
SnapNav: Learning Mapless Visual Navigation
with Sparse Directional Guidance and Visual Reference

Linhai Xie1,2, Andrew Markham1 and Niki Trigoni1

Abstract— Learning-based visual navigation still remains a
challenging problem in robotics, with two overarching issues:
how to transfer the learnt policy to unseen scenarios, and
how to deploy the system on real robots. In this paper, we
propose a deep neural network based visual navigation system,
SnapNav. Unlike map-based navigation or Visual-Teach-and-
Repeat (VT&R), SnapNav only receives a few snapshots of the
environment combined with directional guidance to allow it
to execute the navigation task. Additionally, SnapNav can be
easily deployed on real robots due to a two-level hierarchy:
a high level commander that provides directional commands
and a low level controller that provides real-time control
and obstacle avoidance. This also allows us to effectively use
simulated and real data to train the different layers of the
hierarchy, facilitating robust control. Extensive experimental
results show that SnapNav achieves a highly autonomous
navigation ability compared to baseline models, enabling sparse,
map-less navigation in previously unseen environments.

I. INTRODUCTION

“Where is the reception?”
“Go straight and turn left when you see the exit.”
The above conversation is a very common and efficient

human interaction when querying the route to an unknown
destination. This kind of instructions that consist of a sequen-
tial action paired with a visual reference are widely used not
only in navigation but also in various kinds of activities such
as reading the user guide for a new product. This type of
navigational instructions have two prominent characteristics.
The first is the direct conjunction between the action and the
visual observation spaces which provides specific guidance
about what to do and where to do it. The second notable
feature is the inherent sparsity as complex instructions can
be distilled into a few key actions at visually important way-
points or cues, relying on the innate capacity of humans to
navigate between these points. Together, this yields accurate
instructions that can be efficiently communicated.

This observation triggers an interesting question: can
robots mimic those human behaviours to navigate in a
completely unknown environment when supplied with very
sparse guidance? Such a robot system will be highly efficient
at communication and possess a strong generalisation ability
towards unfamiliar scenarios, which will help contribute
towards establishing an intelligent multi-agent society.

In this paper, we present a deep neural network based
system, SnapNav, as a practical solution to mapless visual

1Authors are with Department of Computer Science,University of
Oxford, Oxford OX1 3QD, United Kingdom, first name.last
name@cs.ox.ac.uk

2Linhai Xie is also with Department of Mechatronic Engineering and
Automation, National University of Defense Technology, Changsha 410073,
China

ObservationGuidance Desired Path

Fig. 1: An example of the visual navigation task with sparse
directional guidance. The robot automatically selects from the
provided guidance based on current observation.

navigation in unknown environments. Firstly, it can navigate
in an unknown environment with only a few pieces of
guidance. As shown in Fig. 1 the guidance consists of a
snapshot image and the desired action (turn left, turn right,
stop) before each turning or termination point along the path.
Secondly, the navigation system is designed with a two-level
hierarchy for fully benefiting from the training data from
different domains, i.e. appearance or depth observations,
simulation or reality, and straightforwardly deploying the
learnt policy on real robots.

Our contributions are summarised as follows:
• We propose a novel visual navigation system which

enables the robot to navigate in unknown environments
with very sparse guidance.

• A two-level architecture of the network is proposed
and trained with different learning mechanisms to easily
transfer the learnt policy from simulation to real world.

• We introduce a novel self-supervised training approach
with multiple learning signals to obtain robust guidance
from the high-level commander.

• We show that the trained network can be used to
navigate in real-world experiments.

II. RELATED WORK

Deep learning has recently been broadly applied in robot
navigation [1]–[3] and learning-based mapless visual naviga-
tion has demonstrated remarkable performance in complex
environments. Many works propose to learn a shortest path
strategy by encoding the environmental information into the
parameters of deep neural network [4]–[6]. Although these
techniques exhibit robust navigation capabilities, these agents
are actually overfitting the training environment and cannot
apply the learnt experience to previously unseen scenarios.
Another branch of mapless navigation approaches is local
navigation [7]–[9] where the prerequisite of a known relative

goal position largely restricts its real world applications to
ones where accurate location exists.

A. Visual teach and repeat

Recently, researchers have introduced learning agents that
can follow a demonstrated path [10]–[13] which is similar
to the traditional Visual teach and repeat (VT&R) [14] in
robotics. This group of solutions require simple descriptions
of the environment when navigating in an unknown environ-
ment, e.g. raw camera image sequences, or additionally, the
labelled actions, instead of a pre-defined map. Among them
only [11], [13] can be deployed on real robots. However
the former is trained with a large amount of manually
labelled real-world data from an omni-camera while the
latter requires an explicit localisation of the demonstrated
image in the sequence, largely discounting the practicality.
Furthermore, reliance on a long video stream hinders efficient
communication between agents.

B. Language based visual navigation

Natural language instructions, as a form of extremely
sparse guidance, is also introduced in visual navigation
[15], [16]. Although it imitates human behaviour and can
produce a more autonomous agent, the difficulty of visual
language grounding, i.e. associating the perception from two
completely different modalities, together with the ambiguity
of the natural language itself, limits the performance of
language guided navigation. The agent mentioned in [16]
which takes a list of thumbnail images of the street view in
guidance is similar to our SnapNav but only learns high level
navigation strategies in a simulated toolkit named StreetNav.

III. TASK DESCRIPTION

The task we are investigating in this paper is similar
to StreetNav in [16] which can be termed as visual path
following with sparse guidance. Although there are some
similarities between these works, we focus on a more robotic
oriented perspective. In particular, we consider the challenges
of real-time perception and control of an autonomous robot,
and take the robot out of pure simulation into reality.

A. Task Decomposition

Although it is straightforward to solve the entire task with
a single policy network as in [10], [16], it is non-trivial to
deploy those systems to a real robot. On the one hand, due
to the absence of a simulator that can simultaneously render
realistic camera data and precisely capture the dynamics of
robots, command and control strategies that are deployable in
reality cannot be learnt with a single simulator. On the other
hand, manually labelling real world data is labour expensive
[11] and limitations on training samples rarely leads to a
robust control policy due to the lack of exploration. However,
by decomposing problem into a high level commander and
a low level autonomous controller, we can learn sub-policies
with separate kinds and sources of data to optimize each sub-
task. More concretely, since the visual matching of current
observations and snapshots in guidance heavily relies on the

appearance of the observed objects, the command strategy
demands data with high visual fidelity but can largely ignore
the robot dynamics. Conversely, the control policy only
focuses on the geometry of the surroundings for obstacle
avoidance, robot dynamics and occasional commands/high-
level actions. Therefore this policy can be more easily trained
in a robot simulator where the robot dynamics as well as
depth observations are finely modelled. The robot can also be
exposed to a wide range of arbitrary world setups, allowing
for more robust local navigation. Each sub-task will be
formulated more specifically in the following parts.

B. Command Sub-Task

The commander C is supplied with n pairs of guidance
{Gi = (Si,mi)|i = [1, 2, ..., n]} where Si and mi repre-
sent snapshots and guidance commands respectively. Each
snapshot Si in the guidance records a first-person-view RGB
image of the area where the robot should either alter direction
or stop at a particular point. Since the robot is only given
the order to vary direction or whilst terminating, there are
only three types of commands in guidance, mi ∈ {“Turn
right”, “Turn left”, “Stop”}, with the implicit action
being to carry on in a straight path.

Then with all pieces of guidance and the current image
observation Ot from an on-board camera, the commander C
predicts a high level command ct ∈ {“Turn right”, “Go
forward”, “Turn left”, “Stop”} at each time step t as
ct = C(Ot,G,hc) where hc is the hidden state of the GRU
cell in commander.

C. Control Sub-Task

The control sub-task is formalised as a Markov Desision
Process (MDP). At time t ∈ [1, T] the robot takes an
action at ∈ A according to the observation Xt. After
executing the action, the robot receives a reward rt given
by the environment according to the reward function and
then transits to the next observation Xt+1. The goal of this
MDP is to reach a maximum discounted accumulative future
reward Rt =

∑T
τ=t γ

τ−trτ , where γ is the discount factor.
More specifically, the action is the control signal of the

robot, at = (avt , a
ω
t) ∈ A , where avt and aωt respectively

denotes the expected linear and rotational velocity at time t.
The observation Xt is a first-person-view depth image which
can be directly accessed in a simulator, e.g. ROS Gazebo1, or
estimated from an RGB image with an off-the-shelf estimator
[17] in the real world. The reward function rt at time t is
defined as:

rt =

Rcrash, if robot crashes
Rreach, if robot reaches the goal
dt−1 − dt, otherwise

(1)

where Rcrash is a penalty for collision, Rreach is a posi-
tive reward for reaching the goal, dt−1 and dt denote the
distances between the robot and the goal (the next turning
point or the final destination) at two consecutive time steps
t− 1 and t.

1http://wiki.ros.org/gazebo ros pkgs

CMD

Snapshot

Observation

𝛳

Snapshot

CMD

EMB

Attention

𝛳

CMD Action

Guidance

Depth Estimator

EMB

EMB

Snapshot

CMD

Dense
Layer

Dense
Layer

GRU Dense
Layer

𝛳

Depth

GRU

ControllerCommander

Fig. 2: The network architecture of SnapNav which consists of two modules. The commander firstly attends to a particular guidance
instruction by finding the correct match with the current observation. It then publishes a high level command. The controller then predicts
a low level robot action given the command, the estimated depth image and the previous predicted action. Note that commands are
represented with the abbreviation “CMD”, “EMB” denotes a linear embedding layer and

⊕
is the concatenation operation.

IV. NETWORK ARCHITECTURE

A. Attention-Based Commander

To accomplish the command sub-task, the commander is
designed with convolutional neural network (CNN) layers
and linear embedding (EMB) layers to process raw inputs,
followed by a hard attention component and a recurrent
policy network.

As illustrated in Fig. 2, image inputs to commander are
firstly encoded by 5 convolutional layers, whereas commands
are input to a linear embedding layer where the guiding
snapshot Si, command mi and the current observation Ot

are transformed to vectors respectively as vSi = CNNθ1(Si),
vmi = EMB(mi), vOt = CNNθ1(St). Since both the snap-
shots and current observation are the same type of data, the
CNNs for encoding them have the same parameters θ1.

Given vectorised inputs vSi , vmi and vOt , the goal is
to choose the guidance which contains the most relevant
snapshot w.r.t. the current observation. Intuitively, due to the
sparsity of the guidance, only highly related snapshots should
be matched for the command strategy at each time step. Thus,
hard attention is preferable to soft attention which simply
sums over all guidance instructions with different weights.

The hard attention is usually modelled with a discrete
stochastic layer which is non-differentiable and thus has to
be optimised with gradient estimation methods other than
conventional backpropagation [18]. Fortunately, as shown
in [16], [19], an alternative is to adopt a generalisation of
the max-pooling operator to choose the optimal guidance
instruction. This bypasses the non-differentiable problem:

(vSi∗ , v
m
i∗) = argmax

(vSi ,v
m
i)

[softmax(−||vSi − vOt ||2)]. (2)

It results in a sub-differentiable model and can be combined
with other gradient-based models. Our experiments later
prove that the attention performance can be improved by
a large margin either by combining other gradient estima-
tors such as the REINFORCE algorithm [20] with back-
propagation or training with auxiliary tasks i.e. metric learn-
ing. Then the attended snapshot vector together with the
embedded command is processed by a dense layer and con-
catenated with the encoded observation. Finally, a recurrent

network is used to predict the attended command when the
selected snapshot and the current observation are similar
enough. If there is low similarity, the default “Go forward”
command is issued.

B. Controller

Given the command from the commander ct =
C(Ot,G,hc), the last action at−1 and the depth image
provided by the simulator or a depth prediction network Xt =
D(Ot), the controller outputs the best action to navigate
through the environment, based on its trained policy. Similar
to the commander, the raw depth image is encoded with a
CNN vXt = CNNθ2(Xt), the command is also embedded as
vct = EMB(ct) which are then used to predict the action
by the controller at = π(vXt , vct ,hπ, at−1) where hπ is the
recurrent hidden state in the controller and θ2 represents the
parameters of the depth encoding CNN.

The recurrent network is of importance in the controller
as it is required to decide precisely when to carry out the
command for turning left or right. This is because the high
level commands are aligned to maximal visual matches,
which may not be precisely aligned to the desired turning
point. This decoupling yields higher levels of autonomy, as
the low level controller decides when it is best to turn.

V. TRAINING

In this section we introduce our training mechanisms
respectively for the controller and commander.

A. Self-Supervised Commander Training Labels

Rather than relying on manually annotated video, in this
section we present a novel, self-supervised technique to
create pseudo-labels. Given a raw video, the optical flow
between subsequent frames is firstly estimated with FlowNet
[21] and then segmented where optical flow is high i.e.
likely turning points. This assumes that images collected
along a straight, continuous trajectory are highly similar,
whereas images around a corner show high disparity. Next, a
snapshot is randomly sampled near the end of each segment
and, together with k (k = 20 in this paper) nearest frames,
is labelled with a random command drawn from {“Turn

Go Forward
Turn Right
Turn Left
Stop

Video Optic flow Guidance

Pseudo label

Fig. 3: The videos are firstly segmented based on the estimated
optic flow. Then the pseudo labels of direction varying commands
(yellow and green sections) are assigned before the agent actually
makes the turn and is important to be labelled randomly instead
of according to the ground-truth. The “Stop” command is only
labelled at the end part of the video (the purple part) and the other
frames are set to “go forward” as the default command (the blue
areas).

right”, “Turn left”, “Stop”}. It is worth noting that the
command of turning left or right before each turning point is
not labelled according to the real actions taken by the agent
during data collection but assigned randomly. This is the
key to preventing the commander network from overfitting
to small real-world datasets. Finally, the remaining frames
in the sequence are all labelled with the command “Go
Forward” as the default prediction of the commander.

Note that only a small dataset with 5k real sequential
images are collected for fine-tuning the commander network.
Before that, we initialise the network with 100k sequential
images collected from ROS Gazebo with a standard naviga-
tion package ROS Navigation2 automatically.

B. Training the commander

Given the labelled data, the commander can be optimised
with several different learning signals, which can be used
separately or jointly. We discuss the relative merits of each
approach below.

a) Command Loss: The basic approach is to minimise
the cross-entropy loss between the probability distribution of
predicted commands p ∈ (0, 1)M and the pseudo command
labels y ∈ {0, 1}M as:

Losscmd = −
1

T

T∑
t=0

M∑
m=0

ymt log(pmt) (3)

where T and M represent the length of the sequence and
the number of categories of the command given a sequence
of data. This relies on the sub-differentiable property of
argmax(·) as mentioned in [16] and can be optimised using
standard back-propagation algorithms.

b) Learning Attention Policy with REINFORCE: Our
novel insight in this paper is to use the REINFORCE [20]
algorithm to estimate gradients for learning a better attention
policy which, due to the sub-differentiable argmax func-
tion, does not train well. The framework of REINFORCE
algorithm usually models the policy learning process as an
MDP where the agent is the attention layer in commander (it
is independent from the MDP for control policy learning).
Note that the attention layer does not contain any train-
able parameter, therefore the attention policy π(ut|G,Ot; θ1)

2http://wiki.ros.org/navigation

completely relies on the CNN encoder that is parameterised
by θ1. Given the guidance G and the sequential observa-
tions Ot, the attention policy induces a distribution over
possible interaction sequences s1:T = O1, u1, ...,OT , uT
where ut and Ot are the attended location of snapshots and
the observation at time step t. The target is to maximise
the reward accumulated along an interaction sequence s1:T
as J(θ1) = Ep(s1:T ;θ1)[

∑T
t=1 γ

T−trt]. Note that p(s1:T)
depends on the attention policy and the reward rt at each
time is proportional to the command prediction accuracy.
The gradients are approximated using Monte-Carlo with N
learning samples:

∇θ1J =

T∑
t=1

Ep(s1:T ;θ1)[∇θ1 log π(ut|G,Ot; θ1)Rt]

≈ 1

N

N∑
n=1

T∑
t=1

∇θ1 log π(unt |G
n,On

t ; θ1)R
n
t .

(4)

c) Metric Learning: As a further alternative to the
REINFORCE learning signal, metric learning [22] can also
be applied to explicitly improve the image encoding, by
forcing the output embeddings to lie within a metric space.
This can be considered as an auxiliary task alongside com-
mand prediction. Similar to [22], the triplet loss is adopted
for metric learning. As each video is segmented whilst
generating the pseudo command labels, an anchor image can
be sampled from one of the segments. Then neighbouring
images can be defined as positive (similar) images whilst
all the images in other segments are labelled as negative
(dissimilar) ones. Hence, after being encoded by the CNN,
a triplet, which contains an anchor image vector va, k+

positive image vectors v+ and k− negative image vectors v−,
can be randomly generated from each raw image sequence
and its loss function is formulated as follows:

Lossmetric = [
1

k+

k+∑
i=1

l2(v+i −va)+σ− 1

k−

k−∑
j=1

l2(v−j −va)]+,

(5)
where [·]+ is the hinge function, l2(·) denotes the Euclidean
distance, σ is a margin which is set to 1 and k+ and
k− are set beneath 20 to ensure the the high similarity in
positive images and a balanced proportion between positive
and negative samples. This loss can be jointly minimised
with the command loss through gradient back-propagation,
therefore, it is more convenient and simple compared with
utilising REINFORCE algorithm.

C. Reinforcement Learning for Control Policy

The control policy is purely learnt with DRL in virtual
environments. To enhance the generalisation ability of the
controller and decrease the possibility for the agent to
memorise the environment, the geometry of the training
environment is randomised every 40 episodes and in each
episode the desired path for the robot to follow is also
randomly generated as shown in Fig. 4. Then, for a robust
transfer from a simulated robot to the real one, we use a

Traversable
Area

Desired Path

Fig. 4: An example of randomised environments in ROS Gazebo
and its map. An oracle commander is designed accordingly to
give the robot correct commands before it reaches the turning and
termination point. The red circle highlights a challenging situation
where the intersection is not fully constrained with obstacles which
can easily confuse the robot.

finely modelled Turtlebot2 robot 3 in both the virtual and
real world which is equipped with a Microsoft Kinect 4 to
capture both depth and RGB images. Note that SnapNav
can use either the groundtruth depth provided by the kinect
or the estimated one, compatible to the system only with a
monocular camera.

We test the learning of control policy with several different
algorithms, e.g. DDPG [23], RDPG [24] and DRQN [25] and
finally choose DRQN which exhibits the best performance
in our task. The low-level controller is firstly trained with
the oracle commander which always gives the agent correct
commands according to the robot position in the desired path
for 1M training steps and later fine-tuned with the noisy
predicted commands from the learnt command policy for
0.5M training steps. It shows a constantly improved overall
performance with different commanders in Table. I. The
training is carried out on a single GTX970 GPU and each
run takes about 20 hours where the control frequency is 5
Hz and the simulator is 4x times faster than the real world.

VI. EXPERIMENTS

We carry out a model ablation study and real world tests to
evaluate the optimality of the proposed model for SnapNav,
and its generalisation ability to real-world scenarios.

A. Model Ablation Study in Virtual World

Each model in the ablation study is tested in random
environments similar to Fig. 4 with 1000 independent runs
and the success rate (SR) of reaching the final destination is
used as the metric.

a) Attention policy learning: We compare several dif-
ferent models and learning signals for training the comman-
der. The most basic model does not utilise the attention
mechanism and simply sums over all the encoded guidance
for command prediction. We term this AllSum. Then, since
soft attention is reported to have similar performance as
AllSum in [16], we consider the hard attention model as
described in Sec IV-A which is purely optimised with the
command loss learning signal and is termed as HardAtt.
Next, we add the REINFORCE (REINFORCE) or metric

3https://www.turtlebot.com/turtlebot2/
4https://en.wikipedia.org/wiki/Kinect

DRQN Finetuned DRQN

AllSum 50.2% 54.4%
HardAtt 60% 61.6%
REINFORCE 72.7% 74.2%
Metric 70.2% 73.6%
Combined 71.2% 74.9%

Oracle 85% -%

TABLE I: Success Rate (SR%) with different commanders as well
as using the DRQN puerly initialised with the Oracle commander
or further fine-tuned with each commander.

(a) HardAtt (b) REINF (c) Metric (d) Combined
Fig. 5: The Euclidean distance matrix of the encoded images in
a sampled video with two direction changing actions. Note that
REINF indicates the REINFORCE algorithm.

learning (Metric) learning signal. We also combine three
learning signals together (Combined).

From the results shown in Table I, we can clearly see
that commanders that employ the attention mechanism sig-
nificantly outperform AllSum which proves that attending to
a specific snapshot is essential for the command prediction
task. Compared with prior art, our introduction of either
the REINFORCE algorithm or metric learning yield further,
substantial gains.

To better understand the reasons for this difference, Fig.
5 illustrates the Euclidean distance matrix of a sampled
video after being encoded by the commander. It is shown
that compared with HardAtt and REINFORCE, Metric
and Combined learn an encoder that clearly distinguishes
images from different segments more clearly. Thus, this
should make it easier to attend to the correct snapshot during
navigation. However, according to Table I, the REINFORCE
learning signal is more significant at improving the overall
performance of the commander compared with the metric
learning. This may be because that REINFORCE algorithm
refines the attention policy directly according to the accuracy
of the command prediction, whilst metric learning is a
manually introduced bias in the encoding space which is
not entirely related to the task of navigation.

b) Control policy learning: Selecting the suitable DRL
approach to train the controller is of key importance for the
entire system performance. From the learning curves shown
in Fig. 6, we firstly prove the necessity of introducing the
recurrent network into the controller model by comparing
DDPG and RDPG where the latter is the recurrent version
of the former. Because the command is assigned to the
controller before the robot reaches the turning point, the
recurrent network becomes important for memorising recent
commands. Then we investigate the improvements brought

100 200 300 400 500 600 700 800 900 1000

Training steps 10 3

-2

0

2

4

6

8

T
o

ta
l
re

w
a

rd

DRQN

RDPG

DDPG

Fig. 6: The smoothed learning curves of DRQN, RDPG and DDPG
respectively. Each algorithm is trained with 1 million steps in ROS
Gazebo with the oracle commander.

Success TimeOut Crash

DDPG 3.4% 31.8% 64.8%
RDPG 60.9% 36.6% 2.5%
DRQN 85% 10.3% 4.7%

TABLE II: Distribution of rewards over 1000 testing episodes
for different controllers. Note that Success means the successful
arrival of the final destination while TimeOut and Crash denote
the situations where the robot cannot reach the destination within
300 steps or collides with an obstacle respectively.

by restricting the action and search space by exploiting a
value-based approach DRQN. The continuous action space
([0, 0.3] m/s for linear speed and [−π

6
,
π

6
] rad/s for

angular speed) is discretised into three options, i.e. going
straight forward with the maximum linear velocity and
turning left or right with the maximum angular velocity and a
slower linear velocity. Correspondingly, the Q-network only
requires to estimate the Q-values of these options given the
current observation and the hidden state of the recurrent
network which substantially narrows down the search space
and boosts the learning efficiency.

Table II looks deeper into the learnt policies. DDPG termi-
nates most episodes with collisions as it attempts to maintain
the expected total reward by minimising the probability of
moving in an opposite directions to the destination, as this
incurs an immediate negative reward. In contrast, its recurrent
version (RDPG) achieves a much higher success rate due
to the possibility of memorising the historic commands and
heading to the correct directions accordingly at intersections.
However the large exploration space for continuous action
hinders the network from learning a stable and robust turning
behaviour in highly randomised junctions, especially in the
intersections with uncommon geometries as highlighted in
Fig. 4. Different from DDPG and DRPG, DRQN explores in
a discretised action space and shows significant performance
gains. Therefore, we adopt DRQN as the final model for the
low-level controller in real-world experiments.

B. Real-World Test and Comparison with Baselines

we evaluate the learnt policy in real-world scenarios
to demonstrate its utility in real robotic scenarios. Fig. 7
demonstrates a example real-world test which qualitatively
examines the obstacle avoidance ability and the robustness
against the changing environments of SnapNav.

start
guide
path
obst

traj
obse

Fig. 7: An example real world test. The legends from top to
bottom are: start position, guidance recording position, path in
demonstrating phase, random obstacles in testing phase, robot
observations and robot trajectory in testing. The attention location
is illustrated by different colours in the robot trajectory which
corresponds to the colour of actions in the guidance. The red
and green circles emphasises the changing visual appearance and
geometry of the environment between demonstrating and testing.
More details are provided in the submitted video.

SR Dist(m) ImgNum

SnapNav 80% 24.29 6
SimOnly 40% 20.19 6
VT&R 20% 18.32 326

TABLE III: Evaluations in real world environments. The metrics
used are: success rate (SR), the average travelled distance before
collisions or reaching the destination (Dist) and the number of
images used as guidance (ImgNum). Each model is tested with
5 independent runs.

Furthermore, two baseline models are proposed for quan-
titative comparison as shown in Table III. SimOnly imple-
ments a similar model as [16] with additional depth observa-
tion and is purely trained in the simulator through DRL. The
other one is the supervised variant of the deep VT&R model
in [26] based on the limited real-world data. The former
proves that SnapNav has an enhanced generalisation ability
between virtual and real worlds, realised by the two-level
hierarchy. The latter is a densely guided counterpart which
verifies the effectiveness of navigating with sparse guidance
and the restricted generalisation ability of supervised learning
with limited samples.

VII. CONCLUSION

A practical solution is introduced in this paper for mapless
navigation which can navigate in completely unknown envi-
ronments with very sparse guidance. The experiments show
its highly autonomous navigation performance with a strong
generalisation ability from simulation to real world.

ACKNOWLEDGMENT

This work was supported by EPSRC Mobile Robotics:
Enabling a Pervasive Technology of the Future (grant No.
EP/M019918/1).

REFERENCES

[1] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-
supervised deep reinforcement learning with generalized computation
graphs for robot navigation,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), May 2018, pp. 5129–5136.

[2] C. Richter, W. Vega-Brown, and N. Roy, “Bayesian learning for
safe high-speed navigation in unknown environments,” in Robotics
Research. Springer, 2018, pp. 325–341.

[3] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[4] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu et al., “Learning to
navigate in complex environments,” arXiv preprint arXiv:1611.03673,
2016.

[5] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 3357–3364.

[6] P. Mirowski, M. Grimes, M. Malinowski, K. M. Hermann, K. An-
derson, D. Teplyashin, K. Simonyan, A. Zisserman, R. Hadsell et al.,
“Learning to navigate in cities without a map,” in Advances in Neural
Information Processing Systems, 2018, pp. 2419–2430.

[7] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017, pp. 31–36.

[8] L. Xie, S. Wang, S. Rosa, A. Markham, and N. Trigoni, “Learning
with training wheels: speeding up training with a simple controller for
deep reinforcement learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 6276–6283.

[9] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven
exploration for mapless navigation with deep reinforcement learning,”
arXiv preprint arXiv:1804.00456, 2018.

[10] A. Kumar, S. Gupta, D. Fouhey, S. Levine, and J. Malik, “Visual
memory for robust path following,” in Advances in Neural Information
Processing Systems, 2018, pp. 765–774.

[11] N. Hirose, F. Xia, R. Martı́n-Martı́n, A. Sadeghian, and S. Savarese,
“Deep visual mpc-policy learning for navigation,” arXiv preprint
arXiv:1903.02749, 2019.

[12] T. Swedish and R. Raskar, “Deep visual teach and repeat on path
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2018, pp. 1533–1542.

[13] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu,
E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-shot visual
imitation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2018, pp. 2050–2053.

[14] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long-range
rover autonomy,” Journal of Field Robotics, vol. 27, no. 5, pp. 534–
560, 2010.

[15] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang,
W. Y. Wang, and L. Zhang, “Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 6629–6638.

[16] K. M. Hermann, M. Malinowski, P. Mirowski, A. Banki-Horvath,
K. Anderson, and R. Hadsell, “Learning to follow directions in street
view,” arXiv preprint arXiv:1903.00401, 2019.

[17] I. Alhashim and P. Wonka, “High quality monocular depth estimation
via transfer learning,” arXiv preprint arXiv:1812.11941, 2018.

[18] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in Advances in neural information processing systems,
2014, pp. 2204–2212.

[19] M. Malinowski, C. Doersch, A. Santoro, and P. Battaglia, “Learning
visual question answering by bootstrapping hard attention,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 3–20.

[20] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[21] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 2758–2766.

[22] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015,
pp. 815–823.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[24] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based con-
trol with recurrent neural networks,” arXiv preprint arXiv:1512.04455,
2015.

[25] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in 2015 AAAI Fall Symposium Series, 2015.

[26] A. Kumar, S. Gupta, and J. Malik, “Learning navigation subroutines
by watching videos,” arXiv preprint arXiv:1905.12612, 2019.

