., 2015)
complex RNNs LSTM-2048 (Jozefowicz et aT., 2016) 43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9
4+ | Ours large (2-layer LSTM-2048) 39.8 !

Perplexity improves
(lower is better)

[Gave & Joulin] = https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/ 35

Applications of language models

> Language models become a subcomponent task of many other more complex tasks:

Predictive typing

Speech recognition
Handwriting recognition
Spelling/grammar correction
Text classification

Machine translation
Summarization

Dialogue

etc...

36

Applications of language models

> Language models can be used for Part Of Speech (POS) or Named Entity Recognition

(NER):
L Lk
T T T T T 717

~
>
n

startled cat knocked over

=
®

vase

37

Applications of language models

> Language models can be used for text classification (e.g. sentiment analysis):

positive How to compute

sentence encoding?

Basic way:

Sentence encoding Use final hidden state

e.qUa/s

— 0000

overall

A 4
A 4
A 4
A 4

E

7‘«

movie

L)

',T 'f

enjoyed the lot 38

Applications of language models

> Language models can be used for question answering

Answer: German

~ T, -
Here the RNN acts as an A -,
encoder for the Question (the K“e& <@ Q’Z%;._?z;)
hidden states represent the 0,6,0 {@C” "00;;..,‘:’%
Question). The encoder is part A ,‘\,«5\ %/
of a larger neural system. —
Context: Ludwig van

Beethoven was a
German composer
and pianist. A crucial
figure ...

XY
0000
——{o;;o
o000

Question: what nationality = was Beethoven ? 2

Next lecture!

n

> In this lecture: We have described the simplest type of RNN — “

> Next lecture: We will learn more complex and powerful ones

T
& pa
_': ;,’ ‘.,
=4 =4 ‘1'
v e

— GRU — Multiplayer RNNs

.
o

> By end of course: We will learn much more advanced ones

bidirectional
attention
self-attention
residual networks
transformers
reformers...

40

Course structure

> Introduction: What is NLP. Why it is hard. Why NNs work well < Lecture 9 (1)

> Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets < Lecture 9 (e 1)
- Embeddings: First trick that boosted the performance of NNs in NLP « Lecture 9 (nip 1)
- Word2vec: Single layer NN. CBOW and skip-gram « Lecture 10 (nLp2)
- Co-occurrence matrices: Basic counts and SVD improvement < Lecture 10 (nLp2)
- Glove: Combining word2vec and co-occurrence matrices idea < Lecture 10 (nLp2)
- Evaluating performance of embeddings < Lecture 10 (np2)

> Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation < Lecture 11 (np3)
- Better loss functions: margin loss, regularisation < Lecture 11 e 3)
- Better initializations: uniform, xavier <« Lecture 11 (p3)

- Better optimizers: Adagrad, RMSprop, Adam... < Lecture 11 (nLp3) p

Course structure

> Language modelling: How to represent the meaning of full pieces of text

Old technology: N-grams <« Lecture 12 (nLp 4)

Recursive NNs language models (RNNs) « Lecture 12 (nip4)
Evaluating performance of language models < Lecture 12 (nip4)
Vanishing gradients: Problem. Gradient clipping «— Lecture 13 (i 5)
Improved RNNs: LSTM, GRU « Lecture 13 (wp5)

> Machine translation: How to translate text

Old technology: Georgetown—IBM experiment and ALPAC report < Lecture 16 (nLpe)
Seq2seq: Greedy decoding, encoder-decoder, beam search « Lecture 16 (ire)
Attention: Simple attention, transformers, reformers < Lecture 16 (o)

Evaluating performance: BLEU « Lecture 16 (wp o)

42

Literature

> Papers =

- “N-gram language models”, Jurafsky et al., 2018.
https://web.stanford.edu/ jurafsky/slp3/3.pdf

- “The unreasonable effectiveness of recurrent neural networks”, Karpathy, 2015.
http://karpathy.qithub.io/2015/05/21/rnn-effectiveness/

- Sections 10.1 and 10.2 of “Deep Learning”, Goodfellow et al., 2016.
http://www.deeplearningbook.org/contents/rnn.html

43

https://web.stanford.edu/%20jurafsky/slp3/3.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.deeplearningbook.org/contents/rnn.html

