
Advanced Topics in Machine Learning

Alejo Nevado-Holgado

Lecture 13 (NLP 5) - Vanishing gradients and fancy RNNs
V 0.4 (23 Feb 2020 - final version)

Feedback so far

➢ Ask students if they have questions and ask questions to them [+1/ 0]

➢ Define all the technical terms that you use (e.g. hyperparameters) [+1/ 0]

➢ Sometimes you talk too fast [+1/ 0]

➢ The speed/amount of material is good [+3/ 0]

➢ The spoken descriptions of the equations, and why they are used, are very useful [+1/ 0]

2

Course structure
➢ Introduction: What is NLP. Why it is hard. Why NNs work well ← Lecture 9 (NLP 1)

➢ Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets ← Lecture 9 (NLP 1)

- Embeddings: First trick that boosted the performance of NNs in NLP ← Lecture 9 (NLP 1)

- Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)

- Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)

- Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)

- Evaluating performance of embeddings ← Lecture 10 (NLP 2)

➢ Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation ← Lecture 11 (NLP 3)

- Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)

- Better initializations: uniform, xavier ← Lecture 11 (NLP 3)

- Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)
3

Course structure

➢ Language modelling: How to represent the meaning of full pieces of text
- Old technology: N-grams ← Lecture 12 (NLP 4)

- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)

- Evaluating performance of language models ← Lecture 12 (NLP 4)

- Vanishing & exploding gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)

- Improved RNNs: LSTM, GRU, Bidirectional... ← Lecture 13 (NLP 5)

➢ Machine translation: How to translate text
- Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 16 (NLP 6)

- Seq2seq: Greedy decoding, encoder-decoder, beam search ← Lecture 16 (NLP 6)

- Attention: Simple attention, transformers, reformers ← Lecture 16 (NLP 6)

- Evaluating performance: BLEU ← Lecture 16 (NLP 6)

4

Introduction: Why Neural Networks?

➢ In about 2010, deep learning techniques started outperforming other machine
learning techniques. Why this decade?

- Better data, or rather, much much more data is available

- Better hardware, such as GPUs, had drastically developed during 2000s

- Better software, such as new models, algorithms, and ideas:

- better, more flexible learning of intermediate representations

- effective end-to-end joint system learning

- effective learning methods for using contexts and transferring between tasks

- better regularization and optimization methods

⇒ improved performance (first in speech and vision, then NLP)

5

Vanishing & exploding gradients
➢ Problem: When NNs become deep, gradients tend to either vanish or explode. This

is the vanishing and exploding gradients problem, and it is specially serious in RNNs

➢ A bit of history: In the “old times of NNs” (until ~2010!) this was the core software
reason why NN did not perform as well as now. The first method they (the deep
mafia) designed to deal with the problem was layerwise training. Later
improvements (careful weight initialisation like Xavier’s, batch normalisation, non
saturating activation functions, residual networks) further reduced the problem in
feed forwards NNs, even in very deep ones. However, RNNs are ∞ deep, and their
weights are re-applied over and over through the recurrent connection, making it
impossible to eliminate the problem.

➢ What finally solved the problem were memory cells where writing and reading are
controlled by internal activation functions → gradient clipping, LSTMs and GRUs

6

Van & exp gradients: The problem

7

Van & exp gradients: The problem

8

Van & exp gradients: The problem

9

Van & exp gradients: The problem

10

Van & exp gradients: The problem

11

Van & exp gradients: The problem

12

Van & exp gradients: The problem
➢ If we calculate the

gradient of J at step
‘i’ (i.e. J(i)(θ)) with
respect to the hidden
state that the RNN
had in step ‘j’ (h(j)):

Multiplying a number by
itself many times is very
unstable[arXiv:1211.5063v2]

13

we apply the chain
rule many times

Van & exp gradients: The problem
If the largest eigenvalue of
Wh is less than 1, the
gradient J(i)(θ) will
decrease to 0
exponentially → Vanishing
gradient

If the largest eigenvalue of
Wh is larger than 1, then
the gradient J(i)(θ) will
grow to ±∞ exponentially
→ Exploding gradient

14

we apply the chain
rule many times

Exploding gradients: The problem
➢ Problem: If the gradient (∇θJ(θ)) becomes too

big, updates grow too large and throw the
model out of the basin of attraction of good
minima in the error surface defined by J(θ) (i.e.
in the parameter space). This happens when
you apply the weights update rule

In extreme cases, this may even trigger
register overflow and create NaNs or Infs

15

Exploding gradients: Solution
➢ Idea: Simply select a threshold (th), and cut

any gradient (grad) whose absolute value is
becoming too large

grad ← calculate_gradient(nn)
if norm(grad) > th :

grad ← th × (grad / norm(grad))
nn.weight ← nn.weight + lr × grad

➢ Thanks to cliping, the update rule will apply a
smaller update to the weights of the NN, but
this update will still have the same sign

16

“On the difficulty of training recurrent neural networks", Pascanu et al., 2013.
http://proceedings.mlr.press/v28/pascanu13.pdf

Exploding gradients: Solution

➢ The figure shows the error surface of a RNN. This is the graphical representation of J(θ)
➢ The “cliff” has a high gradient (∇θJ(θ) >> 0). When the weights of the NN (w and b in the

figure) falls there, the update rule ‘θnew = θold - ⍺ ∇θJ(θ)’ throws the weights far away
➢ Gradient clipping avoids this by reducing the value of ∇θJ(θ) in the update rule

17

“Deep Learning", Goodfellow, Bengio, and Courville, 2016. Chapter 10.11.1.
https://www.deeplearningbook.org/contents/rnn.html

Van & exp gradients: The problem
If the largest eigenvalue of
Wh is less than 1, the
gradient will decrease to 0
exponentially → Vanishing
gradient

If the largest eigenvalue of
Wh is larger than 1, then
the gradient will grow to
±∞ exponentially →
Exploding gradient

18

we apply the chain
rule many times

Vanishing gradients: The problem
➢ Far away gradients easily become smaller than gradients from nearby gradients

➢ The RNN ends up learning only short time effects, not long time effects

19

Vanishing gradients: The problem
➢ Example: When she tried to print her tickets, she found that the printer had no more

tonner. She went to the stationery shop to buy more. It was overpriced, but she had no
more time to try other shops. After installing the toner into the printer, she finally
printed her _________

➢ To learn from this example (if we are using the example during training), or to
correctly guess the missing word (if we are using the example during testing to
measure the accuracy of the RNN), the NN needs to learn the dependency existing
between the 7th step (tickets) and the last step (________ should be tickets again)

➢ But the gradient vanishes when being backpropagated through so many steps, so
the RNN will never be able to learn this dependency

20

Vanishing gradients: The problem
➢ Example: The food of the cats ________ ← is / are

➢ There are two ways of using the verb “to be” here:

- By syntactic recency: use the form of the verb that refers to the closes noun or
pronoun and makes the sense syntactically correct → is (correct in this example)

- Sequential recency: use the form of the verb that refers to the closes noun or
pronoun → are (incorrect in this example)

➢ Due to vanishing gradients, RNNs will tend to assign sequential recency rather than
syntactic recency[arXiv:1611.01368v1], even in examples where this is wrong.

21

Vanishing gradients: The problem
➢ Problem (backpropagation’s take): From the point of view of backpropagation, the

problem is that, when you apply the chain rule to ∇WJ(Wh) (with Wh being the
recurrent connection), you get an expression with the terms Wh

(i-j), which tends to 0
for large ‘i-j’

➢ Problem (feedforwards’ take): From the point of view of the feed-forwards step, the
problem is that the hidden state h(t) is constantly being re-written

22

Vanishing gradients: The solution
Idea: Besides the
hidden state h(t), why
do not introduce an
extra ‘super hidden’
state where it is more
difficult to write? A
hidden state where
the NN will write only
when he/she are
really really sure that
he/she want to write
something. This is a
memory cell c(t).
[10.1162/neco.1997.9.8.1735] 23“Long short-term memory”, Hochreiter and Schmidhuber, 1997

Vanishing gradients: The solution

24

ht
tp

://
co

la
h.

gi
th

ub
.io

/p
os

ts
/2

01
5-

08
-U

nd
er

st
a

nd
in

g-
LS

TM
s/

Vanishing gradients: The solution

25

ht
tp

://
co

la
h.

gi
th

ub
.io

/p
os

ts
/2

01
5-

08
-U

nd
er

st
a

nd
in

g-
LS

TM
s/

Vanishing gradients: The solution

26

ht
tp

://
co

la
h.

gi
th

ub
.io

/p
os

ts
/2

01
5-

08
-U

nd
er

st
a

nd
in

g-
LS

TM
s/

Vanishing gradients: The solution

27

ht
tp

://
co

la
h.

gi
th

ub
.io

/p
os

ts
/2

01
5-

08
-U

nd
er

st
a

nd
in

g-
LS

TM
s/

➢ The ‘super hidden state’ c(t) keeps information from one recurrent step to the next,
very much like the standard hidden state h(t). The difference is that for the NN it is
more difficult to change its value - c(t) is more stable than h(t).

Vanishing gradients: The solution

28

ht
tp

://
co

la
h.

gi
th

ub
.io

/p
os

ts
/2

01
5-

08
-U

nd
er

st
a

nd
in

g-
LS

TM
s/

➢ The forget gate f(t) decides when to erase information from c(t)

➢ The forget date looks at h(t-1) and x(t), outputs a value between 0 (forget) and 1
(remember), and multiplies this with c(t-1).

Vanishing gradients: The solution

29

ht
tp

://
co

la
h.

gi
th

ub
.io

/p
os

ts
/2

01
5-

08
-U

nd
er

st
a

nd
in

g-
LS

TM
s/

➢ The input gate i(t) decides when and what new information to introduce in c(t)

➢ The forget gate looks at h(t-1) and xt two times. A first time with a σ activation
function to decide ’when’ to input new information, a second time with a tanh
activation function to decide ‘what’ information to input. … [next slide]

Vanishing gradients: The solution

30

ht
tp

://
co

la
h.

gi
th

ub
.io

/p
os

ts
/2

01
5-

08
-U

nd
er

st
a

nd
in

g-
LS

TM
s/

➢ The input gate i(t) decides when and what new information to introduce in c(t)

➢ [continuation] … Then the forget gate multiplies the outputs of σ and tanh to decide
when AND what information to input. Then inputs that information to the cell c(t)

Vanishing gradients: The solution

31

ht
tp

://
co

la
h.

gi
th

ub
.io

/p
os

ts
/2

01
5-

08
-U

nd
er

st
a

nd
in

g-
LS

TM
s/

➢ The output gate o(t) decides when and what information to output in h(t)

➢ The output date looks at h(t-1) and xt two times to decide ’when’ and ‘what’ to
output. Exactly in the same way as the input gate did, but this time to decide the
next value of h(t), not what to add to the current value of c(t)

Vanishing gradients: The solution
Idea: Why don’t we
simplify the
architecture of the
LSTM? We could
merge the forget and
input gates, because
one of these gates is
simply doing the
opposite of the other.
We could also merge
c(t) and h(t), because
they are simply doing
slightly different
things[arXiv:1406.1078v3]

32

“Learning phrase representations using RNN encoder-decoder for statistical machine translation”,
Cho et al., 2014.

Vanishing gradients: The solution

33

➢ Main simplifications:

- Merge forget f(t) and input i(t) gates into a single gate → update gate z(t)

- Merge the hidden state h(t) and memory cell c(t) → new single h(t)

- Some other tweaks

Improved RNNs: LSTM, GRU

34

➢ Thanks to the memory cell c(t) (the ‘supper hidden’ state), the LSTM
architecture makes it easier for the RNN to preserver information over many
time steps.

- e.g. if the forget gate is set to remember everything on every timestep,
then the information in the cell is preserved indefinitely

- e.g. by contracts, it is harder for vanilla RNN to learn a recurrent weight
matrix Wh that preserves information for long in a hidden state

➢ LSTM & GRU however do not fully guarantee that there is not
vanishing/exploding gradients, but it does provide an easier way for the
model to learn long-distance dependencies

Improved RNNs: LSTM, GRU

35

➢ Researchers have proposed many gated RNNs variants, but LSTM and GRU
are the most widely used

➢ The biggest difference is that GRU is quicker to computer, and has fewer
parameters

➢ There is no conclusive evidence that one consistently outperforms the other

➢ LSTM is a good default choice (specially if your data has particularly long
dependencies, or you have lots of training data)

➢ Rule of thumb: start with LSTM, but switch to GRU is you want something
more efficient

Vanishing grads: The problem outside NLP
➢ Problem: The equation suggesting vanishing-exploding gradients is true for all NNs.

In non recurrent NNs is that the first layers (closest to input) learn very slowly

➢ Solution: Changes in architecture

- Residual connections (ResNets), also known as skip-connections or peepholes:
Allow feedforwarded signals and backpropagated gradients to skip layers.
Memory cells in RNNs do kind of the same trick, but across time steps rather than
across layers

- Batch Normalisation: Get neuron’s inputs away from the domain where activation
functions have low gradients.

36

↳backpropagation’s take ↳ feedforwards’s take

Vanishing grads: The solution outside NLP
➢ Solution: Changes in architecture

- … [more stuff here]
- Residual connections (ResNets), also known as skip-connections or peepholes:

Allow feedforwarded signals and backpropagated gradients to skip layers
- Batch Normalisation: Get neuron’s inputs away from the domain where activation

functions have low gradients.
- Careful initialisation: Initial weights promote inputs away from low gradient

domain (Glorot, He, Xavier)
- Better activation functions: In older activation functions the gradient is close to 0

in most of the domain (sigmoida, tanh). Newer activation functions avoid
gradients close to 0 (ReLu, leaky ReLy, ELU)

- Gradient clipping: Simply cap gradients that are getting too high (also in RNNs)

37

Vanishing grads: The solution outside NLP
➢ Dense skip connections

(DenseNet): Make skip
connections from every layer to
every other layer[arXiv:1608.06993v5]

38

➢ Highway connections
(HighwayNet): Make gated skip
connections[arXiv:1505.00387v2]. Similar
to the forget f(t), input i(t) and
output o(t) gates of memory cells in
LSTM (or update z(t) and reset r(t) in
GRU)

Bidirectional RNNs
Idea: Correlations
across time steps do
not only occur from
previous steps h(t-k) to
current step h(t) - they
also occur from future
steps h(t+k) to current
one. Why don’t we
feed into the current
step information from
future ones?
[10.1162/neco.1997.9.8.1735]

Bidirectional RNNs

Bidirectional RNNs

Bidirectional RNNs

Bidirectional RNNs
➢ Bidirectional RNNs are virtually always better than monodirectional RNNs. You should

use them by default if they are applicable to your problem

➢ They are sometimes not applicable when you don’t have access to the full sequence -
e.g. online-learning

➢ BERT: Bidirectional Encoder Representations from Transformer. A very powerful
bidirectional RNNs based on Transformer architecture. Very standard now[arXiv:1810.04805v2]

Multilayer RNNs
➢ Idea: A simple RNNs is already deep in the time dimension. Why don’t we make them

deep in another dimension by stacking them, like in feed forward NNs (FNNs)? We can
simply feed the hidden state h(t) from one layer as the input x(t) of the next

➢ These are called multi-layer NNs:

➢ As in FNNs, they can represent more complex input-output relationships. Lower layers
computer lower-level features, while higher layers compute more complex ones

Multilayer RNNs

Bidirectional RNNs
➢ State of the art RNNs are often

bidirectional and multi-layer. They
are however not as deep as FNNs or
convolutional NNs (CNNs), often
used used in vision

➢ Non transformed RNNs seem to
perform best with only a few layers.
For the encoder part of a RNN this
seems to be 2 to 4 layers, for the
decoder part 4. Deeper RNNs (e.g. 8)
need skip connections

➢ Transformer RNNs (e.g. BERT) can
have up to 24 layers.

Bidirectional RNNs
Lots of information today. Take away messages:

1) LSTMs are powerful but GRUs are faster

2) Clip your gradients

3) Use bidirectional connections when possible

4) Multilayer RNNs are powerful, but you will
need skip-connections if deep

Literature

➢ Papers =

- Sections 10.3, 10.5, and 10.7-10.12 of \Deep Learning", Goodfellow et al., 2016.
http://www.deeplearningbook.org/contents/rnn.html

- “Learning long-term dependencies with gradient descent is difficult", Bengio et
al., 1994. http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf

- “On the difficulty of training recurrent neural networks", Pascanu et al., 2013.
https://arxiv.org/pdf/1211.5063

- “Understanding LSTM networks", Olah, 2015.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

48

http://www.deeplearningbook.org/contents/rnn.html
http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf
https://arxiv.org/pdf/1211.5063
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

