Advanced Topics in Machine Learning

Alejo Nevado-Holgado

Lecture 15 (NLP 7) - Question answering, conference resolution and CNNs V 0.3 (26 Feb 2020 - final version)

Course structure

- > Introduction: What is NLP. Why it is hard. Why NNs work well \leftarrow Lecture 9 (NLP 1)
- > Word representation: How to represent the meaning of individual words
 - Old technology: One-hot representations, synsets
 Lecture 9 (NLP 1)
 - Embeddings: First trick that boosted the performance of NNs in NLP Lecture 9 (NLP 1)
 - Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)
 - Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)
 - Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)
 - Evaluating performance of embeddings

 Lecture 10 (NLP 2)
- > Named Entity Recognition (NER): How to find words of specific meaning within text
 - Multilayer NNs: Margin loss. Forward- and back-propagation Lecture 11 (NLP 3)
 - Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)
 - Better initializations: uniform, xavier ← Lecture 11 (NLP 3)
 - Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)

Course structure

> Language modelling: How to represent the meaning of full pieces of text

- Old technology: N-grams ← Lecture 12 (NLP 4)
- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)
- Evaluating performance of language models \leftarrow Lecture 12 (NLP 4)
- Vanishing gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)
- Improved RNNs: LSTM, GRU, Bidirectional... ← Lecture 13 (NLP 5)
- > Machine translation: How to translate text
 - Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 14 (NLP 6)
 - Seq2seq: Greedy decoding, encoder-decoder, beam search \leftarrow Lecture 14 (NLP 6)
 - Attention: Simple attention, transformers, reformers

 Lecture 14 (NLP 6)

Course structure

- Question Answering: X
 - Task definition, datasets, cloze-style tasks, Attentive Reader \leftarrow Lecture 15 (NLP 7)
- Conference Resolution: X
 - Task definition, pairs method, clustering method, language models \leftarrow Lecture 15 (NLP 7)
- Convolutional Neural Networks: X
 - CNNs in vision, CNNs in language, example ← Lecture 15 (NLP 7)
- > Transformers: X
 - Architecture: encoder, self-attention, encoding position, decoder Lecture 16 (NLP 8)
 - Existing systems. Ranking ← Lecture 16 (NLP 8)

Questions answering: The problem

Question

When were the first pyramids built?

Jean-Claude Juncker

How old is Keir Starmer?

What is the current price for AAPL? What's the weather like in London?

Whom did Juncker meet with?

When did you get to this lecture?

Why do we yawn?

Questions answering: The problem

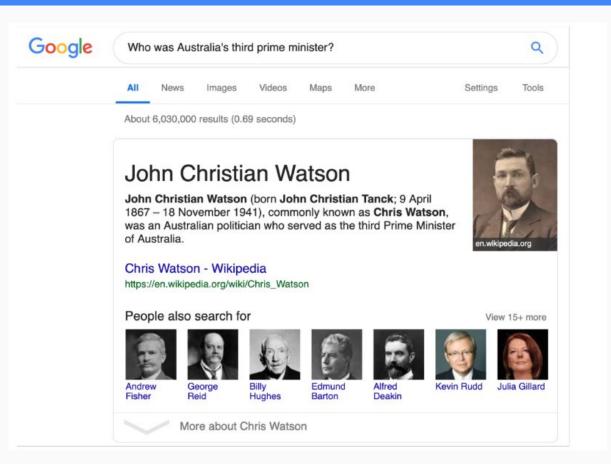
Question	Answer
When were the first pyramids built?	2630 BC
Jean-Claude Juncker	Jean-Claude Juncker is a Luxembourgish politician. Since 2014, Juncker has been President of the European Commission.
How old is Keir Starmer?	54 years
What is the current price for AAPL?	136.50 USD
What's the weather like in London?	7 degrees Celsius. Clear with some clouds.
Whom did Juncker meet with?	The European Commission president was speaking after meeting with Irish Taoiseach Enda Kenny in Brussels.
When did you get to this lecture?	Five minutes after it started.
Why do we yawn?	When we're bored or tired we don't breathe as deeply as we normally do. This causes a drop in our blood-oxygen levels and yawning

helps us counter-balance that.

Questions answering: Why deal with it?

- Because QA is awesome
 - That's it
- Because QA is AI-complete
 - Theoretically, if we solve QA, we can solve everything
- Because QA has many immediate applications
 - Fine grain search, dialogue, information extraction, summarisation...
- Some very good results already
 - IBM Watson and Jeopardy, Siri, Google Search...
- > Many other improvements and applications left to do
 - Both challenging problems and low hanging fruit

Questions answering: Deployed systems



Questions answering: Deployed systems

> Before 2015

- MCTest (Richardson et al 2013): 2.6K questions
- ProcessBank (Berant et al 2014): 500 questions

After 2015

- CNN/Daily Mail,
 - Children Book Test, GPT2
- WikiQA, TANDA^[arXiv:1911.04118v2]
- **TriviaQA, MemoReader**^[10.18653/v1/D18-1237]
- SQuAD 2.0, alBERT^[arXiv:2001.09694v1]
- SQuAD 1.1, XLNet^[arXiv:1906.08237v2]
- News QA, BERT^[arXiv:1907.10529v3]
 - MS MARCO, Masque^[arXiv:1901.02262v2]
- More than 100K questions!

http://nlpprogress.com/english/question_answering.html

Questions answering: Deployed systems

- **Before 2015**
 - Lexical matching
 - Logistic regression

- > After 2015
 - Attentive reader
 - Memory networks
 - ReasoNet
 - Match-LSTM
 - Attention sum reader
 - Attention-over-attention reader
- Iterative attention reader
- Dynamic coattention networks
- Bi-directional Attention Flow Network
- Multi-perspective Context Matching

Questions answering: SQuAD 2.0 (2019)

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Jan 15, 2019	BERT + MMFT + ADA (ensemble) Microsoft Research Asia	85.082	87.615
2 Jan 10, 2019	BERT + Synthetic Self-Training (ensemble) Google AI Language https://github.com/google- research/bert	84.292	86.967
3 Dec 13, 2018	BERT finetune baseline (ensemble) Anonymous	83.536	86.096
4 Dec 16, 2018	Lunet + Verifier + BERT (ensemble) Layer 6 Al NLP Team	83.469	86.043

Questions answering: SQuAD 2.0 (2020)

Rank	Model	EM	F1
	Human Performance	86.831	89.452
	Stanford University		
	(Rajpurkar & Jia et al. '18)		
1	Retro-Reader on ALBERT (ensemble)	90.115	92.580
Jan 10, 2020	Shanghai Jiao Tong University		
	http://arxiv.org/abs/2001.09694		
2	ALBERT + DAAF + Verifier (ensemble)	90.002	92.425
Nov 06, 2019	PINGAN Omni-Sinitic		
3	ALBERT (ensemble model)	89.731	92.215
Sep 18, 2019	Google Research & TTIC		
2	https://arxiv.org/abs/1909.11942		
4	albert+transform+verify (ensemble)	89.528	92.059
Jan 23, 2020	gianxin		

Cloze-style task: CNN/Daily Mail

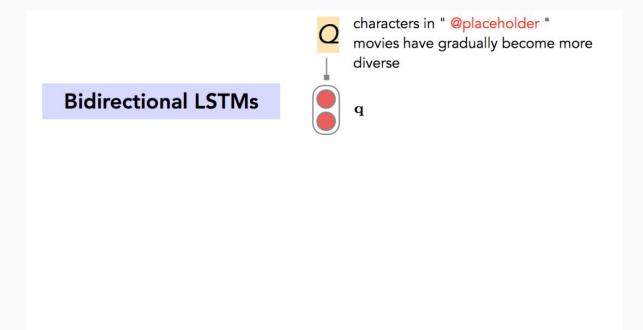
Ρ

Close task: A test where words or pieces of text have been removed, in order for the test-taker to infer them.

In ML we replace nouns by anonymous @tokens to prevent the NN from using world knowledge, and force it to use logical inference based solely on what is written in the text of the task. not what is written in other datasets used for pre-training.

(@entity4) if you feel a ripple in the force today, it may be the news that the official @entity6 is getting its first gay character. according to the sci-fi website @entity9, the upcoming novel "@entity11 " will feature a capable but flawed @entity13 official named @entity14 who " also happens to be a lesbian. " the character is the first gay figure in the official @entity6 -- the movies, television shows, comics and books approved by @entity6 franchise owner @entity22 -- according to @entity24, editor of "@entity6 "

characters in " @placeholder " movies have gradually become more diverse

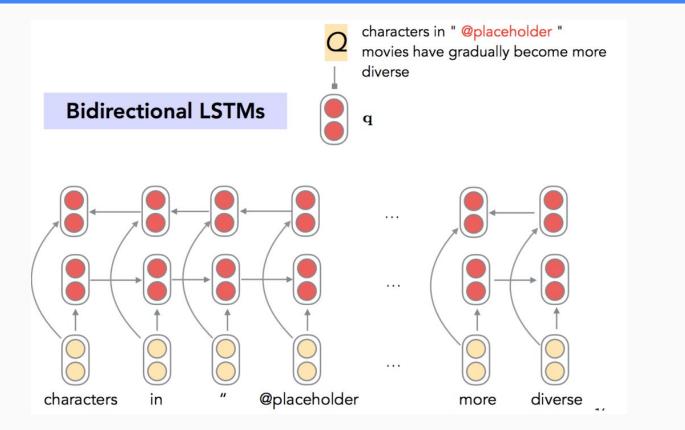


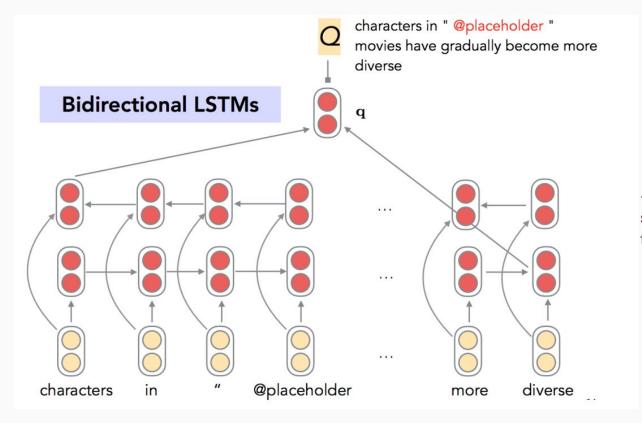
A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task D Chen, J Bolton & CD Manning, Stanford University [arXiv:1606.02858v2]

Bidirectional LSTMs

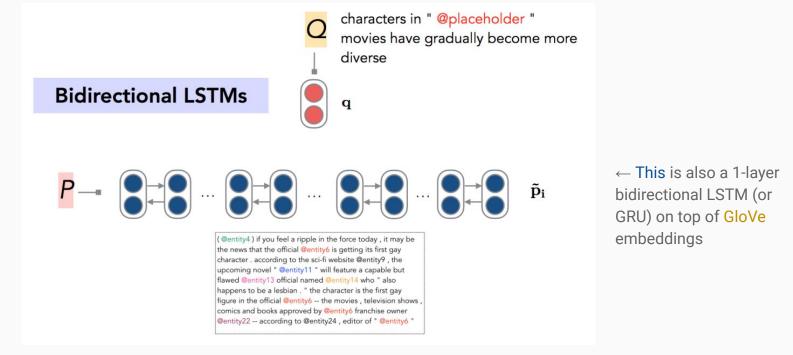
characters in " **@placeholder** " movies have gradually become more diverse

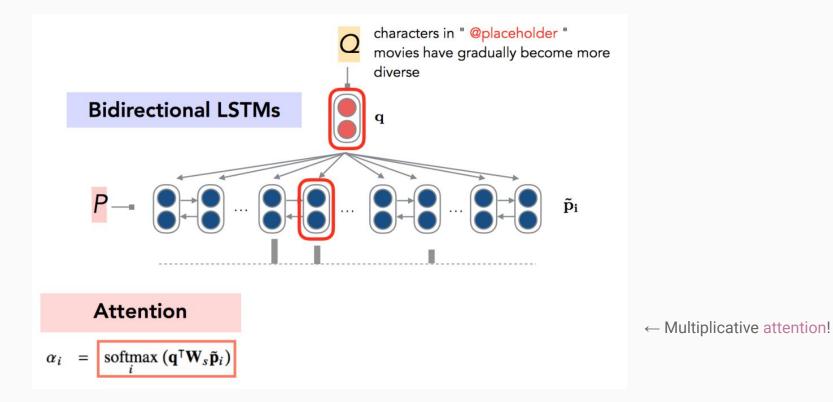






← Take only last LSTM states and concatenate them





Translation: Attention

- There are several typical versions of attention:
- Dot-product attention: values and query are dot-multiplied to obtain attention score

 $\mathbf{e^{(t)}} = [\mathbf{s^{(t)}} \cdot \mathbf{h^{(1)}}, \mathbf{s^{(t)}} \cdot \mathbf{h^{(2)}}, ..., \mathbf{s^{(t)}} \cdot \mathbf{h^{(T)}}] \in \mathbb{R}^{T}$

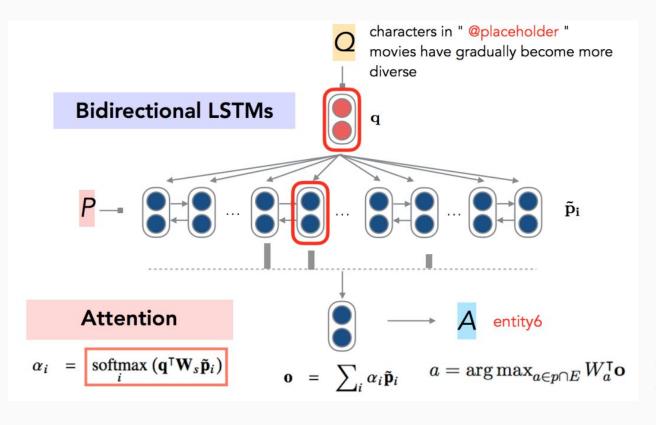
Multiplicative attention: the query is linearly transformed with W

 $e^{(t)} = [s^{(t)} W h^{(1)}, s^{(t)} W h^{(2)}, ..., s^{(t)} W h^{(T)}] \in \mathbb{R}^{T}$

Additive attention: values and query are both linearly transformed by W_h and W_s, respectively. The result, is averaged with average-weights v

$$e^{(t)} = [v \cdot tanh(W_s s^{(t)} + W_h h^{(1)}), v \cdot tanh(W_s s^{(t)} + W_h h^{(2)}), ...] \in \mathbb{R}^{1}$$

Deep learning for NLP best practices", Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention Massive exploration of neural machine translation architectures", Britz et al., 2017. https://arxiv.org/pdf/1703.03906.pdf



 \leftarrow p \cap E = all abstract **@entities** present in the paragraph {p_i}

The problem: Similar to NER. In NER we wanted to identify mentions that refer to any entity of a given class. In conference resolution, in addition to this, we want to identify which mentions refer to exactly the same particular entity.

Barack Obama nominated Hillary Rodham Clinton as his

secretary of state on Monday. He chose her because she

The problem: Similar to NER. In NER we wanted to identify **all mentions** that refer to any entity of a given class. In conference resolution, in addition to this, we want to identify which mentions refer to exactly the same particular entity.

Barack Obama nominated Hillary Rodham Clinton as his

secretary of state on Monday. He chose her because she

The problem: Similar to NER. In NER we wanted to identify all mentions that refer to any entity of a given class. In conference resolution, in addition to this, we want to identify which mentions refer to exactly the same particular entity.

Barack Obama nominated Hillary Rodham Clinton as his

secretary of state on Monday. He chose her because she

The problem: Similar to NER. In NER we wanted to identify all mentions that refer to any entity of a given class. In conference resolution, in addition to this, we want to identify which mentions refer to exactly the same particular entity.

Barack Obama nominated Hillary Rodham Clinton as his

secretary of state on Monday. He chose her because she

had foreign affairs experience

The problem: Similar to NER. In NER we wanted to identify all mentions that refer to any entity of a given class. In conference resolution, in addition to this, we want to identify which mentions refer to exactly the same particular entity.

Barack Obama nominated Hillary Rodham Clinton as his

secretary of state on Monday. He chose her because she

The problem: Similar to NER. In NER we wanted to identify all mentions that refer to any entity of a given class. In conference resolution, in addition to this, we want to identify which mentions refer to exactly the same particular entity.

Barack Obama nominated Hillary Rodham Clinton as his

secretary of state on Monday. He chose he

had foreign affairs experience as a former

The problem: Similar to NER. In NER we wanted to identify all mentions that refer to any entity of a given class. In conference resolution, in addition to this, we want to identify which mentions refer to exactly the same particular entity.

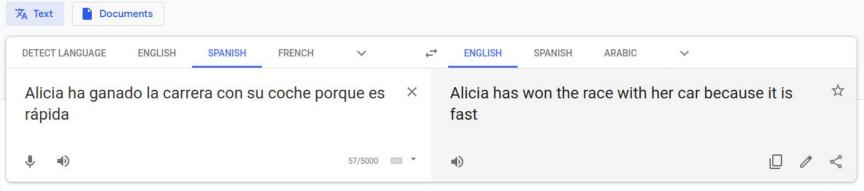
Barack Obama nominated Hillary Rodham Clinton as his

secretary of state on Monday. He chose he

had foreign affairs experience as a former

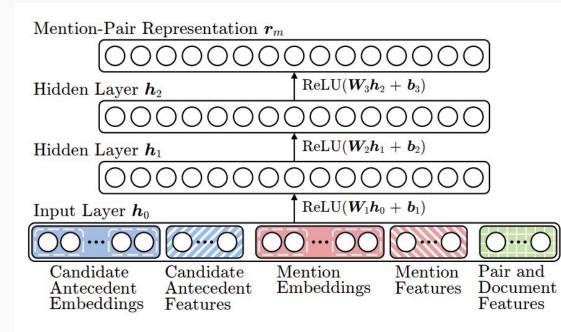
Conference resolution: Why deal with it?

- Because Conf Res is awesome
 - But not as much as QA
- Because Conf Res can help many downstream NLP tasks
 - Information extraction, summarisation, question answering, full text understanding...
- > Many other improvements and applications left to do
 - Both challenging problems and low hanging fruit



Send feedback

Solution 1: Use a NN to model the probability that any pair of words in the text refer to the same entity



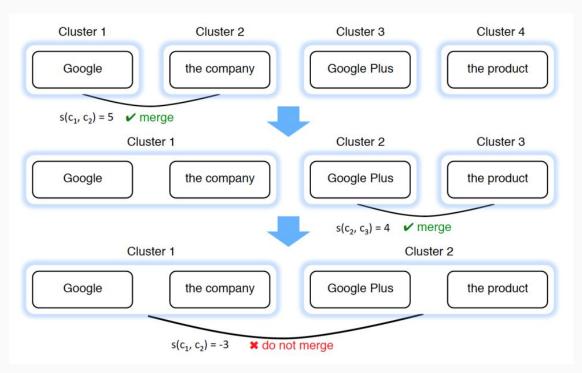
- > Mention features:
 - Distance
 - Part of Speech
 - Document class
 - Speaker information

. . .

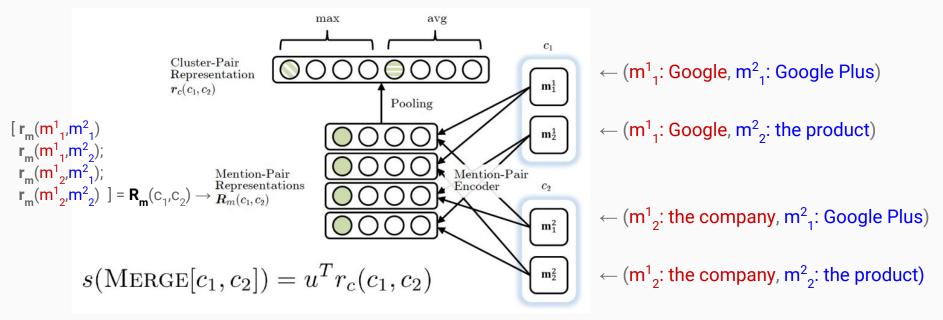
"Improving coreference resolution by learning entity-level distributed representations", Clark et al., 2016. https://arxiv.org/pdf/1606.01323 58/10

Solution 2: As in agglomerative clustering, gradually merge clusters of words that refer to the same entity, starting with one cluster per word

"Improving coreference resolution by learning entity-level distributed representations", Clark et al., 2016. https://arxiv.org/pdf/1606 .01323 Google recently ... the company announced Google Plus ... the product features



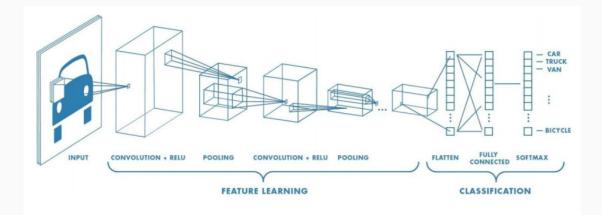
Solution 2: As in agglomerative clustering, gradually merge clusters of words that refer to the same entity, starting with one cluster per word



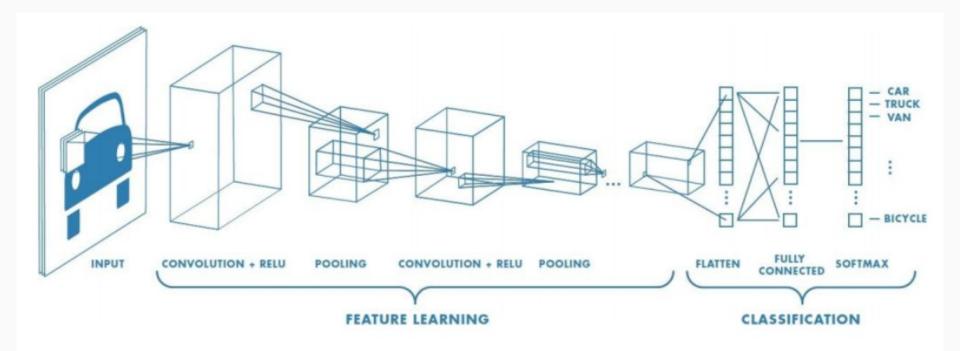
Solution 3: Same as before... but with language models based on Transformers. We will see in next lecture

Convolutional NNs: Why a new arch.?

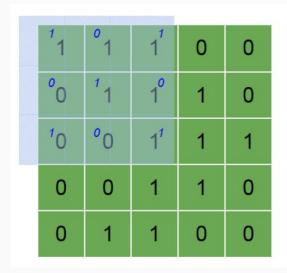
- The problem: Traditional NN solutions to NLP problems mostly used some type of RNN (e.g. LSTM, GRU...). Recurrences are however very slow to train
- The solution: Convolutional NNs (CNNs) are the standard architecture in vision, where the Convolutions allow them to integrate information from all pixels in an image. Convolutions are much faster to train than Recurrences. We can apply Convolutions in language to integrate information from all words in a document.



Convolutional NNs: Vision



Convolutional NNs: Vision



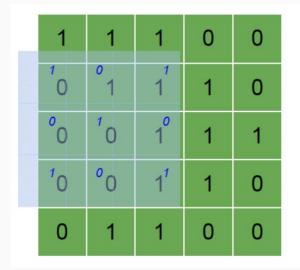
4	

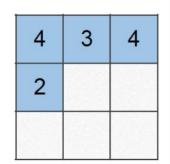
1	1	0 1	01	0
0	° 1	1	1 0	0
0	6	9	1 1	1
0	0	1	1	0
0	1	1	0	0

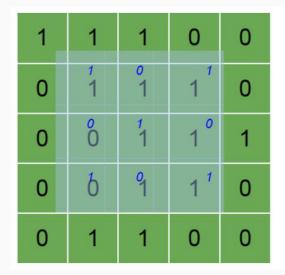
4	3	

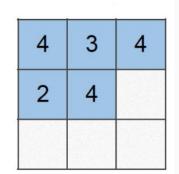
1	1	1	0°	0	1
0	1	1 0	11	0	0
0	0	11	1 °	1	1
0	0	1	1	0	
0	1	1	0	0	

4	3	4









1	1	1	0	0
0	1	1	0 1	0
0	0	0 1	1	10
0	0	1	°1	01
0	1	1	0	0

4	3	4
2	4	3

1	1	1	0	0
0	1	1	1	0
6	° 0	11	1	1
ზ	10	1°	1	0
D	ભ	11	0	0

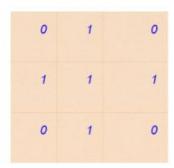
4	3	4
2	4	3
2		

1	1	1	0	0
0	1	1	1	0
0	d	f	1 1	1
0	ď	1	1 °	0
0	1	P	0 1	0

4	3	4
2	4	3
2	3	

1	1	1	0	0
0	1	1	1	0
0	0	1	0 1	1
0	0	° 1	1	0
0	1	11	o	1 1

4	3	4
2	4	3
2	3	5



1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

4	3	4
2	4	3
2	3	5

° 1	1 1	10	0	0
0	1	11	1	0
ზ	Ъ	1 0	1	1
0	0	1	1	0
0	1	1	0	0

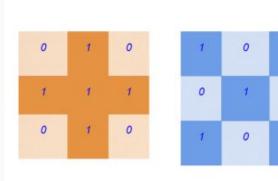
4	3	4	3	
2	4	3		
2	3	5		

1	1	1	0	0
0	1	1	1	0
0	0	0 1	1	1
0	0	1	1	0 1
0	1	1	9	0 0

4	3	4	3	
2	4	3	2	
2	3	5	2	

Δ

Δ



1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

4	3	4	3
2	4	3	2
2	3	5	2

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

4	3	4	3	
2	4	3	2	
2	3	5	2	
10	1	1	1	
		0	2	
1	4	2	2	

1	5	0
2	4	2
2	11	3

Δ

Max Pooling

15	28	184			
100	70	38			
12	7	2			
12	45	6			
2 x 2 pool size					
100	184				
12	45				
	100 12 12 12	100 70 12 7 12 45 12 45 12 45 100 184	100 70 38 12 7 2 12 45 6 12 45 6 12 45 5 12 45 5 12 45 5 12 45 5 12 45 5 12 45 5 100 184		

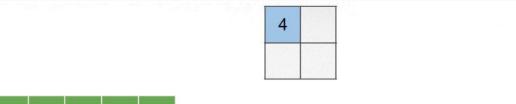
Average Pooling

-			
31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
			x 2 I size
	36	80	
	12	15	

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

4	3	4	3
2	4	3	2
2	3	5	2
10	1	1	1
		-	2
	4		

1	5	0
2	4	2
2	11	3



1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1				
	4	3	4	3
	2	4	3	2
	2	3	5	2
	10	1	1	1

10	1	1	
			2
1	4	2	-
3	2	1	2
5	2		

1	5	0
2	4	2
2	11	3

						4
		100		No.	6	
1	1	1	0	0		
0	1	1	1	0		
0	0	1	1	1		
0	0	1	1	0		
0	1	1	0	0		

-	Charles and the second					
	4					
	4	3	4	3	5	
	2	4	3	2	4	
	2	3	5	2	4	
	10	1	1	1	5	
				2	4	
	1	4	2	-		

4	3	5	3
3	2	4	5
5	2	4	3

10	1	1		
1	4	2	3	
3	2	1		

3 4	3	5	3
4 3	2	4	5

10	1	1	
1	4	2	
3	2	1	

1	5	0
2	4	2
2	11	3

							_					
						4	4					
						4	5					
		2			C.							
1	1	1	0	0								
0	1	1	1	0			4	3	4	3	5	3
0	0	1	1	1			2	4	3	2	4	5
0	0	1	1	0			2	3	5	2	4	3
0	1	1	0	0								

10	1	1	1
		0	2
1	4	2	2
3	2	1	

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

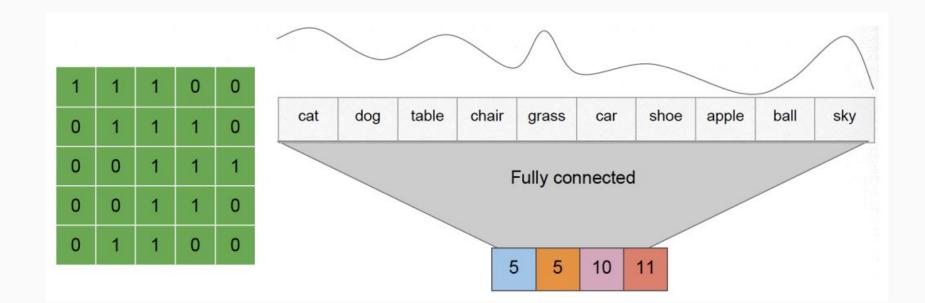
5	5	10	11
---	---	----	----

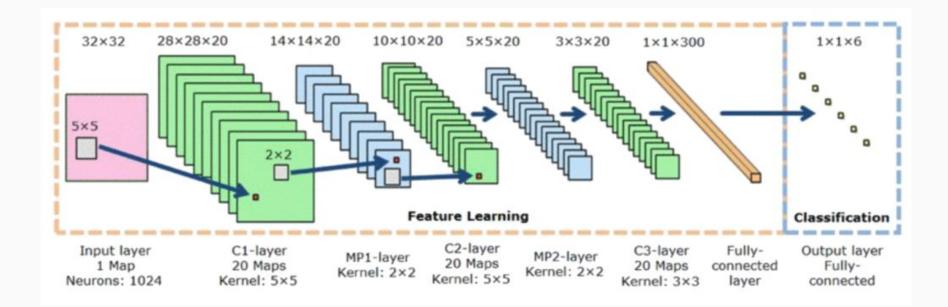
4	3	4
2	4	3
2	3	5

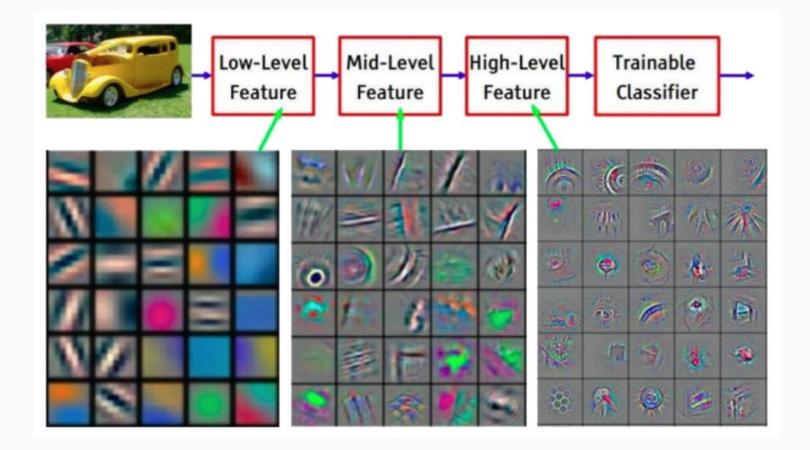
3	á	3	
2	4	5	
2	4	3	

10	1	
1	4	
3	2	1

1	5	0
2	4	2
2	11	3







	filter	
0.97	0.86	0.70
0.35	0.28	0.26
0.15	0.28	0.18
0.84	0.94	0.09
0.61	0.93	0.21

0.04	0.97	0.01	0.65	0.85	0.14	0.65	0.42
0.64	0.61	0.61	0.56	0.80	0.74	0.30	0.29
0.72	0.04	0.74	0.01	0.11	0.85	0.30	0.61
0.40	0.30	0.61	0.20	0.08	0.53	0.50	0.95
0.18	0.14	0.26	0.00	0.77	0.63	0.30	0.95
Can	we	use	а	convnet	for	language	9 7

41												
	0.97	0.86	0.70									
	0.35	0.28	0.04	0.97	0.01	0.65	0.85	0.14	0.65	0.42		
			0.64	0.61	0.61	0.56	0.80	0.74	0.30	0.29		
	0.15	0.28	0.18	0.04	0.74	0.01	0.11	0.85	0.30	0.61		
	0.84	0.94	0.09 0.40	0.30	0.61	0.20	0.08	0.53	0.50	0.95		
	0.61	0.93	0.21 0.18	0.14	0.26	0.00	0.77	0.63	0.30	0.95		
			Can	we	use	а	convnet	for	language			

3.41	2.71										
		0.97	0.86	0.70							
			0.04	0.97	0.01	0.65	0.85	0.14	0.65	0.42	
		0.35	0.28	0.26							
			0.64	0.61	0.61	0.56	0.80	0.74	0.30	0.29	
		0.15	0.28	0.18							
			0.72	0.04	0.74	0.01	0.11	0.85	0.30	0.61	
		0.84	0.94	0.09							
			0.40	0.30	0.61	0.20	0.08	0.53	0.50	0.95	
		0.04									
		0.61	0.93	0.21 0.14	0.26	0.00	0.77	0.63	0.30	0.95	
				5.11	0.20						
			Can	we	use	а	convnet	for	languag	e ?	

3.41	2.71	4.32								
		0.97	0.86	0.70						
		0.04	0.97	0.01	0.65	0.85	0.14	0.65	0.42	
		0.35	0.28	0.26						
		0.64	0.61	0.61	0.56	0.80	0.74	0.30	0.29	
		0.15	0.28	0.18						
		0.72	0.04	0.74	0.01	0.11	0.85	0.30	0.61	
		0.84 0.40	0.94 0.30	0.09 0.61	0.20	0.08	0.53	0.50	0.95	
		0.61 0.18	<mark>0.93</mark> 0.14	0.21 0.26	0.00	0.77	0.63	0.30	0.95	
		Can	we	use	а	convnet	for	language	2 7	

3.41	2.71	4.32	3.21	2	2.81	2.95		5.43	3.34		2.22	1.96
		0.04	0.97	0.01	0.65	0.85	0.1	4 0.65	0.97 0.42	0.86	6 0.70	
		0.04			0.50				0.35	0.28	0.26	
		0.64	0.61	0.61	0.56	0.80	0.7	4 0.30	0.29 0.15	0.28	0.18	
		0.72	0.04	0.74	0.01	0.11	0.8	5 0.30	0.61			
		0.40	0.30	0.61	0.20	0.08	0.5	3 0.50	0.84 0.95	0.94	0.09	
		0.18	0.14	0.26	0.00	0.77	0.6	3 0.30	0.61 0.95	0.93	0.21	
		Can	we	use	a	convnet	for	languag	e ?			

3.41	2.71	4	.32	3.21	2.	81	2.95	5.4	43	3.34	2.22	1.96
0.87												
	0.07	0.99	0.17									
			0.04	0.97	0.01	0.65	0.85	0.14	0.65	0.42		
	0.08	0.80	0.67	0.61	0.61	0.56	0.80	0.74	0.30	0.29		
	0.87	0.08	0.04	0.01	0.01	0.50	0.00	0.74	0.50	0.29		
			0.72	0.04	0.74	0.01	0.11	0.85	0.30	0.61		
	0.13	0.79	0.16	0.30	0.61	0.20	0.08	0.53	0.50	0.95		
	0.81	0.53	0.40	0.50	0.01	0.20	0.00	0.55	0.50	0.95		
	0.01	0.00	0.18	0.14	0.26	0.00	0.77	0.63	0.30	0.95		
			Can	we	use	а	convnet	for	languag	ge ?		

3.41	2.71	4.32	3.21	2.	81	2.95	5.4	43	3.34	2	2.22	1.96
0.87	0.28	0.64	4.30	3.6	66	2.71	4.9	0	2.55	0.	.30	0.80
		0.04	0.97	0.01	0.65	0.85	0.14	0.65	0.07	0.99	0.17	
					0.65	0.65	0.14	0.05	0.42	0.80	0.67	
		0.64	0.61	0.61	0.56	0.80	0.74	0.30	0.29	0.08	0.04	
		0.72	0.04	0.74	0.01	0.11	0.85	0.30	Constanting of the	0.00	0.04	
		0.40	0.20	0.01	0.00	0.00	0.52	0.50	0.13	0.79	0.16	
		0.40	0.30	0.61	0.20	0.08	0.53	0.50	0.95	0.53	0.55	
		0.18	0.14	0.26	0.00	0.77	0.63	0.30			0.00	
		Can	we	use	а	convnet	for	languag	ge ?			

3.41	2.71	4.32	3.21	2.81	2.95	5.43	3.34	2.22	1.96
0.87	0.28	0.64	4.30	3.66	2.71	4.90	2.55	0.30	0.80
4.51	3.84	1.63	1.71	1.67	3.51	4.69	4.01	3.55	4.68
0.68	2.43	4.51	4.30	1.69	0.26	3.52	1.67	3.27	2.96
2.68	2.43	4.51	0.30	3.69	0.26	3.52	2.67	4.27	2.96

Convolutional NNs: An NLP example

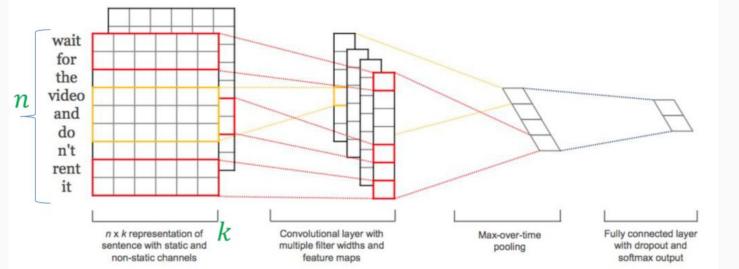


Figure 1: Model architecture with two channels for an example sentence.

n-words (possibly zero padded) and each word vector has k-dimensions entity-level 2016. "Improving coreference resolution by learning Clark et al., \mathcal{O} 606.0132 distributed representations https://arxiv.org/pdf, 5 200

Course structure

- Question Answering: X
 - Task definition, datasets, cloze-style tasks, Attentive Reader \leftarrow Lecture 15 (NLP 7)
- Conference Resolution: X
 - Task definition, pairs method, clustering method, language models \leftarrow Lecture 15 (NLP 7)
- Convolutional Neural Networks: X
 - CNNs in vision, CNNs in language, example ← Lecture 15 (NLP 7)
- > Transformers: X
 - Architecture: encoder, self-attention, encoding position, decoder Lecture 16 (NLP 8)
 - Existing systems. Ranking ← Lecture 16 (NLP 8)

Literature

> Papers =

- "Statistical Machine Translation", Koehn, 2009. http://www.statmt.org/book/
- "BLEU", Papineni et al., 2002. https://www.aclweb.org/anthology/P02-1040.pdf
- "Sequence to sequence learning with neural networks", Sutskever et al., 2014. <u>https://arxiv.org/pdf/1409.3215</u>
- "Sequence transduction with recurrent neural networks", Graves, 2012. <u>https://arxiv.org/pdf/1211.3711</u>
- "Neural machine translation by jointly learning to align and translate", Bahdanau et al., 2016. <u>https://arxiv.org/pdf/1409.0473</u>
- "Attention and augmented recurrent neural networks", Olah et al., 2016. https://distill.pub/2016/augmented-rnns/
- "Massive exploration of neural machine translation architectures", Britz et al., 2017.
 <u>https://arxiv.org/pdf/1703.03906</u>
- "Has AI surpassed humans at translation? Not even close!" <u>https://www.skynettoday.com/editorials/state_of_nmt</u>
- "Googles Neural Machine Translation System", Wu et al., 2016. https://arxiv.org/pdf/1609.08144
- "Achieving human parity on automatic Chinese to English news translation", Hassan et al., 2018. <u>https://arxiv.org/pdf/1803.05567</u>
- "Findings of the 2018 Conference on MT", Bojar et al., 2018. http://www.statmt.org/wmt18/pdf/WMT028.pdf