
Advanced Topics in Machine Learning

Alejo Nevado-Holgado

Lecture 16 (NLP 8) - Transformers
V 0.1 (4 Mar 2020 - final version)

Course structure
➢ Introduction: What is NLP. Why it is hard. Why NNs work well ← Lecture 9 (NLP 1)

➢ Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets ← Lecture 9 (NLP 1)

- Embeddings: First trick that boosted the performance of NNs in NLP ← Lecture 9 (NLP 1)

- Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)

- Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)

- Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)

- Evaluating performance of embeddings ← Lecture 10 (NLP 2)

➢ Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation ← Lecture 11 (NLP 3)

- Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)

- Better initializations: uniform, xavier ← Lecture 11 (NLP 3)

- Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)
2

Course structure

➢ Language modelling: How to represent the meaning of full pieces of text
- Old technology: N-grams ← Lecture 12 (NLP 4)

- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)

- Evaluating performance of language models ← Lecture 12 (NLP 4)

- Vanishing gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)

- Improved RNNs: LSTM, GRU, Bidirectional... ← Lecture 13 (NLP 5)

➢ Machine translation: How to translate text
- Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 14 (NLP 6)

- Seq2seq: Greedy decoding, encoder-decoder, beam search ← Lecture 14 (NLP 6)

- Attention: Simple attention, transformers, reformers ← Lecture 14 (NLP 6)

- Evaluating performance: BLEU ← Lecture 14 (NLP 6)

3

Course structure

➢ Question Answering: X
- Task definition, datasets, cloze-style tasks, Attentive Reader ← Lecture 15 (NLP 7)

➢ Conference Resolution: X

- Task definition, pairs method, clustering method, language models ← Lecture 15 (NLP 7)

➢ Convolutional Neural Networks: X

- CNNs in vision, CNNs in language, example ← Lecture 15 (NLP 7)

➢ Transformers: X

- Architecture: encoder, self-attention, encoding position, decoder ← Lecture 16 (NLP 8)

- Existing systems. Ranking ← Lecture 16 (NLP 8)

4

Transformers: Why a new architecture?
The problem: Recurrences are very slow to train, and
their computations cannot be parallelized. Although
LSTMs and GRUs capture long terms relationships
much better than vanilla RNNs, they still don’t do it well
enough.

The solution: We saw in previous lectures that attention
can give any time step access to any other time step, no
matter the length of the input. The whole purpose of
recurrence in RNN architectures was accessing
previous time steps no matter the length of the input.
Why don’t we simply use pure attention to access all
time steps? It is parallelizable, and maybe it captures
long term relationships better than recurrence.

5

Transformers: Architecture

6

The transformer follows
an encoder-decoder
architecture, with all
decoders attending to the
last state of the encoder.
This is the same as we
studied a few lectures
ago for translation
(Lecture NLP 6)
Original paper:
https://arxiv.org/abs/1706.03762

Best description out there:
http://jalammar.github.io/illustrate
d-transformer/

Transformers: Architecture

7

The difference between the transformer and the encoder-decoder of Lecture NLP 6 is on
the internal architecture of each encoder and each decoder. Rather than simple hidden
states, each encoder and decoder is a mini-NN of its own. This is sometimes called a
‘module’, ‘block’ or even ‘layer’, and it is very common in modern NNs (e.g. VGG16,
ResNet, ByteNet…)

Transformers: Encoder

8

The first encoder
receives an
embedding [x(t)]X per
word (X = num
embedding
dimensions). The
self-attention layer
mixes information
across words,
producing a new
presentation per word
[z(t)]Z, like the
attention mechanism
of a seq2seq.

Transformers: Encoder

9

The new
presentation per
word [z(t)]Z that
emerges from
the self-attention
layer, is then
transformed with
a feed forward
fully connected
NN into [r(t)]R.

Transformers: Encoder

10

Be careful! In the original paper they use a residual
connection in the self-attention and feed-forwards layers.
The description by Jalammar does not emphasize this

Transformers: Self-attention

11

The effect of attention is that [z(t)]Z (for a
given time step ‘t’) becomes a mixture of
the original embeddings [x(t)]X. The idea
is that each time step ‘borrows’
information from other time steps that it
is related to. For instance, a pronoun
may borrow information from the
complement of the name that it refers
to. Layer, the feed-forwards NN further
transforms [z(t)]Z into [r(t)]R, but this time
without mixing information across time
steps.

Transformers: Self-attention

12

The attention
mechanism is
multiplicative. We
first create a query, a
key and a value
vector per time step
by linearly
transforming each
embedding:

[q(t)]Q = [WQ]QX [x(t)]X

[k(t)]Q = [WK]KQ [x(t)]X

[v(t)]V = [WV]VX [x(t)]X

Transformers: Self-attention

13

Then we
dot-multiplicate
each query with
each key:

[q(t)]Q ⋅ [k(𝜏)]Q

Transformers: Self-attention

14

Then we rescale
dividing by sqrt(Q)
and apply softmax.
Q is the number of
dimensions of the
query [q(t)]Q and the
key [k(𝜏)]Q (both
vectors need to
have the same size
to allow for the dot
product)

Transformers: Self-attention

15

The result is a weight given to each value
to form the new hidden state:

[z(t)]Z = ∑𝜏 [sm𝜏([q
(t)]Q ⋅ [k(𝜏)]Q) /√Q]1

[v(𝜏)]Z

Transformers: Self-attention

16

Computationally, we do all these
calculations in parallel by using matrices
rather than vectors. A matrix represents
all the time steps in one go:

[Z]TZ = [sm([Q]TQ [K*]QT) /√Q]TT [V]TZ

This is extremely efficient, because
modern computers (and specially GPUs)
have hardware optimized to perform
these operations very fast.

Transformers: Self-attention

17

Computationally, we do all these
calculations in parallel by using matrices
rather than vectors. A matrix represents
all the time steps in one go:

[Z]TZ = [sm([Q]TQ [K*]QT) /√Q]TT [V]TZ

This is extremely efficient, because
modern computers (and specially GPUs)
have hardware optimized to perform
these operations very fast.

Transformers: Self-attention

18

Another
novelty of the
transformer, is
that it uses
several
attention
channels in
parallel. They
are called
‘heads’:

Transformers: Self-attention

19

Another novelty of the transformer, is that it uses several attention channels in parallel. They
are called ‘heads’, and their results are [Z1]TZ, [Z2]TZ, [Z3]TZ, …, [ZH]TZ (H = number of heads):

Transformers: Self-attention

20

But we so many
heads we end up
with too many
matrixes. To
prevent the
hidden states to
group
exponentially in
size, we pool all
heads with a
linear
transformation.

concat([Z1]TZ, [Z2]TZ, [Z3]TZ, …, [ZH]TZ) = [Z]T(Z⨯H)

[Z]T(Z⨯H)⨯[WO](Z⨯H)Z = [Znext layer]TZ

Transformers: Self-attention

21

Transformers: Self-attention

22

The effect of attention is that [z(t)]Z (for a
given time step ‘t’) becomes a mixture of the
original embeddings [x(t)]X. The idea is that
each time step ‘borrows’ information from
other time steps that it is related to. For
instance, a pronoun may borrow information
from the complement of the name that it
refers to. Layer, the feed-forwards NN
further transforms [z(t)]Z into [r(t)]R, but this
time without mixing information across time
steps.

Multi-heads = It does all of this several
times, with different with a different [WQ]QX,
[WK]KQ, [WV]VX per head

Transformers: Self-attention

23

Transformers: Encoding position

24

We also add
information
about the
position of
each word.
We do this
with a
positional
encoding
vector [t(t)]X
per possible
position.

Transformers: Encoding position

25

➢ This is a similar idea that we have used
before for conference resolution, where we
concatenated extra features to the word
embeddings.

➢ This is a common trick in NN NLP
➢ However the transformer e-wise multiplies

[t(t)]X rather than concatenating it to [x(t)]X.

Transformers: Encoding position

26

➢ The positional
encoding vectors
have pre-specified
values

➢ These values follow
some sort of wavelet
function

➢ This is quite similar
to how the
hippocampus in the
human brain
encodes position!

The real brain: Encoding position

27

Transformers: Encoder

28

To simplify the
explanation, we have so
far ignored two smaller
details of the architecture.

- 1) There is a residual
connection
bypassing each layer

- 2) There is a
normalization step
after each layer.

Transformers: Encoder

29

To simplify the
explanation, we have so
far ignored two smaller
details of the architecture.

- 1) There is a residual
connection
bypassing each layer

- 2) There is a
normalization step
after each layer.

Transformers: Encoders → decoders

30

Besides
self-attention, the
decoder also
uses
encoder-decoder
attention. This
attention is the
same as simple
self-attention,
but it also uses
the outputs of
the last layer of
the encoder

Transformers: Encoders → decoders

31

Transformers: Encoders → decoders

32

Transformers: Output

33

The NN is trained in a
language model task.
Remember from
lecture NLP 4, this
consists on predicting
the next word.

The output of the neural
network tries to find the 1-hot
representation of the next
word
Once trained, the transformer
can be re-used in many other
NLP tasks

Transformers: Output

34

Transformers: Output

35

After training the model, its outputs will approximate the desired 1-hot representations of
words in the vocabulary

Transformers: Existing systems

36

Transformers: Existing systems

37

Course structure

➢ Question Answering: X
- Task definition, datasets, cloze-style tasks, Attentive Reader ← Lecture 15 (NLP 7)

➢ Conference Resolution: X

- Task definition, pairs method, clustering method, language models ← Lecture 15 (NLP 7)

➢ Convolutional Neural Networks: X

- CNNs in vision, CNNs in language, example ← Lecture 15 (NLP 7)

➢ Transformers: X

- Architecture: encoder, self-attention, encoding position, decoder ← Lecture 16 (NLP 8)

- Existing systems. Ranking ← Lecture 16 (NLP 8)

38

Literature

➢ Papers =

- Attention is all you need. https://arxiv.org/abs/1706.03762

- The illustrated transformer. http://jalammar.github.io/illustrated-transformer/

- Language Models are Unsupervised Multitask Learners.
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

- Reformer: The Efficient Transformer. https://arxiv.org/abs/2001.04451

- Illustrating the reformer.
https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0

39

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2001.04451
https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0

