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Course structure
➢ Introduction: What is NLP. Why it is hard. Why NNs work well ← Lecture 9 (NLP 1)

➢ Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets ← Lecture 9 (NLP 1)

- Embeddings: First trick that boosted the performance of NNs in NLP ← Lecture 9 (NLP 1)

- Word2vec: Single layer NN. CBOW and skip-gram ← Lecture 10 (NLP 2)

- Co-occurrence matrices: Basic counts and SVD improvement ← Lecture 10 (NLP 2)

- Glove: Combining word2vec and co-occurrence matrices idea ← Lecture 10 (NLP 2)

- Evaluating performance of embeddings ← Lecture 10 (NLP 2)

➢ Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation ← Lecture 11 (NLP 3)

- Better loss functions: margin loss, regularisation ← Lecture 11 (NLP 3)

- Better initializations: uniform, xavier ← Lecture 11 (NLP 3)

- Better optimizers: Adagrad, RMSprop, Adam... ← Lecture 11 (NLP 3)
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Course structure

➢ Language modelling: How to represent the meaning of full pieces of text
- Old technology: N-grams ← Lecture 12 (NLP 4)

- Recursive NNs language models (RNNs) ← Lecture 12 (NLP 4)

- Evaluating performance of language models ← Lecture 12 (NLP 4)

- Vanishing gradients: Problem. Gradient clipping ← Lecture 13 (NLP 5)

- Improved RNNs: LSTM, GRU, Bidirectional... ← Lecture 13 (NLP 5)

➢ Machine translation: How to translate text
- Old technology: Georgetown–IBM experiment and ALPAC report ← Lecture 14 (NLP 6)

- Seq2seq: Greedy decoding, encoder-decoder, beam search ← Lecture 14 (NLP 6)

- Attention: Simple attention, transformers, reformers ← Lecture 14 (NLP 6)

- Evaluating performance: BLEU ← Lecture 14 (NLP 6)
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Course structure

➢ Question Answering: X
- Task definition, datasets, cloze-style tasks, Attentive Reader ← Lecture 15 (NLP 7)

➢ Conference Resolution: X

- Task definition, pairs method, clustering method, language models ← Lecture 15 (NLP 7)

➢ Convolutional Neural Networks: X

- CNNs in vision, CNNs in language, example ← Lecture 15 (NLP 7)

➢ Transformers: X

- Architecture: encoder, self-attention, encoding position, decoder ← Lecture 16 (NLP 8)

- Existing systems. Ranking ← Lecture 16 (NLP 8)
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Transformers: Why a new architecture?
The problem: Recurrences are very slow to train, and 
their computations cannot be parallelized. Although 
LSTMs and GRUs capture long terms relationships 
much better than vanilla RNNs, they still don’t do it well 
enough.

The solution: We saw in previous lectures that attention 
can give any time step access to any other time step, no 
matter the length of the input. The whole purpose of 
recurrence in RNN architectures was accessing 
previous time steps no matter the length of the input. 
Why don’t we simply use pure attention to access all 
time steps? It is parallelizable, and maybe it captures 
long term relationships better than recurrence.
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Transformers: Architecture
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The transformer follows 
an encoder-decoder 
architecture, with all 
decoders attending to the 
last state of the encoder. 
This is the same as we 
studied a few lectures 
ago for translation 
(Lecture NLP 6)
Original paper: 
https://arxiv.org/abs/1706.03762

Best description out there: 
http://jalammar.github.io/illustrate
d-transformer/



Transformers: Architecture

7

The difference between the transformer and the encoder-decoder of Lecture NLP 6 is on 
the internal architecture of each encoder and each decoder. Rather than simple hidden 
states, each encoder and decoder is a mini-NN of its own. This is sometimes called a 
‘module’, ‘block’ or even ‘layer’, and it is very common in modern NNs (e.g. VGG16, 
ResNet, ByteNet…)



Transformers: Encoder
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The first encoder 
receives an 
embedding [x(t)]X per 
word (X = num 
embedding 
dimensions). The 
self-attention layer 
mixes information 
across words, 
producing a new 
presentation per word 
[z(t)]Z, like the 
attention mechanism 
of a seq2seq.



Transformers: Encoder
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The new 
presentation per 
word [z(t)]Z that 
emerges from 
the self-attention 
layer, is then 
transformed with 
a feed forward 
fully connected 
NN into [r(t)]R.



Transformers: Encoder
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Be careful! In the original paper they use a residual 
connection in the self-attention and feed-forwards layers. 
The description by Jalammar does not emphasize this



Transformers: Self-attention
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The effect of attention is that [z(t)]Z (for a 
given time step ‘t’) becomes a mixture of 
the original embeddings [x(t)]X. The idea 
is that each time step ‘borrows’ 
information from other time steps that it 
is related to. For instance, a pronoun 
may borrow information from the 
complement of the name that it refers 
to. Layer, the feed-forwards NN further 
transforms [z(t)]Z into [r(t)]R, but this time 
without mixing information across time 
steps.



Transformers: Self-attention

12

The attention 
mechanism is 
multiplicative. We 
first create a query, a 
key and a value 
vector per time step 
by linearly 
transforming each 
embedding: 

[q(t)]Q = [WQ]QX [x(t)]X 

[k(t)]Q = [WK]KQ [x(t)]X 

[v(t)]V = [WV]VX [x(t)]X 



Transformers: Self-attention
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Then we 
dot-multiplicate 
each query with 
each key:

[q(t)]Q ⋅ [k(𝜏)]Q 



Transformers: Self-attention
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Then we rescale 
dividing by sqrt(Q) 
and apply softmax. 
Q is the number of 
dimensions of the 
query [q(t)]Q and the 
key [k(𝜏)]Q (both 
vectors need to 
have the same size 
to allow for the dot 
product)



Transformers: Self-attention
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The result is a weight given to each value 
to form the new hidden state:

[z(t)]Z = ∑𝜏 [ sm𝜏( [q
(t)]Q ⋅ [k(𝜏)]Q ) /√Q ]1 

[v(𝜏)]Z



Transformers: Self-attention
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Computationally, we do all these 
calculations in parallel by using matrices 
rather than vectors. A matrix represents 
all the time steps in one go:

[Z]TZ = [ sm( [Q]TQ [K*]QT ) /√Q ]TT [V]TZ

This is extremely efficient, because 
modern computers (and specially GPUs) 
have hardware optimized to perform 
these operations very fast.



Transformers: Self-attention
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Transformers: Self-attention
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Another 
novelty of the 
transformer, is 
that it uses 
several 
attention 
channels in 
parallel. They 
are called 
‘heads’:



Transformers: Self-attention
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Another novelty of the transformer, is that it uses several attention channels in parallel. They 
are called ‘heads’, and their results are [Z1]TZ, [Z2]TZ, [Z3]TZ, …, [ZH]TZ (H = number of heads):



Transformers: Self-attention
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But we so many 
heads we end up 
with too many 
matrixes. To 
prevent the 
hidden states to 
group 
exponentially in 
size, we pool all 
heads with a 
linear 
transformation. 

concat( [Z1]TZ, [Z2]TZ, [Z3]TZ, …, [ZH]TZ ) = [Z]T(Z⨯H)

[Z]T(Z⨯H)⨯[WO](Z⨯H)Z = [Znext layer]TZ



Transformers: Self-attention
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Transformers: Self-attention
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The effect of attention is that [z(t)]Z (for a 
given time step ‘t’) becomes a mixture of the 
original embeddings [x(t)]X. The idea is that 
each time step ‘borrows’ information from 
other time steps that it is related to. For 
instance, a pronoun may borrow information 
from the complement of the name that it 
refers to. Layer, the feed-forwards NN 
further transforms [z(t)]Z into [r(t)]R, but this 
time without mixing information across time 
steps.

Multi-heads = It does all of this several 
times, with different with a different [WQ]QX, 
[WK]KQ, [WV]VX per head



Transformers: Self-attention
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Transformers: Encoding position

24

We also add 
information 
about the 
position of 
each word. 
We do this 
with a 
positional 
encoding 
vector [t(t)]X 
per possible 
position.



Transformers: Encoding position
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➢ This is a similar idea that we have used 
before for conference resolution, where we 
concatenated extra features to the word 
embeddings.

➢ This is a common trick in NN NLP
➢ However the transformer e-wise multiplies 

[t(t)]X rather than concatenating it to [x(t)]X.



Transformers: Encoding position
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➢ The positional 
encoding vectors 
have pre-specified 
values

➢ These values follow 
some sort of wavelet 
function

➢ This is quite similar 
to how the 
hippocampus in the 
human brain 
encodes position!



The real brain: Encoding position
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Transformers: Encoder
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To simplify the 
explanation, we have so 
far ignored two smaller 
details of the architecture.

- 1) There is a residual 
connection 
bypassing each layer

- 2) There is a 
normalization step 
after each layer.



Transformers: Encoder
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Transformers: Encoders → decoders
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Besides 
self-attention, the 
decoder also 
uses 
encoder-decoder 
attention. This 
attention is the 
same as simple 
self-attention, 
but it also uses 
the outputs of 
the last layer of 
the encoder



Transformers: Encoders → decoders
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Transformers: Encoders → decoders
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Transformers: Output
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The NN is trained in a 
language model task. 
Remember from 
lecture NLP 4, this 
consists on predicting 
the next word.

The output of the neural 
network tries to find the 1-hot 
representation of the next 
word
Once trained, the transformer 
can be re-used in many other 
NLP tasks



Transformers: Output

34



Transformers: Output
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After training the model, its outputs will approximate the desired 1-hot representations of 
words in the vocabulary



Transformers: Existing systems
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Transformers: Existing systems

37



Course structure

➢ Question Answering: X
- Task definition, datasets, cloze-style tasks, Attentive Reader ← Lecture 15 (NLP 7)

➢ Conference Resolution: X

- Task definition, pairs method, clustering method, language models ← Lecture 15 (NLP 7)

➢ Convolutional Neural Networks: X

- CNNs in vision, CNNs in language, example ← Lecture 15 (NLP 7)

➢ Transformers: X

- Architecture: encoder, self-attention, encoding position, decoder ← Lecture 16 (NLP 8)

- Existing systems. Ranking ← Lecture 16 (NLP 8)
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Literature

➢ Papers =

- Attention is all you need. https://arxiv.org/abs/1706.03762 

- The illustrated transformer. http://jalammar.github.io/illustrated-transformer/ 

- Language Models are Unsupervised Multitask Learners. 
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf 

- Reformer: The Efficient Transformer. https://arxiv.org/abs/2001.04451 

- Illustrating the reformer. 
https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0 
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