Advanced Topics in Machine Learning

Alejo Nevado-Holgado

Lecture 16 (NLP 8) - Transformers

V 0.1 (4 Mar 2020 - final version)

Course structure

> Introduction: What is NLP. Why it is hard. Why NNs work well < Lecture 9 (1)

> Word representation: How to represent the meaning of individual words
- Old technology: One-hot representations, synsets < Lecture 9 (e 1)
- Embeddings: First trick that boosted the performance of NNs in NLP « Lecture 9 (nip 1)
- Word2vec: Single layer NN. CBOW and skip-gram « Lecture 10 (nLp2)
- Co-occurrence matrices: Basic counts and SVD improvement < Lecture 10 (nLp2)
- Glove: Combining word2vec and co-occurrence matrices idea < Lecture 10 (nLp2)
- Evaluating performance of embeddings < Lecture 10 (np2)

> Named Entity Recognition (NER): How to find words of specific meaning within text
- Multilayer NNs: Margin loss. Forward- and back-propagation < Lecture 11 (np3)
- Better loss functions: margin loss, regularisation < Lecture 11 e 3)
- Better initializations: uniform, xavier < Lecture 11 (wp3)
- Better optimizers: Adagrad, RMSprop, Adam... < Lecture 11 (nLp3)

Course structure

> Language modelling: How to represent the meaning of full pieces of text

Old technology: N-grams <« Lecture 12 (nLp 4)

Recursive NNs language models (RNNs) « Lecture 12 (nip4)
Evaluating performance of language models < Lecture 12 (nip4)
Vanishing gradients: Problem. Gradient clipping «— Lecture 13 (i 5)
Improved RNNs: LSTM, GRU, Bidirectional... < Lecture 13 (Lp5)

> Machine translation: How to translate text

Old technology: Georgetown—IBM experiment and ALPAC report < Lecture 14 (e
Seq2seq: Greedy decoding, encoder-decoder, beam search « Lecture 14 (ipe)
Attention: Simple attention, transformers, reformers < Lecture 14 (pre)

Evaluating performance: BLEU « Lecture 14 (wpe)

Course structure

> Question Answering: X
- Task definition, datasets, cloze-style tasks, Attentive Reader < Lecture 15 (ip7)

> Conference Resolution: X

- Task definition, pairs method, clustering method, language models < Lecture 15 (e 7)
> Convolutional Neural Networks: X

- CNNs in vision, CNNs in language, example < Lecture 15 (nLp7)
> Transformers: X

- Architecture: encoder, self-attention, encoding position, decoder < Lecture 16 (Lps)
- Existing systems. Ranking <« Lecture 16 (iprs)

Transformers: Why a new architecture?

Attention he

The problem: Recurrences are very slow to train, and B

their computations cannot be parallelized. Although
LSTMs and GRUs capture long terms relationships
much better than vanilla RNNs, they still don't do it well
enough.

Attention
distribution

The solution: We saw in previous lectures that attention
can give any time step access to any other time step, no
matter the length of the input. The whole purpose of
recurrence in RNN architectures was accessing
previous time steps no matter the length of the input.
Why don't we simply use pure attention to access all
time steps? It is parallelizable, and maybe it captures
long term relationships better than recurrence.

Attention
scores

Encoder
RNN

il a m’ entarté <START>
N J

Y
Source sentence (input)

Transformers: Architecture

The transformer follows OUTPUT [i Student]
an encoder-decoder 3
. . ? - 1 Q)
architecture, with all [ENCOBER > ECODER
. _ J ' J
decoders attending to the p L} 4 2 L} {
last state of the encoder. g ENiconER) g DECORES)
This is the same as we (: g i . R
ENCODER DECODER
studied a few lectures)) -)) .
ago for translation] ENCODER | I DECODER |
4 4@
(LeCture NLP 6) " ENCODER) [DECODER |
Original paper: - 7 = =) -
https://arxiv.org/abs/1706.03762 i ENCODER | i DECODER 1
_ J . J
Best description out there: - f J
http://jalammar.github.io/illustrate T
d-transformer/ INPUT [Je suis etud|ant]

Transformers: Architecture

The difference between the transformer and the encoder-decoder of Lecture NLP 6 is on
the internal architecture of each encoder and each decoder. Rather than simple hidden
states, each encoder and decoder is a mini-NN of its own. This is sometimes called a
‘modulée’, ‘block’ or even ‘layer’, and it is very common in modern NNs (e.g. VGG16,
ResNet, ByteNet...)

DECODER 1
4 i
Feed Forward
ENCODER A _)
> 1) A
[) (i =\
Feed Forward Encoder-Decoder Attention
. o L J
A —p A
(i N 4 =
Self-Attention Self-Attention
\k f 4 & 1 -

Transformers: Encoder

across words,
producing a new

presentation per word o 3 ¥ F

Self-Attention

The first encoder bl toni t t

1 1 1
receives an (7 \)
embedding [X(t)]x per Feed Forward
word (X = num
embedding 1 % t
dimensions). The 2 [T [T 1] [T [1]
self-attention layer 4 $ 8
mixes information]

#

[z(t)]z, like the
attention mechanism [T 11 2 [T 11 xs [
of a Seqzseq- Je suis étudiant 8

Transformers: Encoder

ENCODER #2 kk JJ
t t
r I r- [
The new . ENCODER#1 (7, T T W%
presentatlon per Feed Forward Feed Forward
word [Z(t)]z that Neural Network Neural Network
emerges from t 1
the sglf-attentlon . - I
layer, is then
. I i
transformed with
a feed forward Self-Attention
fully connected
NN into [r®] . S i t S
0 xe[[1]

Thinking Machines

Transformers: Encoder

Output
Probabilities

I o -
Be careful! In the original paper they use a residual
connection in the self-attention and feed-forwards layers. Feed_
The description by Jalammar does not emphasize this
Multi-Head
Feed Attention
Forward P Nx
Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two " | (CAdd & Norm :
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position- —>{_Add & Norm } Masked
wise fully connected feed-forward network. We employ a residual connection [11]] around each of Multi-Head Muilti-Head
the two sub-layers, followed by layer normalization [1]]. That is, the output of each sub-layer is altoiion Slais
LayerNorm(z + Sublayer(xz)), where Sublayer(x) is the function implemented by the sub-layer —— —
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding e A = N
layers, produce outputs of dimension dy,og; = 512. Positional o) @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right) 0

Transformers: Self-attention

Layer:| 5 4| Attention:| Input - Input 4|

The effect of attention is that [zY)], (for a mw — 313
given time step ‘t’) becomes a mixture of ariel il
the original embeddings [x"], . The idea didn_ didn_
is that each time step ‘borrows’ ;- -
information from other time steps that it - %

. . Cross_ Cross_
is related to. For instance, a pronoun the_ the_
may borrow information from the street_ street_
complement of the name that it refers b“a”s:- i:eca“se—
to. Layer, the feed-forwards NN further Waa W
transforms [z"], into [r¥] , but this time too_ too_
without mixing information across time t:e :'e

steps.

11

Transformers: Self-attention

The attention Input Thinking Machines

mechanism Is Embedding ST B

multiplicative. We
first create a query, a

key and a value Queries q:] a 1] we
vector per time step

by linearly

transforming each | |
embedding: Keys ki[T[] ke[T 1] EE WK

[q(t)]Q = [WQ]QX [x(t)]x
[k®], = (W], , x®],
VO], = (WY, [x®],

Values V1|:l:|:| Vzl___|:|:| WV

Transformers: Self-attention

Then we
dot-multiplicate
each query with
each key:

[a®], - k@],

Input

Embedding
Queries
Keys
Values

Score

X1

q1

K1

V1

Thinking

qr ki=112

Machines
X2
qz
k2
V2
qi ® k2 =96

13

Transformers: Self-attention

Then we rescale
dividing by sqrt(Q)
and apply softmax.
Q is the number of
dimensions of the

query [q¥], and the

key [k(’)]Q (both
vectors need to

have the same size

to allow for the dot
product)

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (Vdx)

Softmax

Thinking
il ||]|
q1 D:l:]
o [T
vi I
g1 e ki=112

14
0.88

Machines

q1.k2 = 96

12

0.12

Transformers: Self-attention

The result is a weight given to each value
to form the new hidden state:

291, =%, [sm ([q"], - k@],) /val,
v,

Input

Embedding
Queries

Keys

Values

Score

Divide by 8 (Vdy)
Softmax

Softmax
X
Value

Sum

Thinking
xi [T T 1]
a [
« [
vi [
g1 e ki=112

14

0.88
vi [
2z [TT]

Machines

x: [T T 1]
a [
ke [N
v: [

qi » k2 =96

zz

15

Transformers: Self-attention

Computationally, we do all these
calculations in parallel by using matrices x =
rather than vectors. A matrix represents
all the time steps in one go:

121,,= [sm([al,, [K,,) ¥Ql,, IV,

This is extremely efficient, because
modern computers (and specially GPUs) X WV vV
have hardware optimized to perform ’
these operations very fast. O -

16

Transformers: Self-attention

Computationally, we do all these

calculations in parallel by using matrices

rather than vectors. A matrix represents

all the time steps in one go: Q KT

121, = [sm([Ql,, KT,) /a1, V], S°'ft"‘f""()

This is extremely efficient, because =
modern computers (and specially GPUs)

have hardware optimized to perform

these operations very fast.

17

Transformers: Self-attention

X

Thinking

Machines
Another ATTENTION HEAD #0 ATTENTION HEAD #1
novelty of the
transformer, is Qo Q1
that it uses W@ W@
several
attention Ko | K,
channels in WoK WK
parallel. They
are called
‘) VO V1
heads’:

WoV W,V

Transformers: Self-attention

Another novelty of the transformer, is that it uses several attention channels in parallel. They
are called ‘heads’, and their results are [Z1]TZ, [ZZ]TZ, [Z3]TZ, [ZH]TZ (H = number of heads):

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
v
ATTENTION ATTENTION ATTENTION

HEAD #0 HEAD #1 HEAD #7

19

Transformers: Self-attention

1) Concatenate all the attention heads 2) Multiply with a weight
matrix W" that was trained
But we so many jointly with the model
heads we end up 7
with too many
matrixes. To
prevent the
hidden states to
WO
group 3) The result would be the ©~ matrix that captures information

from all the attention heads. We can send this forward to the FFNN

exponentially in

size, we pool all
heads with a .
linear
transformation.

[27]

(ZxH)Z

concat([Z']

x[We],

T2’ [ZB]TZ’ [ZH]TZ) = [Z]T(ZxH)
_ |
— [Znext ayer]_l_Z

[z]T(ZXH

Transformers: Self-attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W° to
R with weight matrices ~ Q/K/V matrices produce the output of the layer
X b 17
K
Thinking Wo v Qo
Machines Wo Ko
Vo Wwo
W, Q
*In all encoders other than #0, WK Q1
we don't need embedding. W,V K1
We start directly with the output Vi
of the encoder right below this one
R] ese s
mmmm =
WK Q7
w7V

K7
[V7

21

Transformers: Self-attention

The effect of attention is that [z], (for a
given time step ‘t") becomes a mixture of the
original embeddings [xY],. The idea is that
each time step ‘borrows’ information from
other time steps that it is related to. For
instance, a pronoun may borrow information
from the complement of the name that it
refers to. Layer, the feed-forwards NN
further transforms [z)], into [r®], but this
time without mixing information across time
steps.

Multi-heads = It does all of this several
times, with different with a different [W9]
[W¥], ., [WY],, per head

Qx’
KQ'

Layer: | 5 4| Attention: | Input - Input

The._

animal_
didn_

because_
it_
was

too

The_
animal_
didn_

t

Cross_
the_

street_
because_

was_

too_
tire

22

Transformers: Self-attention

2

Layer: 5 :I] Attention:| Input - Input

The_
animal_
didn_
L

Cross_
the_

street_ street_
because because_
B B it_
was_ was_
too_ too_
tire tire
I d_ d_

23

Transformers: Encoding position

We also add
information
about the
position of
each word.
We do this
with a
positional
encoding
vector

per possible
position.

ENCODER #1 '_’ ‘ DECODER #1
A A A
C ENCODER #0 }»C DECODER #0
K A A A
EMBEDDING
WITH TIME
SIGNAL xi[[[]] xe[[[1] xs[[[1]
Pgﬁg&%’?’,@é [T] [[][] ts [[[[|
+ + +
EMBEDDINGS xi[_ [| [| x2 I xs I
INPUT Je suis étudiant

Transformers: Encoding position

> This is a similar idea that we have used ey T e ?W4h3+b4
before for conference resolution, where we [©QOO0O0O0000000000J)
concatenated extra features to the word Hidden I[goh 600002;8[2;’825%0 o)
embeddings. Hidden Layer h, T ReLUW:h, + by)

> This is a common trick in NN NLP (e]e]e]elelele]elelele]elolele)

> However the transformer e-wise multiplies Input,Layer - RCL?(M?°+bI)

vise 00=00)[070) [O0=0J)[O~J) (OO
rather than ConCatenatlng |t 120 [X(t)]x Candldate Candidate Mention Mentlon Additional

Antecedent Antecedent Embeddings Features Features
Embeddings Features

POSITIONAL 1 1 ("8 0.0001 1 091 [LIRERTE 1
ENCODING

+

+ +
EMBEDDINGS i []"] x2 [xs [T T 1]

INPUT Je suis étudiant
25

Transformers: Encoding position

> The positional
encoding vectors
have pre-specified
values

> These values follow
some sort of wavelet
function

> This is quite similar
to how the
hippocampus in the
human brain
encodes position!

26

Position /
of mouse

One

place
cell's firing
pattern

grid
cell's firing
pattern
Mapping One Location

If @ mouse is in one corner of a room,
then there is one place cell that fires
uniquely at that location. A grid cell
that fires at that location also fires

at other positions around it in

a hexagonal array.

Path of /
mouse

Firing
patterns
of multiple
place cells

Firing
patterns
of multiple
grid cells

Mapping a Path

As the mouse moves, the activity of
many place cells records the locations
that it visited. Grid cell activity tracks
how the mouse moved through
overlapping hexagonal coordinate

systems that tile the plane.

The real brain: Encoding position

Place cell

Grid cell

27

Transformers: Encoder

To simplify the
explanation, we have so
far ignored two smaller
details of the architecture.
1) There is a residual :
connection :
bypassing each layer n
2) Thereis a & -------- S 4)
normalization step POSITONAL é é
after each layer.

ENCODER #1

X1 X2

Thinking Machines

28

Transformers: Encoder

4 4
ﬂ(Add & Normalize)\
. . : 4 4
To Slmpl!fy the ' C Feed Forward) (Feed Forward)
explanation, we have so - B— S ry
far ignored two smaller 2 - .
i) 4 Add & Normalize A
details of the architecture. X
- 1) There is a residual w |, LayerNorm(-)
. oo L]
connection Al " "
. Of »
bypassing each layer ol : e e .

- 2)Thereisa 1 C Self-Attention)
normalization step o A e)
after each layer. POSITIONAL é é

ENCODING
x1 [T X2 [TTT]
Thinking Machines

29

Transformers: Encoders — decoders

Besides Sof;max)
self-attention, the Linear)

¥)
decoder also « S

S 3 3
uses] :

& :' 3 7y ,"(Add & Normalize)
encoder-decoder i ¢ - : Pon

! elf-Attention) o
attention. This e S — : i G @ Feed Forvard D
attention is the (-»(Add & Normalize) a ,*(Add & Normalize)
: ~ |)) . |))
sameas Slmple po E (Feed Forward) (Feed Forward) ’(Encoder-Decoder Attention)
self-attention, o I P) (------ e T 3
. S Add & N li > Add & Normalize
but it also uses Z .’(- e) - -
the outputs of Q (Self-Attention)] (Self-Attention)
S — Bicrars s s e Y ‘eemmmmmmelaccmammmammmam————-
the last layer of rosmon (b ® é J,)
the encoder x (] w1
Thinking Machines

oV

Transformers: Encoders — decoders

Decoding time step:@Z 3456 OUTPUT

?

[ENCODER J

Linear + Softmax

T

\— _/)

DECODER
L) [}
[ENCODER] DECODER
o
EMBEDDING
witHTiMe CLITT1 [T [T
SIGNAL
EMBEDDINGS LTI [LTT] [I1T1]
INPUT Je suis étudiant

31

Transformers: Encoders — decoders

Decoding time step: 1@3 456 OUTPUT

f

S

Kencdec Vencdec (Linear + Softmax
T s [

)
[ENCODERS] [DECODERS]
J

_
EMBEDDING t t t f
WITHTIME I [OI O
SIGNAL
EMBEDDINGS [IIEE [MEEE OEEE (11l
INPUT Je suis étudiant PREVIOUS ,

OUTPUTS
32

Transformers: Output

Which word in our vocabulary

The NN is trained in a is associated with this index?

language model task.

Remember from Get the index of the cell

lecture NLP 4. this with the highest value
. o (argmax)

consists on predicting

theIWGXtVVOFd. log_probs

The output of the neural

network tries to find the 1-hot

representation of the next logits

word
Once trained, the transformer

can be re-used in many other
NLP tasks Decoder stack output

am

012345

4

.. vocab_size

C

Softmax

)

4

012345

4

.. vocab_size

C

Linear

)

A
il Bl

33

Transformers: Output

Untrained Model Output

Correct and desired output

a am | thanks student <eos>

34

Transformers: Output

After training the model, its outputs will approximate the desired 1-hot representations of
words in the vocabulary

Trained Model Outputs Target Model Outputs
Output Vocabulary: a am I thanks student <eos> Output Vocabulary: a am I thanks student <eos>
position #1 JONOAEEEAeY] 0.01 0.03 0.01 position #1

position #2 NN

position #4 X0 0.0 0.0 20

SHI(k%] 0.001 0.002 0.001 0.02 m 0.01 0.0

SLCNIGHECE 0.01 0.01 0.001 0.001 0.001 oAk position #5 K0 0.0 0.0 0.0 0.0 148

a am | thanks student <eos> a am |

) : i : position #2 K0 0.0 0.0 0.0 0.0
s I{ - ERNORSl 0.001 0.001 0.001 0.002 0.001 position #3 | 1.0 0.0 0.0 0.0 0.0 0.0

thanks student <eos>

35

Transformers: Existing systems

All of these models are Transformer
architecture models

ULMfit
Jan 2018
Training:
1 GPU day

x © &)

Transformers: Existing systems

Rank

Rank

i |
Jan 15, 2019

2

Jan 10, 2019

3
Dec 13, 2018

4

Dec 16, 2018
4

Dec 21, 2018

5
Dec 15, 2018

Model

Human Performance
Stanford University
(Rajpurkar & Jia et al. '18)

BERT + MMFT + ADA (ensemble)
Microsoft Research Asia

BERT + Synthetic Self-Training
(ensemble)
Google Al Language
https:/github.com/google-
research/bert

BERT finetune baseline (ensemble)
Anonymous

Lunet + Verifier + BERT (ensemble)
Layer 6 Al NLP Team

PAML+BERT (ensemble model)
PINGAN Gammalab

Lunet + Verifier + BERT (single
model)
Layer 6 Al NLP Team

EM

86.831

85.082

84.292

83.536

83.469

83.457

82.995

F1

89.452

87.615

86.967

86.096

86.043

86.122

86.035

1
Jan 10, 2020

Nov 06, 2019

3
Sep 18, 2019

4
Jan 23, 2020

5
Dec 08, 2019

6
Feb 20, 2020

Model

Human Performance
Stanford University
(Rajpurkar & Jia et al. '18)

Retro-Reader on ALBERT (ensemble)
Shanghai Jiao Tong University
http:/arxiv.org/abs/2001.09694

ALBERT + DAAF + Verifier (ensemble)
PINGAN Omni-Sinitic

ALBERT (ensemble model)
Google Research & TTIC
https://arxiv.org/abs/1909.11942

albert+transform+verify (ensemble)
gianxin

ALBERT+Entailment DA (ensemble)
CloudWalk

Tuned ALBERT (ensemble model)

Group Data & Analytics Cell | Aditya Birla

Group)

https:/www.adityabirla.com/About/group-data-

and-analytics

EM

86.831

90.115

90.002

89.731

89.528

88.761

88.637

F1

89.452

92.580

92.425

92.215

92.059

91.745

91.230

37

Course structure

> Question Answering: X
- Task definition, datasets, cloze-style tasks, Attentive Reader < Lecture 15 (ip7)

> Conference Resolution: X

- Task definition, pairs method, clustering method, language models < Lecture 15 (e 7)
> Convolutional Neural Networks: X

- CNNs in vision, CNNs in language, example < Lecture 15 (nLp7)
> Transformers: X

- Architecture: encoder, self-attention, encoding position, decoder < Lecture 16 (Lps)
- Existing systems. Ranking <« Lecture 16 (iprs)

38

Literature

> Papers =

- Attention is all you need. https://arxiv.org/abs/1706.03762

- The illustrated transformer. http://jalammar.github.io/illustrated-transformer/

- Language Models are Unsupervised Multitask Learners.
https.//d4dmucfpksywyv.cloudfront.net/better-language-models/language-models.pdf

- Reformer: The Efficient Transformer. https://arxiv.org/abs/2001.04451

- lllustrating the reformer.
https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0

39

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2001.04451
https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0

