
Advanced Topics in Machine Learning

Alejo Nevado-Holgado

Lecture 12 (NLP 4) - Language models and vanilla RNNs
V 0.3 (15 Feb 2020 - final version)

Course structure
➢ Introduction: What is NLP. Why it is hard. Why NNs work well ← Lecture 9 (NLP 1)

➢ Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets ← Lecture 9 (NLP 1)

- Embeddings: First trick that boosted the performance of NNs in NLP ← Lecture 9 (NLP 1)

- Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)

- Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)

- Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)

- Evaluating performance of embeddings ← Lecture 10 (NLP 2)

➢ Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation ← Lecture 11 (NLP 3)

- Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)

- Better initializations: uniform, xavier ← Lecture 11 (NLP 3)

- Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)
2

Course structure

➢ Language modelling: How to represent the meaning of full pieces of text
- Old technology: N-grams ← Lecture 12 (NLP 4)

- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)

- Evaluating performance of language models ← Lecture 12 (NLP 4)

- Vanishing gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)

- Improved RNNs: LSTM, GRU ← Lecture 13 (NLP 5)

➢ Machine translation: How to translate text
- Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 16 (NLP 6)

- Seq2seq: Greedy decoding, encoder-decoder, beam search ← Lecture 16 (NLP 6)

- Attention: Simple attention, transformers, reformers ← Lecture 16 (NLP 6)

- Evaluating performance: BLEU ← Lecture 16 (NLP 6)

3

Language modelling
The problem: Having a method to accurately represent the meaning of individual words
(e.g. word embeddings), enormously helps to solve the simpler NLP tasks, but falls short
in complex ones. Having a more advanced method that represents the meaning of full
pieces of text (rather than separated words), helps to solve the more challenging tasks.

We created good word
representations by predicting the
presentation of the central word
from the representations of a few
neighbouring words (CBOW). We
can create good representations
of full pieces of text by predicting
each word from all the preceding
ones → Language models

4

Language modelling
➢ A language model itself is simply an algorithm that assigns probabilities to the next

➢ More formally: Given a sequence of words w(1), w(2), w(3), …, w(t) and their
representations x(1), x(2), x(3), …, x(t), what the model calculates is an approximation of:

5

Language modelling
Applications: Predicting the next word in a piece of text has some direct applications

6

Language modelling
Applications: But predicting the next word in a piece of text is not the most useful thing
itself. What is more useful is (1) the numerical representation that your method builds
from all preceding text in order to accurately predict the next word, and (2) the method
that accurately predicts the next word.

Both the presentation (1) and the
method (2), when they solve
accurately the language
modelling problem, they also
work well in other applications:
NER, translation, question
answering, conference
resolution...

7

Old technology: N-grams

➢ Idea: Assume that the probability of the next word, depends mostly from the
previous ‘n’ words, rather than from the full preceding text. Then, rather than
calculating the probability of every possible imaginable meaningful sequence of
words, we only need to calculate the probability of each sequence of ‘n’ words

P(x(t+1) | x(t), x(t-1), x(t-2), …, x(1)) ≈ P(x(t+1) | x(t), x(t-1), x(t-2), …, x(t-n))

➢ Higher ‘n’ will theoretically be able to become more accurate… but would require very
large amounts of data:

- Unigrams: P(“the”), P(“students”), P(“opened”), P(“their”)...
- Bigrams: P(“the students”), P(“students opened”), P(“opened their”)...
- Trigrams: P(“the students opened”), P(“students opened their”)...
- 4-grams: P(“the students opened their”)...

8

Old technology: N-grams

➢ Implementation: For an n-gram of size ‘n’, count the number of times that each
combination of ‘n’ and ‘n-1’ words appear in your corpus. Then apply the formula
definition of “conditional probability”

9

Old technology: N-grams
➢ Problems: N-gram generated text is often surprisingly gramatical, but incoherent

- 0 probabilities: P(w | students opened their) will be 0 if ‘w’ never appears in your
corpus. You can partially solve this with smoothing, which adds a small number δ to
all counts

- Undefined probabilities: P(w | students opened their) will be ‘0/0’ if ‘students
opened their’ never appears in your corpus. You can partially solve this with backoff,
using a ‘n-1’-gram when the problem arises - i.e. counting ‘opened their’

- Storage: You need to store counts for all ‘n’ and ‘n-1’ combinations. Size = Vn + Vn-1

- Sparsity: Increasing ‘n’ to improve accuracy, makes the previous problems worse

10

Neural networks

→
 G

oo
gle

 C
lou

d t
uto

ria
l b

y K
az

 S
ato

:
htt

ps
://c

lou
d.g

oo
gle

.co
m/

blo
g/p

ro
du

cts
/gc

p/u
nd

er
sta

nd
in

g-
ne

ur
al-

ne
tw

or
ks

-w
ith

-te
ns

or
flo

w-
pla

yg
ro

un
d

11

https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground
https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground

New technology: NNs

➢ Output distribution:

y = softmax(U × h + b2) ∈ ℝV

➢ Hidden layer:

h = f(W × e + b1) ∈ ℝH

➢ Concatenated word embeddings:

e = [e(t-3), e(t-2), e(t-1), e(t)] = [e(1), e(2), e(3), e(4)] ∈
ℝ4E

➢ One-hot word vectors:

x = [x(t-3), x(t-2), x(t-1), x(t)] = [x(1), x(2), x(3), x(4)] ∈ ℝ4V 12

New technology: NNs

➢ Advantages of window-NNs over n-grams:

- No sparsity problem
- Don’t need to store all combinations of n words

➢ Remaining problems:

- Fixed window width is too small… and we can never
make it large enough!

- Enlarging window increases the size of W
- No symmetry in how words are processed: Each word

(e.g. x(1) and x(2)) are multiplied by completely different
weights in W

13

Recursive NNs (RNNs)
➢ Idea: Recursively process one word at a time rather than all words within a window → No

window limit, no increase in size of W, processing symmetry (all words are processed in
the same manner)

14

➢ Output distribution:

y(t) = softmax(U × h(t) + b2) ∈ ℝV

➢ Hidden layer:

h(t) = f(Wh × h(t-1) + We × e(t) + b1) ∈ ℝH

➢ One word embedding at a time:

e(t) = E × x(t) ∈ ℝE

➢ One one-hot word vector at a time:

x(t) ∈ ℝV

Recursive NNs (RNNs)

15

Recursive NNs (RNNs)

➢ Advantages of RNNs over window-NNs:

- No window limit, can process any number of words
- No increase in size of W when processing more words
- Processing symmetry, all words are processed in the

same manner

➢ Remaining problems:

- Recurrent computation is slow
- In practice, RNNs have problems using information from

many words back (e.g. x(t-100)) → short memory span

16

Learning in word2vec word model

➢ Word2vec very successfully implemented word embeddings using this
context-meaning idea.

- We start with a very large corpus of text (e.g. all of Wikipedia)

- Every word is represented by a vector in ℝn space (n~200 dimentions)

- You have a model (e.g. a NN) that tries to predict the vector of a word (i.e. the central
word) given the vectors of the words around it (i.e. its context). In probability terms,
the NN models the probability P(wc | wc-3, wc-2, wc-1, wc+1, wc+2, wc+3)

- Go through each central word - context pair in the corpus

- In each iteration, modify the NN and vectors a little bit for words with similar
contexts to have similar vectors

- Repeat last 2 steps many times

17

Learning in RNNs language model
➢ Word2vec very successfully implemented word embeddings using this

context-meaning idea.

- We start with a very large corpus of text (e.g. all of Wikipedia)

- Every word is represented by a vector in ℝn space (n~200 dimentions)

- You have a model (e.g. a NN i.e. a RNN) that tries to predict the vector of a word (i.e.
the central word i.e. the next word) given the vectors of the words around it (i.e. its
context) before it. In probability terms, the NN models the probability P(wc | wc-3,
wc-2, wc-1, wc+1, wc+2, wc+3) P(wt+1 | wt, wt-1, wt-2, wt-3, …)

- Go through each central word - context pair in the corpus

- In each iteration, modify the NN and vectors a little bit for words with similar
contexts to have similar vectors → We now know we do this with backpropagation

- Repeat last 2 steps many times
18

Recursive NNs (RNNs)
➢ With backpropagation we want our RNN to gradually learn to approximate the probability

P(wt+1 | wt, wt-1, wt-2, wt-3, …)

➢ But backpropagation needs an error function that represents numerically how far our
RNN is from perfectly approximating P(wt+1 | wt, wt-1, wt-2, wt-3, …)

➢ Error functions used before:

- CBOW (word2vec): Negative Sampling[arXiv:1310.4546] (simplified version of Negative
Contrastive Sampling[arXiv:1206.6426])

19

Recursive NNs (RNNs)
➢ More error functions used before:

- Glove (hybrid of NN and co-occurrence matrix): Error function based on 3 heuristic
considerations

- NER: Margin loss

20

Recursive NNs (RNNs)
➢ New error function:

- Cross-entropy

21

Recursive NNs (RNNs)

22

Recursive NNs (RNNs)

23

Recursive NNs (RNNs)

24

Recursive NNs (RNNs)

25

Recursive NNs (RNNs)

26

Recursive NNs (RNNs)
➢ Minibatch learning: Computing ∑J(t)(θ) over all possible values of t (i.e. over all word

positions in the corpus) in each iteration of Stochastic Gradient Descent (SGD) is too
expensive. We rather computer ∑J(t)(θ) only for a few random sentences in each iteration
of SGD.

➢ Backpropagation through time: If we unfold the RNN along the previous time steps (t-1,
t-2, t-3, …), we can apply the chain rule to calculate the gradient of ∑J(t)(θ) like in any
other standard NN

27

Recursive NNs (RNNs)
➢ The chain rule in RNNs: Given a function f(x,y) that is a function of other two different

functions of ‘t’ x(t) and y(t) (making f(x,y) = f(x(t),y(t))), according to the chain rule the
gradient of f is:

28

Recursive NNs (RNNs)
➢ The chain rule in RNNs: Given a function f(x,y) that is a function of other two different

functions of ‘t’ x(t) and y(t) (making f(x,y) = f(x(t),y(t))), according to the chain rule the
gradient of f is:

29

Recursive NNs (RNNs)
➢ The chain rule in RNNs: Given a function f(x,y) that is a function of other two different

functions of ‘t’ x(t) and y(t) (making f(x,y) = f(x(t),y(t))), according to the chain rule the
gradient of f is:

30

Recursive NNs (RNNs)
➢ Once trained on a large

corpus, you can generate text
with a RNN language model
by sampling the output
distribution y(t) in each time
step t, and using that word
for time step t+1

31

Recursive NNs (RNNs)
➢ RNN trained on obama speeches[Samin @ Medium]:

➢ RNN trained on Harry Potter[Max Deutsch @ Medium]:

32

Recursive NNs (RNNs)
➢ RNN trained on paint color names[Janelle Shane]:

➢ This RNNs runs at the character level, not word level
33

Evaluating quality of language models
➢ Perplexity: This is the standard evaluation metric for language models. It measures

how ‘surprised’ the NN is of finding that the real word at step t+1 is x(t+1) after reading as
input all previous words x(t), x(t-1), x(t-2), x(t-3), …

➢ Surprisingly enough, if we apply the exponential rules eab=ea+eb and elog(a)=a , it turns
out that perplexity is equal to the exponential of the total loss J:

34

Evaluating quality of language models
➢ Language models have greatly improved perplexity during the last years[Grave & Joulin]

[Gave & Joulin] = https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/ 35

Applications of language models
➢ Language models become a subcomponent task of many other more complex tasks:

- Predictive typing
- Speech recognition
- Handwriting recognition
- Spelling/grammar correction
- Text classification
- Machine translation
- Summarization
- Dialogue
- etc...

36

Applications of language models
➢ Language models can be used for Part Of Speech (POS) or Named Entity Recognition

(NER):

37

Applications of language models
➢ Language models can be used for text classification (e.g. sentiment analysis):

38

Applications of language models
➢ Language models can be used for question answering

39

Next lecture!
➢ In this lecture: We have described the simplest type of RNN → “vanilla RNN”

➢ Next lecture: We will learn more complex and powerful ones

→ GRU → LSTM → Multiplayer RNNs

➢ By end of course: We will learn much more advanced ones

bidirectional
attention
self-attention
residual networks
transformers
reformers... 40

Course structure
➢ Introduction: What is NLP. Why it is hard. Why NNs work well ← Lecture 9 (NLP 1)

➢ Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets ← Lecture 9 (NLP 1)

- Embeddings: First trick that boosted the performance of NNs in NLP ← Lecture 9 (NLP 1)

- Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)

- Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)

- Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)

- Evaluating performance of embeddings ← Lecture 10 (NLP 2)

➢ Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation ← Lecture 11 (NLP 3)

- Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)

- Better initializations: uniform, xavier ← Lecture 11 (NLP 3)

- Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)
41

Course structure

➢ Language modelling: How to represent the meaning of full pieces of text
- Old technology: N-grams ← Lecture 12 (NLP 4)

- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)

- Evaluating performance of language models ← Lecture 12 (NLP 4)

- Vanishing gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)

- Improved RNNs: LSTM, GRU ← Lecture 13 (NLP 5)

➢ Machine translation: How to translate text
- Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 16 (NLP 6)

- Seq2seq: Greedy decoding, encoder-decoder, beam search ← Lecture 16 (NLP 6)

- Attention: Simple attention, transformers, reformers ← Lecture 16 (NLP 6)

- Evaluating performance: BLEU ← Lecture 16 (NLP 6)

42

Literature

➢ Papers =

- “N-gram language models”, Jurafsky et al., 2018.
https://web.stanford.edu/ jurafsky/slp3/3.pdf

- “The unreasonable effectiveness of recurrent neural networks”, Karpathy, 2015.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

- Sections 10.1 and 10.2 of “Deep Learning”, Goodfellow et al., 2016.
http://www.deeplearningbook.org/contents/rnn.html

43

https://web.stanford.edu/%20jurafsky/slp3/3.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.deeplearningbook.org/contents/rnn.html

