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Feedback so far

➢ Ask students if they have questions and ask questions to them [+1/ 0]

➢ Define all the technical terms that you use (e.g. hyperparameters) [+1/ 0]

➢ Sometimes you talk too fast [+1/ 0]

➢ The speed/amount of material is good [+3/ 0]

➢ The spoken descriptions of the equations, and why they are used, are very useful  [+1/ 0]
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Course structure
➢ Introduction: What is NLP. Why it is hard. Why NNs work well ← Lecture 9 (NLP 1)

➢ Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets ← Lecture 9 (NLP 1)

- Embeddings: First trick that boosted the performance of NNs in NLP ← Lecture 9 (NLP 1)

- Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)

- Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)

- Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)

- Evaluating performance of embeddings ← Lecture 10 (NLP 2)

➢ Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation ← Lecture 11 (NLP 3)

- Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)

- Better initializations: uniform, xavier ← Lecture 11 (NLP 3)

- Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)
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Course structure

➢ Language modelling: How to represent the meaning of full pieces of text
- Old technology: N-grams ← Lecture 12 (NLP 4)

- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)

- Evaluating performance of language models ← Lecture 12 (NLP 4)

- Vanishing & exploding gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)

- Improved RNNs: LSTM, GRU, Bidirectional... ← Lecture 13 (NLP 5)

➢ Machine translation: How to translate text
- Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 16 (NLP 6)

- Seq2seq: Greedy decoding, encoder-decoder, beam search ← Lecture 16 (NLP 6)

- Attention: Simple attention, transformers, reformers ← Lecture 16 (NLP 6)

- Evaluating performance: BLEU ← Lecture 16 (NLP 6)
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Introduction: Why Neural Networks?

➢ In about 2010, deep learning techniques started outperforming other machine 
learning techniques. Why this decade? 

- Better data, or rather, much much more data is available

- Better hardware, such as GPUs, had drastically developed during 2000s

- Better software, such as new models, algorithms, and ideas: 

- better, more flexible learning of intermediate representations 

- effective end-to-end joint system learning 

- effective learning methods for using contexts and transferring  between tasks 

- better regularization and optimization methods 

⇒ improved performance (first in speech and vision, then NLP )
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Vanishing & exploding gradients
➢ Problem: When NNs become deep, gradients tend to either vanish or explode. This 

is the vanishing and exploding gradients problem, and it is specially serious in RNNs

➢ A bit of history: In the “old times of NNs” (until ~2010!) this was the core software 
reason why NN did not perform as well as now. The first method they (the deep 
mafia) designed to deal with the problem was layerwise training. Later 
improvements (careful weight initialisation like Xavier’s, batch normalisation, non 
saturating activation functions, residual networks) further reduced the problem in 
feed forwards NNs, even in very deep ones. However, RNNs are ∞ deep, and their 
weights are re-applied over and over through the recurrent connection, making it 
impossible to eliminate the problem.

➢ What finally solved the problem were memory cells where writing and reading are 
controlled by internal activation functions → gradient clipping, LSTMs and GRUs
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Van & exp gradients: The problem
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Van & exp gradients: The problem
➢ If we calculate the 

gradient of J at step 
‘i’ ( i.e. J(i)(θ) ) with 
respect to the hidden 
state that the RNN 
had in step ‘j’ ( h(j) ):

Multiplying a number by 
itself many times is very 
unstable[arXiv:1211.5063v2 ]
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we apply the chain 
rule many times



Van & exp gradients: The problem
If the largest eigenvalue of 
Wh is less than 1, the 
gradient J(i)(θ) will 
decrease to 0 
exponentially → Vanishing 
gradient

If the largest eigenvalue of 
Wh is larger than 1, then 
the gradient J(i)(θ) will 
grow to ±∞ exponentially 
→ Exploding gradient
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we apply the chain 
rule many times



Exploding gradients: The problem
➢ Problem: If the gradient (∇θJ(θ)) becomes too 

big, updates grow too large and throw the 
model out of the basin of attraction of good 
minima in the error surface defined by J(θ) (i.e. 
in the parameter space). This happens when 
you apply the weights update rule

In extreme cases, this may even trigger 
register overflow and create NaNs or Infs
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Exploding gradients: Solution
➢ Idea: Simply select a threshold (th), and cut 

any gradient (grad) whose absolute value is 
becoming too large

grad ← calculate_gradient( nn )
if norm( grad ) > th :

grad ← th × ( grad / norm( grad ) )
nn.weight ← nn.weight + lr × grad

➢ Thanks to cliping, the update rule will apply a 
smaller update to the weights of the NN, but 
this update will still have the same sign
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“On the difficulty of training recurrent neural networks", Pascanu et al., 2013.
http://proceedings.mlr.press/v28/pascanu13.pdf



Exploding gradients: Solution

➢ The figure shows the error surface of a RNN. This is the graphical representation of J(θ)
➢ The “cliff” has a high gradient (∇θJ(θ) >> 0). When the weights of the NN (w and b in the 

figure) falls there, the update rule ‘θnew = θold - ⍺ ∇θJ(θ)’ throws the weights far away
➢ Gradient clipping avoids this by reducing the value of ∇θJ(θ) in the update rule
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“Deep Learning", Goodfellow, Bengio, and Courville, 2016. Chapter 10.11.1.
https://www.deeplearningbook.org/contents/rnn.html



Van & exp gradients: The problem
If the largest eigenvalue of 
Wh is less than 1, the 
gradient will decrease to 0 
exponentially → Vanishing 
gradient

If the largest eigenvalue of 
Wh is larger than 1, then 
the gradient will grow to 
±∞ exponentially → 
Exploding gradient
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we apply the chain 
rule many times



Vanishing gradients: The problem
➢ Far away gradients easily become smaller than gradients from nearby gradients

➢ The RNN ends up learning only short time effects, not long time effects
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Vanishing gradients: The problem
➢ Example: When she tried to print her tickets, she found that the printer had no more 

tonner. She went to the stationery shop to buy more. It was overpriced, but she had no 
more time to try other shops. After installing the toner into the printer, she finally 
printed her _________

➢ To learn from this example (if we are using the example during training), or to 
correctly guess the missing word (if we are using the example during testing to 
measure the accuracy of the RNN), the NN needs to learn the dependency existing 
between the 7th step (tickets) and the last step (________ should be tickets again)

➢ But the gradient vanishes when being backpropagated through so many steps, so 
the RNN will never be able to learn this dependency
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Vanishing gradients: The problem
➢ Example: The food of the cats ________      ← is / are

➢ There are two ways of using the verb “to be” here:

- By syntactic recency: use the form of the verb that refers to the closes noun or 
pronoun and makes the sense syntactically correct → is (correct in this example)

- Sequential recency: use the form of the verb that refers to the closes noun or 
pronoun → are (incorrect in this example)

➢ Due to vanishing gradients, RNNs will tend to assign sequential recency rather than 
syntactic recency[arXiv:1611.01368v1], even in examples where this is wrong.
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Vanishing gradients: The problem
➢ Problem (backpropagation’s take): From the point of view of backpropagation, the 

problem is that, when you apply the chain rule to ∇WJ(Wh) (with Wh being the 
recurrent connection), you get an expression with the terms Wh

(i-j), which tends to 0 
for large ‘i-j’

➢ Problem (feedforwards’ take): From the point of view of the feed-forwards step, the 
problem is that the hidden state h(t) is constantly being re-written
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Vanishing gradients: The solution
Idea: Besides the 
hidden state h(t), why 
do not introduce an 
extra ‘super hidden’ 
state where it is more 
difficult to write? A 
hidden state where 
the NN will write only 
when he/she are 
really really sure that 
he/she want to write 
something. This is a 
memory cell c(t).
[10.1162/neco.1997.9.8.1735] 23“Long short-term memory”, Hochreiter and Schmidhuber, 1997



Vanishing gradients: The solution
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Vanishing gradients: The solution
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Vanishing gradients: The solution
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➢ The ‘super hidden state’ c(t) keeps information from one recurrent step to the next, 
very much like the standard hidden state h(t). The difference is that for the NN it is 
more difficult to change its value - c(t) is more stable than h(t).



Vanishing gradients: The solution
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➢ The forget gate f(t) decides when to erase information from c(t)

➢ The forget date looks at h(t-1) and x(t), outputs a value between 0 (forget) and 1 
(remember), and multiplies this with c(t-1).



Vanishing gradients: The solution
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➢ The input gate i(t) decides when and what new information to introduce in c(t)

➢ The forget gate looks at h(t-1) and xt two times. A first time with a σ activation 
function to decide ’when’ to input new information, a second time with a tanh 
activation function to decide ‘what’ information to input. … [next slide]



Vanishing gradients: The solution
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➢ The input gate i(t) decides when and what new information to introduce in c(t)

➢ [continuation] … Then the forget gate multiplies the outputs of σ and tanh to decide 
when AND what information to input. Then inputs that information to the cell c(t)



Vanishing gradients: The solution
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➢ The output gate o(t) decides when and what information to output in h(t)

➢ The output date looks at h(t-1) and xt two times to decide ’when’ and ‘what’ to 
output. Exactly in the same way as the input gate did, but this time to decide the 
next value of h(t), not what to add to the current value of c(t)



Vanishing gradients: The solution
Idea: Why don’t we 
simplify the 
architecture of the 
LSTM? We could 
merge the forget and 
input gates, because 
one of these gates is 
simply doing the 
opposite of the other. 
We could also merge 
c(t) and h(t), because 
they are simply doing 
slightly different 
things[arXiv:1406.1078v3]

32

“Learning phrase representations using RNN encoder-decoder for statistical machine translation”, 
Cho et al., 2014.



Vanishing gradients: The solution
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➢ Main simplifications:

- Merge forget f(t) and input i(t) gates into a single gate → update gate z(t)

- Merge the hidden state h(t) and memory cell c(t) → new single h(t)

- Some other tweaks



Improved RNNs: LSTM, GRU
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➢ Thanks to the memory cell c(t) (the ‘supper hidden’ state), the LSTM 
architecture makes it easier for the RNN to preserver information over many 
time steps.

- e.g. if the forget gate is set to remember everything on every timestep, 
then the information in the cell is preserved indefinitely

- e.g. by contracts, it is harder for vanilla RNN to learn a recurrent weight 
matrix Wh that preserves information for long in a hidden state

➢ LSTM & GRU however do not fully guarantee that there is not 
vanishing/exploding gradients, but it does provide an easier way for the 
model to learn long-distance dependencies



Improved RNNs: LSTM, GRU
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➢ Researchers have proposed many gated RNNs variants, but LSTM and GRU 
are the most widely used

➢ The biggest difference is that GRU is quicker to computer, and has fewer 
parameters

➢ There is no conclusive evidence that one consistently outperforms the other

➢ LSTM is a good default choice (specially if your data has particularly long 
dependencies, or you have lots of training data)

➢ Rule of thumb: start with LSTM, but switch to GRU is you want something 
more efficient



Vanishing grads: The problem outside NLP
➢ Problem: The equation suggesting vanishing-exploding gradients is true for all NNs.

In non recurrent NNs is that the first layers (closest to input) learn very slowly

➢ Solution: Changes in architecture

- Residual connections (ResNets), also known as skip-connections or peepholes: 
Allow feedforwarded signals and backpropagated gradients to skip layers. 
Memory cells in RNNs do kind of the same trick, but across time steps rather than 
across layers

- Batch Normalisation: Get neuron’s inputs away from the domain where activation 
functions have low gradients.

36

↳backpropagation’s take ↳ feedforwards’s take



Vanishing grads: The solution outside NLP
➢ Solution: Changes in architecture

- … [more stuff here]
- Residual connections (ResNets), also known as skip-connections or peepholes: 

Allow feedforwarded signals and backpropagated gradients to skip layers
- Batch Normalisation: Get neuron’s inputs away from the domain where activation 

functions have low gradients.
- Careful initialisation: Initial weights promote inputs away from low gradient 

domain (Glorot, He, Xavier)
- Better activation functions: In older activation functions the gradient is close to 0 

in most of the domain (sigmoida, tanh). Newer activation functions avoid 
gradients close to 0 (ReLu, leaky ReLy, ELU)

- Gradient clipping: Simply cap gradients that are getting too high (also in RNNs)
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Vanishing grads: The solution outside NLP
➢ Dense skip connections 

(DenseNet): Make skip 
connections from every layer to 
every other layer[arXiv:1608.06993v5]
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➢ Highway connections 
(HighwayNet): Make gated skip 
connections[arXiv:1505.00387v2]. Similar 
to the forget f(t), input i(t) and 
output o(t) gates of memory cells in 
LSTM (or update z(t) and reset r(t) in 
GRU)



Bidirectional RNNs
Idea: Correlations 
across time steps do 
not only occur from 
previous steps h(t-k) to 
current step h(t) - they 
also occur from future 
steps h(t+k) to current 
one. Why don’t we 
feed into the current 
step information from 
future ones?
[10.1162/neco.1997.9.8.1735]
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Bidirectional RNNs
➢ Bidirectional RNNs are virtually always better than monodirectional RNNs. You should 

use them by default if they are applicable to your problem

➢ They are sometimes not applicable when you don’t have access to the full sequence - 
e.g. online-learning

➢ BERT: Bidirectional Encoder Representations from Transformer. A very powerful 
bidirectional RNNs based on Transformer architecture. Very standard now[arXiv:1810.04805v2]



Multilayer RNNs
➢ Idea: A simple RNNs is already deep in the time dimension. Why don’t we make them 

deep in another dimension by stacking them, like in feed forward NNs (FNNs)? We can 
simply feed the hidden state h(t) from one layer as the input x(t) of the next

➢ These are called multi-layer NNs:

➢ As in FNNs, they can represent more complex input-output relationships. Lower layers 
computer lower-level features, while higher layers compute more complex ones



Multilayer RNNs



Bidirectional RNNs
➢ State of the art RNNs are often 

bidirectional and multi-layer. They 
are however not as deep as FNNs or 
convolutional NNs (CNNs), often 
used used in vision

➢ Non transformed RNNs seem to 
perform best with only a few layers. 
For the encoder part of a RNN this 
seems to be 2 to 4 layers, for the 
decoder part 4. Deeper RNNs (e.g. 8) 
need skip connections

➢ Transformer RNNs (e.g. BERT) can 
have up to 24 layers.



Bidirectional RNNs
Lots of information today. Take away messages:

1) LSTMs are powerful but GRUs are faster

2) Clip your gradients

3) Use bidirectional connections when possible

4) Multilayer RNNs are powerful, but you will 
need skip-connections if deep
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