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ABSTRACT
This paper presents the design, implementation and evaluation of
milliMap, a single-chip millimetre wave (mmWave) radar based
indoor mapping system targetted towards low-visibility environ-
ments to assist in emergency response. A unique feature of milliMap
is that it only leverages a low-cost, off-the-shelf mmWave radar,
but can reconstruct a dense grid map with accuracy comparable
to lidar, as well as providing semantic annotations of objects on
the map. milliMap makes two key technical contributions. First,
it autonomously overcomes the sparsity and multi-path noise of
mmWave signals by combining cross-modal supervision from a
co-located lidar during training and the strong geometric priors of
indoor spaces. Second, it takes the spectral response of mmWave
reflections as features to robustly identify different types of objects
e.g. doors, walls etc. Extensive experiments in different indoor en-
vironments show that milliMap can achieve a map reconstruction
error less than 0.2m and classify key semantics with an accuracy
of ∼ 90%, whilst operating through dense smoke.
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1 INTRODUCTION
Emergency responders are frequently exposed to harsh and danger-
ous environments, with consequent threat to life. Statistics collected
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by the Federal Emergency Management Agency [6] report that over
a 10-year period in USA, 2, 775 firefighters died on duty. Where
there is a need to save and evacuate victims from a burning, col-
lapsed or flooded building, it is vital for emergency responders to
have increased situational awareness. In most search and rescue
cases this requires, and begins with, making a map of the unknown
environment [11]. Rather than relying entirely on firefighters to
slowly explore the building, a promising alternative is to use mo-
bile robots to rapidly survey and build the crucial map. Emergency
personnel can then be re-localized accurately within the map and
key features such as exit routes can be indicated.

State-of-the-art mapping sensors on mobile platforms (e.g., a
smartphone or a mobile robot) use optical sensors, such as laser
range scanners (lidar) [53], RGB cameras [13, 16] and stereo cam-
eras [23] to produce accurate indoor maps. However, not only are
optical sensors impaired by the presence of airborne obscurants
(e.g., dust, fog and smoke), their use cases are also significantly
restricted by poor-illumination (e.g., dimness, darkness and glare).
These adverse conditions regularly occur in emergency situations,
e.g., dense smoke for firefighting. Acoustic sensor based mapping
approaches, such as ultrasonic [8] and microphones [47, 77], are
robust to lighting dynamics, but they either suffer from limited
sensing range or become ineffective in noisy environments.

The demand of mapping in the above challenging situations mo-
tivates us to consider single-chip millimetre wave (mmWave) radar,
which has recently emerged as an innovative low-cost, low-power
sensor modality in the automotive industry [27]. A key advantage
of mmWave radar is its imperviousness to adverse environmental
conditions, such as smoke, fog and dust. In the specific case of
fire response, mmWave radars can ‘see’ through smoke and help
firefighters understand smoke-filled environments where many
other optical sensors fail. Compared with the cumbersome lidar
or mechanical radar (e.g., CTS350-X [65]), single-chip mmWave
radars are lightweight and thus more able to fit payloads of micro
robots and form factors of mobile or wearable devices.

Despite these advantages, mmWave-based mapping in indoor en-
vironments is still under-explored. The main issues lie in the strong
indoor multi-path reflections as well as the sparse measurements
returned by single chip radars. In extreme cases, we observe up to
75% outliers due to multi-path reflections, along with more than two
orders of magnitude lower point density than a lidar counterpart.

To this extent, we propose milliMap, an approach overcoming
the above issues to produce an occupancy grid map with semantic
annotations on space accessibility, such as doors, lifts, glass, and
walls. When taking emergency response into design consideration,
a new set of design challenges arises. First, unlike [64] that aims
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Figure 1: System overview of milliMap , comprising of (1) mobile robotic sensing (2) map reconstruction (3) semantic mapping.

to optimize mmWave network performance by pinpointingsparse
indoor re�ectors with expensive SDRs,milliMap leverages a low-
cost radar to reconstruct adense map. Second, due to unknown
�oor plans and the demand of rapid response against disaster [55],
precisely moving a mmWave radar along pre-designed or navigated
trajectories for object imaging is practically unfeasible, leaving prior
solutions [80, 81] unsuitable in an emergency context.Third, as
building materials have complex internal layers and non-negligible
di�usion e�ects [ 20,33], previous identi�cation methods only using
the specular re�ection from object surfaces [82] results in sub-
optimal performance.

milliMap tackles the above challenges via a novel mobile per-
ception approach with the following contributions:

� A mobile robot based mapping system using single-chip mmWave
radars for both occupancy grid mapping and semantic mapping
in low-visibility indoor environments.

� A generative learning approach that combines the cross-modal
supervision from a co-located lidar and geometric priors of indoor
spaces. Our approach overcomes the sparsity and noise issues
of mmWave signals and is able to produce dense maps with an
error less than0:2m.

� A semantic mapping method that robustly identi�es objects by
harnessing the multi-path e�ects of mmWave re�ections, provid-
ing a classi�cation accuracy� 90%.

� A real-time prototype implementation with extensive real-world
evaluations, including testing in smoke-�lled conditions.

The rest of the paper is organized as follows. We describe primer
and system overview in Sec. 2 and Sec. 3 respectively. The proposed
map reconstruction approach is introduced in Sec. 4, followed by
semantic mapping in Sec. 5. Sec. 6 details our prototype implemen-
tation and we evaluate it in Sec. 7. We summarize related work in
Sec. 8 and limitations in Sec. 9, and conclude this work in Sec. 10.

2 PRIMER
2.1 Principles of mmWave Radar
Range Measurement The single chip mmWave radar uses a fre-
quency modulated continuous wave (FMCW) approach [60], and
has the ability to simultaneously measure both the range and rel-
ative radial speed of the target. In FMCW, a radar uses a linear

`chirp' or swept frequency transmission. When receiving the signal
re�ected by an obstacle, the radar front-end performs a dechirp op-
eration by mixing the received signal with the transmitted signals,
which produces an Intermediate Frequency (IF) signal. Based on
this IF signal, the distanced between the object and the radar can
be calculated as:

d =
f I Fc
2S

(1)

wherec represents the light speed3� 108m•s, f I F is the frequency
of the IF signal, andS is the frequency slope of the chirp. In the
presence of multiple obstacles at di�erent ranges, a fast Fourier
transform (FFT) is performed on the IF signal, where each peak after
FFT represents one or more obstacles at a corresponding distance.
Angle Measurement A mmWave radar estimates the obstacle
angle by using a linear receiver antenna array. It works by emitting
chirps with the same initial phase, and then simultaneous sampling
from multiple receiver antennas. Based on the di�erences in phase
of the received signals, the Angle of Arrival (AoA) for the re�ected
signal can be estimated [50]. Formally, the AoA estimated from any
two receiver antennas can be calculated as:

� = sin� 1¹
�!
2� d

º (2)

where! denotes the phase di�erence,d represents the distance
between consecutive antennas and� is the wave length. When
multiple pairs of receiver antennas are available, sophisticated algo-
rithms, such as beamforming [22] and MUSIC [43] can be used to
obtain the AoA. At this point, the position of a re�ecting obstacle
can be jointly determined by AoA and ranging estimation.

2.2 Generative Adversarial Networks
By extending deep neural networks (DNNs) to work in the genera-
tive context, Generative Adversarial Networks (GANs) [19] trains
two neural networks simultaneously: a generatorG and a discrim-
inator D. A vanilla generatorG takes a noise vector as input and
generates a data sample by evaluatingG. When conditioned gener-
ation is needed, the noise vector can be replaced with an explicit
sources, in which caseG becomes a conditional generator [45].
The discriminatorD, on the other hand is trained to distinguish
between the real samples and the generated samples fromG. E�ec-
tively, the discriminator provides feedback about the quality of the
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