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Abstract
Ontology-mediated query answering is an exten-
sively studied paradigm, which aims at improving
query answers with the use of a logical theory. As a
form of logical entailment, ontology-mediated query
answering is fully interpretable, which makes it pos-
sible to derive explanations for query answers. Sur-
prisingly, however, explaining answers for ontology-
mediated queries has received little attention for
ontology languages based on existential rules. In
this paper, we close this gap, and study the problem
of explaining query answers in terms of minimal
subsets of database facts. We provide a thorough
complexity analysis for several decision problems
associated with minimal explanations under existen-
tial rules.

1 Introduction
Ontology-based data access (OBDA) is a popular paradigm in
knowledge representation and reasoning [30]. The main goal
is to facilitate access to possibly heterogeneous and incomplete
data sources based on a logical theory. This is achieved via
an ontology that enriches the user query, typically a union of
conjunctive queries, with commonsense knowledge. In this
framework, the ontology and the user query are viewed as two
components of one composite query, called ontology-mediated
query (OMQ) [7]. The task of evaluating such queries is then
called ontology-mediated query answering (OMQA).

Ontology languages are mostly fragments of first-order
logic (FOL), which result from a simple trade-off between
the expressivity of the language and the computational com-
plexity of reasoning in the language. As a form of first-order
entailment, ontology-mediated query answering is fully in-
terpretable, which makes it possible to derive explanations
for query answers. Explanations are widely considered as an
essential component of scientific progress. The fact that many
recent artificial intelligence systems operate mostly as a black
box has led some serious concerns; see, e.g., [13], for a recent
survey.

Description logics (DLs) [1] and existential rules [11; 9;
10], together, encompass the most widely used knowledge
representation languages in the context of ontology-mediated
query answering. Ontologies have found applications in data

exchange [17], medical diagnosis [5], and life sciences [3], all
of which can potentially benefit from explanations. In fact,
there has been a significant amount of interest in tracking down
and understanding the causes of various types of entailments
in DL ontologies.

A prominent approach is to identify explanations in terms
of a subset of the axioms in the ontology [24; 2]. The benefit
of this approach is that it allows us to abstract away from
the particular proof technique used to derive an entailment,
and hence to pinpoint the sets of axioms that are responsible
for an entailment. Such explanation sets are, furthermore,
required to be minimal with respect to some order, like subset,
cardinality, or preference order. These explanations are called
justifications [24; 22; 34], and the overall approach is also
known as axiom pinpointing in the DL literature [23; 2].

Earlier work on axiom pinpointing, however, is exclusively
based on standard reasoning tasks, and hence on deriving
explanations based on the axioms of the ontology. Indeed,
there is very little work in the direction of explaining query
entailments. To date, the only works in explaining query
answers is given for the DL-Lite family of languages [8; 6], as
we elaborate later, in detail. Surprisingly, explanations are not
studied in the context of existential rules.

In the present paper, we close this gap and study the prob-
lem of explaining query answers under existential rules. More
specifically, given an OMQ, we are interested in explaining
this compound query in terms of the minimal satisfying sub-
sets of a given database. Such a minimal subset of the database
is called a minimal explanation, or simply MinEX. Incorporat-
ing ideas from axiom pinpointing [29], we introduce a class of
problems based on the notion of minimal explanation. We con-
duct a detailed complexity analysis for each of the problems
introduced, and provide a host of complexity results that cover
a representative set of existential rules. Our results extend nat-
urally to other existential rule languages. All the proof details
can be found in the extended version of this paper available
from the authors.

2 Preliminaries
We give a brief overview on existential rules and the paradigm
of ontology-mediated query answering [11; 9; 10], and also
give some complexity-theoretic background relevant to our
study.



2.1 First-Order Logic
We consider a relational vocabulary consisting of mutually
disjoint, possibly infinite sets R, V, and C of predicates,
variables, and constants, respectively. A term is either a
constant or a variable. An atom is an expression of the form
p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. A ground atom (or fact) has only constants as terms.

A first-order formula is built as usual from atoms over the
given vocabulary, truth constants >, ⊥, operators ¬, ∨, ∧,→,
and quantifiers ∃, ∀. A quantifier-free formula is a formula that
does not use quantifiers. A variable in a formula is quantified
(or bound), if it is in the scope of a quantifier; otherwise, it is
free. A sentence is a formula without any free variables.

The semantics of FOL is given by means of interpretations
I = (∆I , ·I), where ∆I is a possibly infinite domain, and
·I is an interpretation function that maps every constant a to
a domain element aI ∈ ∆I , every predicate p with arity n
to a relation pI ⊆ (∆I)n. A sentence Φ is satisfied by an
interpretation I , if I |= Φ, where |= is the standard first-order
entailment relation.

A (first-order) theory Σ is a (finite) set of first-order for-
mulas. An interpretation I is a model of a theory Σ, denoted
I |= Σ, if I satisfies all Φ ∈ Σ. Σ entails a sentence Φ,
written Σ |= Φ, if all models of Σ are also models of Φ.

2.2 Existential Rules
A tuple-generating dependency (TGD) is a first-order formula
of the form

∀XΦ(X)→ ∃Y Ψ(X,Y),

where Φ(X) is a conjunction of atoms, called the body of
the TGD, and Ψ(X,Y) is a conjunction of atoms, called the
head of the TGD. Classes of TGDs are also known as existen-
tial rules, or Datalog± languages in the literature. A program
(or an ontology) is a finite set Σ of TGDs.

TGDs can express the inclusion and join dependencies of
databases. In its general form, however, reasoning with TGDs
is undecidable [4], but there are a plethora of decidable frag-
ments of TGDs. We review some known (syntactic) restric-
tions on TGDs that ensure decidability (and even tractability
in most cases).

A TGD is guarded, if there exists a body atom that contains
(or “guards”) all body variables. The class of guarded TGDs,
denoted G, is defined as the family of all possible sets of
guarded TGDs. A key subclass of guarded TGDs are the
linear TGDs with just one body atom. The class of linear
TGDs is denoted by L. It is easy to verify that L ⊂ G.

Stickiness enforces the following property: variables that
appear more than once in a body (i.e., join variables) must
always be propagated (or “stick”) to the inferred atoms [11].
A TGD that enjoys this property is called sticky, and the class
of sticky TGDs is denoted by S. Weak stickiness generalizes
stickiness by considering only “harmful” variables, and defines
the class WS of weakly sticky TGDs. Observe that S ⊂WS.

A set of TGDs is acyclic and belongs to the class A if its
predicate graph is acyclic. Equivalently, an acyclic set of
TGDs can be seen as a non-recursive set of TGDs. A set of
TGDs is weakly acyclic, if its predicate graph enjoys a certain
acyclicity condition, which guarantees the existence of a finite

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ AC0 NP NP PSPACE

S, SF ≤ AC0 NP NP EXP

A ≤ AC0 NP NEXP NEXP
G P NP EXP 2EXP

F, GF P NP NP EXP
WS, WA P NP 2EXP 2EXP

Table 1: Complexity of OMQA under existential rules.

canonical model; the associated class is denoted WA. It is
known that A ⊂WA ⊂WS [11].

The class of full TGDs do not contain any existentially
quantified variables. The corresponding class is denoted by F.
Restricting full TGDs to satisfy linearity, guardedness, stick-
iness, or acyclicity yields the classes LF, GF, SF, and AF,
respectively. It is known that F ⊂WA [17].

2.3 Ontology-Mediated Query Answering
A database D is a finite set of facts over a (finite) relational
vocabulary. A conjunctive query (CQ) is an existentially quan-
tified formula ∃XΦ(X,Y), where Φ(X,Y) is a conjunction
of atoms over the set of variables X and Y; a union of con-
junctive queries (UCQ) is a disjunction of CQs (over the same
free variables). A query is Boolean if it is a sentence.

The paradigm of ontology-mediated query answering gen-
eralizes query answering over databases by incorporating ad-
ditional background knowledge in terms of an ontology. For-
mally, an ontology-mediated query (OMQ) is a pair (Q,Σ),
where Q is a Boolean query, and Σ is an ontology. Given
a database D and an OMQ (Q,Σ), we say that D entails
the OMQ (Q,Σ), denoted D |= (Q,Σ), if for all models
I |= Σ ∪ D it holds that I |= Q, where |= is first-order
entailment under the standard name assumption. Ontology-
mediated query answering (OMQA) is the task of decid-
ing whether D |= (Q,Σ) for a given database D and an
OMQ (Q,Σ).

I have a very good idea of what I am writing. I have no clue
what I’m writing! Thank you for waiting for me here.

A key paradigm in OMQA is the FO-rewritability of queries:
an OMQ (Q,Σ) is FO-rewritable, if there exists a Boolean
UCQ QΣ such that, for all databases D that are consistent
relative to Σ, we have that D |= (Q,Σ) iff D |= QΣ. In this
case, QΣ is called an FO-rewriting of (Q,Σ). A class of
programs L is FO-rewritable, if it admits an FO-rewriting for
any UCQ and program in L. All languages from Table 1 with
AC0 data complexity are FO-rewritable.

In our complexity analysis, we make the standard assump-
tions [35]: the combined complexity of query answering is cal-
culated by considering all the components, i.e., the database,
the program, and the query, as part of the input. The bounded-
arity combined complexity (or simply ba-combined complex-
ity) assumes that the maximum arity of the predicates in R is
bounded by an integer constant. The fixed-program combined
complexity (or simply fp-combined complexity) is calculated
by considering the ontology as fixed. Finally, the data com-
plexity is calculated by considering the database as the input,
i.e., everything else is fixed. Table 1 summarizes the known
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Figure 1: Protein containment in complexes, where proteins are given
as p1, . . . , p6 and complexes c1, c2, and c3 are color-coded (as shown
on the left-hand side).

complexity results for OMQA in the different classes of TGDs
that we consider.

The most relevant complexity classes for our analysis and
their relations are given as follows:

AC0 ⊆ P ⊆ NP, CONP ⊆ DP ⊆ ΣP
2 ,Π

P
2 ⊆ PSPACE ⊆

EXP ⊆ NEXP, CONEXP ⊆ DExp ⊆ PNEXP ⊆ 2EXP,

where DExp denotes the class NEXP ∧ CONEXP.

3 Explanations for Query Answers
In our framework, an explanation is given in terms of a set
of database facts, and we are interested in a minimal set of
facts that entail a given OMQ. The following definition is a
natural extension of those related to axiom pinpointing [29] to
ontology-mediated query answering.
Definition 1 (MinEX). For a databaseD and an OMQ (Q,Σ),
where Σ is a set of existential rules, and Q is a query, an
explanation for (Q,Σ) in D is a subset E ⊆ D of facts such
that E |= (Q,Σ). A minimal explanation E, or MinEX, for
(Q,Σ) in D is an explanation for (Q,Σ) in D that is subset-
minimal, i.e., there is no proper subset E′ ( E that is an
explanation for (Q,Σ) in D.

When the OMQ (Q,Σ) and the database D are clear from
the context, we simply speak about MinEXs without explicitly
mentioning (Q,Σ) or D.

We provide a running example that will be used along the pa-
per to illustrate the different problems studied. Briefly stated,
the notion of minimal explanations and the associated prob-
lems are closely related to minimal hitting set problems [19;
21], which appears naturally in several domains. Our run-
ning example is from the field of computational biology,
motivated by experimental design for protein networks [26;
31].
Example 2. Let us consider the protein containment scenario
illustrated in Figure 1. In this example, we are interested in
identifying proteins p1, . . . , p6 in relation to the complexes c1,
c2, and c3. We want to find a minimal subset of proteins that
covers all complexes, i.e., a minimal subset of proteins that
has at least one representative from each complex.

We can express this problem as an OMQ in a way that
every answer to this problem is in bijection with a minimal
explanation of the OMQ as follows. We define the database:

Dp = {protein(pi) | 1 ≤ i ≤ 6},

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P DP DP PSPACE
S, SF ≤ P DP DP EXP
A ≤ P DP DExp DExp

G P DP EXP 2EXP
F, GF P DP DP EXP

WS, WA P DP 2EXP 2EXP

Table 2: Complexity results for IS-MINEX(UCQ,L).

which encodes the set of proteins, and the OMQ {Qp,Σp}:

Σp = {protein(pi)→
∧

pi in cj

covered(cj) | 1 ≤ i ≤ 6},

Qp = covered(c1) ∧ covered(c2) ∧ covered(c3).

The ontology encodes the relation between proteins and com-
plexes, and the query asks whether all complexes c1, c2, and
c3 are covered.

Consider now a subset E ⊆ Dp. Then, it is easy to ver-
ify that E |= (Qp,Σp) iff E |= {covered(ci),Σp}, for every
complex ci. Thus, MinEXs for {Qp,Σp} in Dp are in bijec-
tion with minimal protein covers of complexes.

We focus on this running example throughout the paper due
to its simplicity.

4 Recognizing Minimal Explanations
In this section, we study the fundamental decision problem for
MinEXs of deciding whether a given subset of a database is a
minimal explanation. This is a natural decision version of the
search problem of finding a MinEX.

Problem: IS-MINEX(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and a set of facts E ⊆ D.
Question: Is E a MinEX for (Q,Σ) in D?

IS-MINEX is the most basic problem that is studied in this
paper, and serves as a baseline for the other problems. As all
the remaining problems studied, IS-MINEX is parametrized
with a query language. Let us illustrate this problem in our
running example.

Example 3. Recall the database Dp. Observe that the subsets

E1 = {protein(p1), protein(p3)},
E2 = {protein(p2), protein(p5)},
E3 = {protein(p2), protein(p4), protein(p6)},

of the database Dp are MinEXs for the OMQ (Qp,Σp), and
give the minimal protein covers of complexes. However,
{protein(p4), protein(p5), protein(p6)} is not a MinEX, as
it does not cover all complexes and thus does not entail
(Qp,Σp). The set {protein(p1), protein(p2), protein(p3)}
entails (Qp,Σp), but it is not a MinEX, since it is not mini-
mal (i.e., protein(p2) can be removed without affecting the
satisfaction).

First, we present a general algorithm for deciding
IS-MINEX(UCQ,L). Assume that OMQA in L is in the



class C. Then, IS-MINEX(UCQ,L) can be decided by one
C check and a polynomial number of co-C checks as follows:
testing whether E is a MinEX involves checking whether E
entails (Q,Σ), and checking whether E is minimal. The en-
tailment can be checked with a single call to C. To check
minimality of E, it is enough to show that removing any ele-
ment e of E gives a set that does not entail (Q,Σ). Therefore,
we need to carry out a polynomial number of non-entailment
checks, each in co-C. Hence, we state the following result.
Theorem 4. IS-MINEX(UCQ,L) can be decided by a single
C check, followed by a polynomial number of co-C checks,
where C is the complexity of OMQA in L.

As a consequence of Theorem 4, we are able to claim all
membership results given in Table 2. For example, OMQA
in the language G is NP-complete. That is, we need to
make an NP test (entailment) followed by polynomially many
CONP tests (non-entailment) to decide IS-MINEX(UCQ,G).
Clearly non-entailment tests can also be combined into a sin-
gle CONP test, which implies that the overall procedure is in
DP. Similar arguments apply to other languages considered.

Therefore, in the rest of this section, we only need to
show that these upper bounds are also matching lower bounds
for IS-MINEX, as shown in Table 2. First, we show that
IS-MINEX(UCQ,GF) is P-hard in data complexity. We re-
duce the OMQA of UCQ in GF in data complexity to our
problem.
Theorem 5. IS-MINEX(UCQ,GF) is P-hard in data com-
plexity.

As a result, we have that IS-MINEX(UCQ,L) is P-hard for
L ∈ {G,F,WA,WS, } in data complexity. Now we show that
IS-MINEX(UCQ,L) is DP-hard in fp-combined complexity
even for FO-rewritable languages.
Theorem 6. IS-MINEX(UCQ,L) is DP-hard for languages
L ∈ {LF,AF,SF} in fp- and ba-combined complexity.

This result implies that IS-MINEX(UCQ,L) is DP-hard
for all considered languages in fp-, ba- combined complexity
as a consequence of the inclusions between the languages.

This result is obtained by a reduction from the canonical
DP-complete problem SAT-UNSAT, which asks, given two
3CNF formulas, whether the first is satisfiable, and the second
is unsatisfiable. In the construction, the database contains facts
encoding satisfying assignments of clauses for both formulas
and facts enforcing the consistency of the assignments. There
is an additional fact, which is a kind of jolly, allowing to satisfy
the second formula, bypassing the constraints of the consis-
tency in the assignments. In this way, the jolly is required
in a MinEX iff the second formula is not satisfiable. The
program is empty, therefore, it applies to all languages. The
query ensures that there exists a MinEX iff the first formula is
satisfiable and the second is unsatisfiable.

Note that many hardness results are a consequence of the
hardness of OMQA in the given languages; see, e.g., Table 1.

The only case that is not covered by the given results is
hence IS-MINEX(UCQ,A) in ba- and combined complexity.
The matching lower bound is shown in the following result.
Theorem 7. IS-MINEX(UCQ,A) is DExp-hard in ba-com-
bined complexity.

This reduction is from a DExp-complete problem, inspired
by the construction given in [16]. The problem is a variant of
the tiling problem, which is NEXP-complete. Formally, given
a tuple (w1, w2,TP1,TP2), wherew1 andw2 are initial tiling
conditions, and TP1 and TP2 are two tiling problems for
the exponential square 2n × 2n, decide whether TP1 has no
solution with w1, and TP2 has a solution with w2.

The main intuition behind the proof is as follows. We
encode the tiling problem in the program Σ. This program is
designed in such a way that, together with a database encoding
the adjacency rules and the initial condition, Σ entails an
atom tiling i iff TP i has a solution with wi. The construction
ensures the following. If TP1 has a solution with w1, then
tiling1 can be derived from the rules in Σ1, and hence there
is no need to include the atom tiling1 in E to entail the query.
Hence, E is a MinEX iff TP1 has no solution with w1 and
TP2 has a solution with w2.

The remaining results in Table 2 follow from the following
result that shows that OMQA is no easier that IS-MINEX in
ba- and combined complexity. For that, given a database D
and an OMQ (Q,Σ), we construct the database D′ and the
program Σ′ as follows. We take the database to consist of
a single fact f(), where f is a fresh predicate symbol. The
program Σ′ contains Σ and the rule f()→ (a) for each p(a)
inD. We note thatD |= (Q,Σ) iff D′ is a MinEX for (Q,Σ′).
Note that, since the added rules does not contain variables,
this result holds for all languages L in this paper.

Theorem 8. IS-MINEX(UCQ,L) is C-hard in ba-combined
(resp. combined) complexity whenever OMQA of UCQ in L
is C-hard in ba-combined (resp. combined) complexity.

5 Set of All Minimal Explanations
In this section, we analyze the problem of deciding whether a
given set of subsets of a database is the set of all MinEXs.

Problem: ALL-MINEX(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and a set E ⊆ P(D).
Question: Is E the set of all MinEXs for (Q,Σ) in D?

Example 9. Suppose that we are interested in knowing
whether a given set of proteins are all possible minimal covers
of complexes. Consider the set E given as:{
{protein(p1), protein(p3)}, {protein(p1), protein(p5)},
{protein(p1), protein(p6)}, {protein(p2), protein(p5)},
{protein(p3), protein(p4)}, {protein(p3), protein(p5)},
{protein(p2), protein(p4), protein(p6)}

}
.

It is easy to verify that E is precisely the set of all MinEXs for
(Qp,Σp) in Dp.

As before, we start with a rather general result for
ALL-MINEX(UCQ,L), where by C, we represent the com-
plexity of OMQA in L. We show that it is sufficient to per-
form a polynomial number of C checks and a single co-(NPC)
check. More specifically, given a set E of subsets of the
database, to decide ALL-MINEX(UCQ,L), we can proceed
as follows. We perform a polynomial number of C checks



L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P DP DP PSPACE
S, SF ≤ P DP DP EXP
A ≤ P DP DExp DExp

G CONP DP EXP 2EXP
F, GF CONP DP DP EXP

WS, WA CONP DP 2EXP 2EXP

Table 3: Complexity results for ALL-MINEX(UCQ,L).

to decide whether all sets in E entail (Q,Σ). Then, we need
to decide whether all sets in E are minimal, and there is no
MinEX that is not in E. This holds if there is no E′ ⊆ D
entailing (Q,Σ) such that E′ 6⊆ E for all E ∈ E. The com-
plement task of guessing a set E′ such that E′ 6⊆ E for all
E ∈ E and that entails (Q,Σ) is in NPC , and thus the task of
checking whether all sets in E are minimal, and there is no
MinEX, which is not included in E, is in co-(NPC).

Theorem 10. ALL-MINEX(UCQ,L) can be decided by a
polynomial number of C checks, followed by a single co-(NPC)
check, where C is the complexity of OMQA in L.

Importantly, Theorem 10 gives a tight upper bound for
all results in Table 3, apart from the data complexity re-
sults for FO-rewritable languages. In fact, we show that,
ALL-MINEX(UCQ,L) is feasible in polynomial time pro-
vided that L is FO-rewritable, which is summarized in the
next result.

Theorem 11. Let L be a FO-rewritable language over exis-
tential rules. Then, computing all MinEXs for a OMQ (Q,Σ)
in a database D over L is feasible in polynomial time in data
complexity.

To prove this result, it suffices to consider the FO-rewriting
of the program, and show that determining minimal subsets
of a database that entail the rewritten query can be done in
polynomial time.

It remains to show the hardness results presented in Table 3.
As before, we note that some of the lower bounds immediately
follow from the complexity of OMQA in the respective lan-
guage. We show that ALL-MINEX(UCQ,GF) is CONP-hard
in data complexity, by a reduction from UNSAT, by borrowing
ideas from [28].

Theorem 12. ALL-MINEX(UCQ,GF) is CONP-hard in
data complexity.

This implies that ALL-MINEX(UCQ,L) is CONP-hard in
data complexity for all languages L ∈ {G,F,WS,WA}, due
to the language inclusions GF ⊂ G,F,WS,WA.

The following result settles the hardness results for
ALL-MINEX(UCQ,L) in fp-, ba-, and combined com-
plexity. In particular, we have that the complexity of
ALL-MINEX(UCQ,L) and IS-MINEX(UCQ,L) match for
all considered languages L in fp-, ba-, and combined com-
plexity. The hardness results for ALL-MINEX(UCQ,L) are
an adaptation of the proofs for IS-MINEX(UCQ,L) in most
cases, and hence we omit the details.

L Data fp-comb. ba-comb. Comb.
L, LF, AF ≤ P NP NP PSPACE
S, SF ≤ P NP NP EXP
A ≤ P NP NEXP NEXP
G NP NP EXP 2EXP

F, GF NP NP NP EXP
WS, WA NP NP 2EXP 2EXP

Table 4: Complexity results for MINEX-IRREL(UCQ,L) and for
SMALL-MINEX(UCQ,L).

Theorem 13. The fp-combined, ba-combined, and com-
bined complexity hardness results in Table 3 hold for
ALL-MINEX(UCQ,L).

This result concludes our complexity analysis for
ALL-MINEX(UCQ,L).

6 Explanations Excluding Forbidden Sets
The next problem that we consider is the one of finding a
minimal explanation that does not include a given sets of facts.
Let F be a set of subsets of a database D, which intuitively
encodes a set of invalid configurations: elements of F may
be known to be erroneous, or we may want to avoid them for
some other reason, depending on the application. Thus, we
are interested in finding whether there is an explanation that is
not a superset of any of the sets in F, as formalized next.
Problem: MINEX-IRREL(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and a set F ⊆ P(D).
Question: Is there a MinEX E for (Q,Σ) in D such that
F 6⊆ E, for every F ∈ F?
Example 14. Suppose that the set

F = {{protein(p1)}, {protein(p3), protein(p5)},
{protein(p2), protein(p4), protein(p6)}}

encodes the configurations of proteins that are not allowed
to be in a cover. In this case, {protein(p3), protein(p4)}
is a MinEX, since it is a cover that does not contain any
configuration from F.

MINEX-IRREL(UCQ,L) can be decided as follows. Let
C be an oracle for query answering over L. To decide the
existence of a MinEX not including the “forbidden” sets, it
is sufficient to guess such a subset of a database and then
check whether it entails the OMQ using an oracle C. This
can be carried out in NPC . Note that there is no need to
check minimality as, if there is a subset E of a database that
does not contain any of “forbidden” sets and entails the OMQ,
then E has a minimal subset with these properties (due to
monotonicity of the entailment relation).
Theorem 15. MINEX-IRREL(UCQ,L) can be decided in
NPC , where C is the complexity of OMQA in L. If C = NP
(resp., C = NEXP), then MINEX-IRREL(UCQ,L) is also
complete for NP (resp., NEXP).

This result above gives a tight upper bound for all results
in Table 4, apart from the data complexity results for FO-
rewritable languages. For these languages, we know by The-
orem 11 that it is possible to compute the set of all MinEXs



in polynomial time. But then, we can also find a MinEX that
does not contain as a subset any of the “forbidden” sets in
polynomial time.

Theorem 16. Let L be a FO-rewritable language over exis-
tential rules. Then, finding a MinEX for an OMQ (Q,Σ) in a
database D over L that does not contain any of the sets in F
is feasible in polynomial time in data complexity.

This result implies that MINEX-IRREL(UCQ,L) can be
decided in polynomial-time in data complexity for FO-
rewritable languages L.

The obvious next step is to understand the behavior of the
languages that are not FO-rewritable. Our next result states
that MINEX-IRREL(UCQ,L) is NP-hard for all such lan-
guages. The NP-hardness is obtained via a reduction from the
NP-complete problem PATH WITH FORBIDDEN PAIRS [18;
20]: decide whether there exists a path between two vertices
in a graph avoiding a set of given pairs of edges. We encode
the reachability in the rules, while in the database we have the
facts for the graph edges. The forbidden sets naturally encode
the set of forbidden pairs of edges.

Theorem 17. MINEX-IRREL(UCQ,GF) is NP-hard in data
complexity.

The remaining hardness results of
MINEX-IRREL(UCQ,L) in fp-combined, ba-combined,
and combined complexity are obtain by reducing OMQA to
MINEX-IRREL. Given a database D and an OMQ (Q,Σ),
D |= (Q,Σ) iff there is a MinEX for (Q,Σ) in D, not
containing any sets in F = ∅.
Theorem 18. MINEX-IRREL(UCQ,L) is C-hard in fp-
combined (resp. ba-combined and combined) complexity
whenever OMQA of UCQ in L is C-hard in fp-combined (resp.
ba-combined and combined) complexity.

All result are summarized in Table 4.

7 Explanations Including Distinguished Facts
We now investigate the problem of deciding whether there is a
minimal explanation including a given fact.

Problem: MINEX-REL(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and a fact ψ ∈ D.
Question: Is there a MinEX E for (Q,Σ) in D such that
ψ ∈ E?

Example 19. Suppose that we are interested in covers that
contain the protein ψ = protein(p6) which is a distinguished
fact. Observe, for example, that {protein(p1), protein(p6)}
and {protein(p2), protein(p4), protein(p6)} are MinEXs for
{Qp,Σp} in Dp, containing the fact ψ.

To check the existence of a MinEX that contains a distin-
guished factψ, we can guess a candidate MinEXE, containing
ψ and then use an oracle for IS-MINEX(UCQ,L) to check
whether E is a MinEX. This gives us a naive method to decide
MINEX-REL(UCQ,L).

Theorem 20. MINEX-REL(UCQ,L) can be decided by a
computation in NPIS-MINEX(UCQ,L).

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P ΣP
2 ΣP

2 PSPACE
S, SF ≤ P ΣP

2 ΣP
2 EXP

A ≤ P ΣP
2 PNEXP PNEXP

G NP ΣP
2 EXP 2EXP

F, GF NP ΣP
2 ΣP

2 EXP
WS, WA NP ΣP

2 2EXP 2EXP

Table 5: Complexity results for MINEX-REL(UCQ,L) and for
LARGE-MINEX(UCQ,L).

Theorem 20 covers all membership results given in Table 5
for MINEX-REL(UCQ,L) apart from the data complexity
results for FO-rewritable languages. For these languages, it is
a straightforward consequence of Theorem 11 that finding a
MinEX containing a distinguished fact is in polynomial time.

Theorem 21. Let L be a FO-rewritable language over ex-
istential rules. Then, finding a MinEX for an OMQ (Q,Σ)
in a database D over L that contains a fact ψ is feasible in
polynomial time in data complexity.

As before, we again obtain a hardness result for languages
that are not FO-rewritable: MINEX-REL(UCQ,L) is NP-
complete in data complexity for these languages L.

Theorem 22. MINEX-REL(UCQ,GF) is NP-hard in data
complexity.

To proof is via a reduction from the NP-complete problem
PATH-VIA-NODE [27]: given a graph, decide whether there is a
path between two vertices passing through a third vertex. The
construction is quite similar to the one used to show the NP-
hardness of MINEX-IRREL(UCQ,GF) in data complexity.

Theorem 23 shows that the complexity of
MINEX-REL(UCQ,L) goes at least one level higher
in the polynomial hierarchy, if we focus on fp-combined and
ba-combined complexity. The reduction is from QBFCNF

2,∀,¬
which is known to be ΣP

2 -complete: given a quantified
Boolean formula Φ = ∃X∀Y ¬φ(X,Y ), where φ is a
3CNF formula, decide whether Φ is valid. The reduction is
obtained by using the idea of the ‘jolly’ introduced in the
proof of the DP-hardness in the fp-combined complexity of
IS-MINEX(UCQ,L).

Theorem 23. MINEX-REL(UCQ,L) is ΣP
2 -hard for lan-

guages L ∈ {LF,AF,SF} in fp- and ba-combined complexity.

MINEX-REL(UCQ,L) is also ΣP
2 -hard in the fp-combined

and ba-combined complexity for all other languages consid-
ered as a result of language inclusions.

Our final result concerns the class A: we show that
MINEX-REL(UCQ,A)is PNEXP-hard in these cases, by a
reduction from the following PNEXP-complete problem that
is the complement of a problem in [16]: given a triple
(m,TP1,TP2), where m is an integer in unary notation, and
TP1 and TP2 are two tiling problems for the exponential
square 2n × 2n, decide whether there exists an initial condi-
tion w of length m, such that TP1 has no solution with w, and
TP2 has a solution with w. The proof extends the ideas used
for the DExp-hardness proof of IS-MINEX.



Theorem 24. MINEX-REL(UCQ,A) is PNEXP-hard in ba-
combined complexity.

The other hardness results in Table 5 follow from the hard-
ness of query answering in the respective languages. Given
a database D and an OMQ (Q,Σ), we note that D |= (Q,Σ)
iff three is a MinEX for (Q ∧ ψ,Σ) in D ∪ {ψ} containing a
fact ψ, where ψ is a fact with a fresh predicate symbol. Note
that the following result holds for all languages, as we do not
change the program in the reduction.

Theorem 25. MINEX-REL(UCQ,L) is C-hard in ba-
combined (resp. combined) complexity whenever OMQA of
UCQ in L is C-hard in ba-combined (resp. combined) com-
plexity.

8 Cardinality-Based Explanation Problems
In this section, we deal with cardinality-related problems for
minimal explanations. Briefly, these problems are helpful
when we want to find out whether there is a MinEX smaller or
larger than a given size.

Problem: SMALL-MINEX(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and an integer n ≥ 1.
Question: Is there a MinEX E for (Q,Σ) in D such that
|E| ≤ n?
Problem: LARGE-MINEX(UCQ,L)
Input: A database D, an OMQ(Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and an integer n ≥ 1.
Question: Is there a MinEX E for (Q,Σ) in D such that
|E| ≥ n?

Example 26. Let us take n = 2. Then, there is a MinEX
for (Qp,Σp) in Dp smaller and larger than n. On the other
hand, if we take n = 4, then there is a MinEX smaller than n,
but there is no MinEX larger than n, since all MinEXs for
{Qp,Σp} in Dp are of size at most 3.

Most of the proofs of the results for the problems
SMALL-MINEX(UCQ,L) and LARGE-MINEX(UCQ,L)
are a result of adaptations of the proofs given for
MINEX-IRREL(UCQ,L) and MINEX-REL(UCQ,L), re-
spectively. Hence, we omit the details here.

Theorem 27. The complexity results in Table 4
and Table 5 hold for SMALL-MINEX(UCQ,L) and
LARGE-MINEX(UCQ,L), respectively.

9 Related Work
The study of explanations and diagnosis in logical formalisms
dates back to 32 [32]. From a broader perspective, our study
can be seen as a form a logical abduction, but our results
clearly differ from those in propositional abduction [14].

In this work, we focus on ontology languages, and build
on axiom pinpointing [24; 2; 29]. In axiom pinpointing, an
entailment is explained in terms of a minimal set of ontological
axioms. Such explanations are called justifications in the DL
literature [22; 23]. Axiom pinpointing is extensively studied
in DLs, and some implementations exist [24; 33].

Most of the existing approaches to explanations focus on
classical reasoning tasks and the associated types of entail-
ments. The problem of explaining query entailments has only
been investigated for the DL-Lite family of languages [8].
Our work provides a different framework inspired by axiom
pinpointing and the associated problems. Another work for
explaining query answers for the DL-Lite family is given in the
context of consistent query answering [6]. Our minimal expla-
nations can be seen analogous to the notion of causes studied
in [6]. There are many differences in our approach, though.
We are interested in explaining query entailments in the most
general fashion (even if there is no inconsistency), and present
a unifying perspective for tasks that require explanations. The
only work related to explanations in existential rules is given
in [12], where explanations for OMQs under existential rules
are studied, but this study is relative to probabilistic databases
and hence of a very different flavor.

There are interesting model-theoretic connections with our
framework and more basic formalisms. For instance, for most
of the languages that we study, we can define disjunctive
Datalog programs [15] such that every minimal model of a
disjunctive Datalog program will be in bijection with a mini-
mal explanation. These model-theoretic connections are very
important, as they reveal the power of the studied problems in
terms of well-studied languages.

10 Summary and Outlook
In this paper, we have started a new direction of research by
translating several decision problems from axiom pinpointing
to provide explanations for OMQs. We have studied the prob-
lem of explaining query answers in terms of minimal subsets
of database facts, and provided a thorough complexity anal-
ysis for several decision problems associated with minimal
explanations under existential rules.

The problems investigated in this paper are also closely
related to minimal hitting set problems, which have a number
of applications in fault diagnosis, computational biology, and
data mining [19; 21]. Indeed, many important problems in
practice (such as protein covers) can be naturally formulated
in our framework in terms of ontology-mediated queries, and
we hope that our work will be a basis for encoding and solving
problems in various application domains of ontologies.

There are many interesting directions for future work, in-
cluding the study of other ontology languages. We also aim to
explore the model-theoretic connections to other formalisms,
and make a more fine-grained complexity analysis. There are
many other types of problems encountered in the context of
explanations, which are also a subject of future study.
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[29] Rafael Peñaloza and Barış Sertkaya. Understanding the
complexity of axiom pinpointing in lightweight descrip-
tion logics. Artif. Intell., 250:80–104, 2017.

[30] Antonella Poggi, Domenico Lembo, Diego Calvanese,
Giuseppe De Giacomo, Maurizio Lenzerini, and Ric-
cardo Rosati. Linking data to ontologies. In Journal
on Data Semantics X, pages 133–173. Springer-Verlag,
2008.

[31] Emad Ramadan, Arijit Tarafdar, and Alex Pothen. A
hypergraph model for the yeast protein complex network.
In Proc. IPDPS, 2004.

[32] Raymond Reiter. A theory of diagnosis from first princi-
ples. Artif. Intell., 32(1):57–95, 1987.



[33] Roberto Sebastiani and Michele Vescovi. Axiom pin-
pointing in lightweight description logics via Horn-SAT
encoding and conflict analysis. In Proc. CADE, pages
84–99, 2009.

[34] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter
Haase. A modularization-based approach to finding all
justifications for OWL DL entailments. In Proc. ASWC,
pages 1–15, 2008.

[35] Moshe Y. Vardi. The complexity of relational query
languages. In Proc. STOC, pages 137–146, 1982.



Appendix A Detailed Proofs
Theorem 4. IS-MINEX(UCQ,L) can be decided by a single
C check, followed by a polynomial number of co-C checks,
where C is the complexity of OMQA in L.

Proof. Let C be an oracle for query answering over L. Let D
be an ABox, (Q,Σ) be an OMQ over L and E be a subset of
D. We show that it takes polynomial time to decide if E is a
MinEX for (Q,Σ) in D in the size of the ABox D. Testing
whether a set E is a MinEX involves checking whether E
entails the OMQ (Q,Σ) and checking whether E is minimal.
The entailment can be checked with a single call to C. To
check minimality of E, it is enough to show that removing any
element e of E gives a set that does not entail (Q,Σ). This is
the case as, for any E′ ⊆ E \ {e}, we have that a model of
Σ ∪ E′ is a model of Σ ∪ (E \ {e}). Therefore, we need |E|,
that is, polynomial, number of non-entailment checks, each in
co-C.

Theorem 5. IS-MINEX(UCQ,GF) is P-hard in data com-
plexity.

Proof. We reduce OMQA(UCQ,GF) to
IS-MINEX(UCQ,GF). Consider an instance of
OMQA(UCQ,GF) formed by a database D and an
OMQ (Q,Σ).

We build an instance of IS-MINEX(UCQ,GF) formed by
a database D′, an OMQ (Q′,Σ′), and a candidate explanation
E. The database D′ is obtained from D as follows. For each
fact p(a) ∈ D, inD′ there are two facts p′(a, i) and r(i−1, i),
where i is an incremental integer starting from 1 that is used to
“enumerate” all the facts in D′ coming from D (i.e. different
p′(·) facts have different integers i in the last position). To
conclude the construction of D′, there are two additional facts
u(0) and num_facts(|D|). The set E equals D′. Observe
that D′ and E can be computed in logarithmic space.

We construct Σ′ as follows. The program Σ′ contains
Σ. Also, for each predicate p of the relational schema of
D and Σ (which is fixed, because we are in the data com-
plexity setting), add to Σ′ the rules p′(X, J) → p(X) and
p′(X, J)→ t(J). Further, add u(I)∧ r(I, J)∧ t(J)→ u(J)
and u(J) ∧ num_facts(J)→ all() to Σ′.

Finally, we set Q′ = Q ∧ all(). Observe that also Σ′

and Q′ are build in logarithmic space, and moreover they are
independently obtained from the content of D. Hence, for
a class of instances of OMQA(UCQ,GF) having the same
program and query, this transformation produces a class of
instances of IS-MINEX(UCQ,GF) having the same program
and query, which is required to show a hardness result in the
data complexity.

It is possible to show that D |= (Q,Σ) if and only if E is a
MinEX for (Q′,Σ′). Simply observe that the presence of all
facts of D′ in E is required in order for E to satisfy the part
all() of Q′, and observe that, via the rules ‘p′(X, J)→ p(X)’
in Σ′, all the facts needed to possibly satisfy Q via Σ, and
hence also Q′ = Q ∧ all() via Σ′ by E, are generated in the
first level of the chase.

Theorem 6. IS-MINEX(UCQ,L) is DP-hard for languages
L ∈ {LF,AF,SF} in fp- and ba-combined complexity.

Proof. We reduce SAT-UNSAT, which is known to be DP-
complete, to IS-MINEX(UCQ,L). We show that the
hardness holds even if the program Σ in the input of
IS-MINEX(UCQ,L) is empty.
Problem: SAT-UNSAT
Input: Two 3CNF formulas φ and ψ.
Question: Is φ satisfiable and ψ unsatisfiable?

Let (φ(x1, . . . , xn), ψ(x1, . . . , xm)) be an instance of SAT-
UNSAT. From (φ(x1, . . . , xn), ψ(x1, . . . , xm)), we build an
instance of IS-MINEX(UCQ,L) formed by a database D, an
OMQ (Q,Σ), and an explanation E, as follows.

Via the database D and the program Σ we encode the satis-
fiability and unsatisfiability of the formulas φ and ψ, respec-
tively. And in particular, ways of mapping the query to the
database have to replicate legal attempts to satisfy the Boolean
formulas. In D, there are facts that will be used to impose the
consistency of the truth assignments to the literals:

simlit(0, 0) opplit(0, 1)

simlit(1, 1) opplit(1, 0)

simlit(0, 2) simlit(2, 2)

simlit(1, 2) opplit(2, 2),

where 0 and 1 are constants with the meaning of the Boolean
values true and false, respectively, and 2 is an additional con-
stants used as a “jolly” (intuitively, it will be used to bypass
the check of satisfaction of ψ).

There are facts in D that capture satisfying assignments to
literals for a clause:

clsatφ(α1, α2, α3), clsatψ(α1, α2, α3),

where each αi ∈ {0, 1} and at least one of αi for i ∈ {1, 2, 3}
is 1. Note that there are 7 such facts for each of the formulas.
Further, we add

clsatψ(2, 2, 2).

The predicate clsat(·, ·, ·) states what assignments to the liter-
als (and not to the variables) satisfy a clause. The predicate
clsatψ(2, 2, 2) intuitively will be used to bypass the check of
satisfaction of ψ.

The facts in the database of the predicates simlit , opplit ,
clsatφ, and clsatψ , but clsatψ(2, 2, 2), are the structural facts,
and we denote by Dst the sets of structural facts of D.

The candidate explanation E equals D.
In the program Σ, there are no TGDs, hence it is trivially

LF, AF, and SF.
The query Q is constituted by the following pieces.
A first piece of the query checks that all the structural facts

are in the candidate MinEX:

config ≡
∧

p(c)∈Dst

p(c).

Below we use the following notation: `αj,k is the kth literal
in the jth clause, cj , in the formula α ∈ {φ, ψ}, and vαj,k is the
variable of `αj,k.

A second piece of the query “copies” the assignment on
each variable xi onto the occurrences of xi as a positive literal



in the formulas φ and ψ:

copy ≡
n∧
i=1

simlit(Tφi , T
φ
j,k)

m∧
i=1

simlit(Tψi , T
ψ
j,k).

where, in each atom simlit(Tαi , T
α
j,k), Tαj,k is a variable for

the Boolean value of the literal `j,k = xi in the formula
α ∈ {φ, ψ}. Observe that, in order for copy to work properly,
each variable xi must appear as a positive literal in the clauses
of φ and ψ at least once. This can be assumed without loss of
generality, because if xi always appears as a negative literal
in all the clauses of φ or ψ, then we can replace all the occur-
rences of the negative literal ¬xi with the positive literal xi
without altering the satisfiability properties of φ and ψ.

A third piece of the query forces that the ground values
assigned to the various variables Tφj,k and Tψj,k simulating the
assignments to the literals are consistent. In the notation below,
for α ∈ {φ, ψ}, `αj,k ∼ `αj′,k′ means that literals `αj,k and `αj′,k′
are both positive or negative, while `αj,k 6∼ `αj′,k′ means that
one literal is positive and the other is negative.

consistα ≡
∧

∀(`αj,k,`
α
j′,k′ )

s.t. vαj,k=vα
j′,k′∧

`αj,k∼`
α
j′,k′

simlit(Tαj,k, T
α
j′,k′)

∧
∀(`αj,k,`

α
j′,k′ )

s.t. vαj,k=vα
j′,k′∧

`αj,k 6∼`
α
j′,k′

opplit(Tαj,k, T
α
j′,k′),

where, for α ∈ {φ, ψ}, Tαj,k is a variable with the same mean-
ing as above. We take

consist ≡ consistφ ∧ consistψ.

The last piece of the query captures satisfiability of φ and ψ:

satisfied ≡
∧
cj∈φ

clsatφ(Tφj,1, T
φ
j,2, T

φ
j,3)

∧
cj∈ψ

clsatψ(Tψj,1, T
ψ
j,2, T

ψ
j,3).

To conclude, the query Q is:

Q = config , copy , consist , satisfied .

We claim that φ is satisfiable and ψ is unsatisfiable if and
only if E is a MinEX for (Q,Σ).

Suppose that (φ, ψ) is a ‘yes’-instance of SAT-UNSAT. As-
sume by contradiction thatE is not a MinEX for (Q,Σ). Then
either E 6|= (Q,Σ) or E is not minimal for (Q,Σ). In the
former case, this implies that φ is unsatisfiable, since the con-
tainment of clsatψ(2, 2, 2) in E guarantees that all clsatψ
conjuncts in the query are satisfied: a contradiction. In the
later case, we have that clsatψ(2, 2, 2) is not necessary in E,
as E \ {clsatψ(2, 2, 2)} |= (Q,Σ). This implies that ψ is
satisfiable: a contradiction. Hence, E is MinEX for (Q,Σ).

Suppose now that (φ, ψ) is a ‘no’-instance of SAT-UNSAT.
This means that φ is unsatisfiable or ψ is satisfiable. In the
former case, E 6|= (Q,Σ) and hence E is not an explanation
at all, and in the later case we have that E is an explanation
but not minimal as E \ {clsatψ(2, 2, 2)} |= (Q,Σ).

Theorem 7. IS-MINEX(UCQ,A) is DExp-hard in ba-
combined complexity.

Proof. We give a reduction from the following (CONEXP
∧ NEXP)-complete problem: Given a triple (w1, w2, TP1,
TP2), where w1 and w2 are initial tiling conditions, and TP1

and TP2 are two tiling problems for the exponential square
2n × 2n, decide whether TP1 has no solution with w1 and
TP2 has a solution with w2.

For the tiling problems, we use the encoding of Lemma 30.
We create two copies for ΣTPi,|wi|, DTPi , and Dwi for
i = 1, 2, using disjoint predicates (we index them with super-
script i). Let then

• Σ1 = ΣTP1,|w1|
1, D1 = DTP1

1 ∪Dw1

1, and

• Σ2 = ΣTP2,|w2|
2, D2 = DTP2

2 ∪Dw2

2.

We now let Σ = Σ1 ∪ Σ2 and D = D1 ∪D2 ∪
{

tiling1
}

.
The query is

Q = D1, D2, tiling1, tiling2,

where with symbols D1 and D2 in the query we mean the con-
junction of all database facts from D1 and D2, respectively.

Observe that the set of facts Di entails the atom tiling i via
the mediation of the ontology Σi iff TP i has a solution with
initial condition wi.

Since all the facts contained in D1 and D2 are in the query,
and D contains only the additional fact tiling1 besides D1

and D2, there are only two candidate MinEXs: D itself and
D \

{
tiling1

}
. We consider E = D as the set that we have to

decide whether it is a MinEX.
If TP1 has a solution with w1, then tiling1 can be derived

from the rules in Σ1, and hence there is no need to include
the atom tiling1 in E to entail the query. Hence, E = D is
a MinEX iff TP1 has no solution with w1 and TP2 has a
solution with w2.

Theorem 8. IS-MINEX(UCQ,L) is C-hard in ba-combined
(resp. combined) complexity whenever OMQA of UCQ in L
is C-hard in ba-combined (resp. combined) complexity.

Proof. We reduce OMQA(UCQ,L) to
IS-MINEX(UCQ,L). Let D be a database and let (Q,Σ) be
an OMQ, constituting an instance of OMQA(UCQ,L). Let
D′ = E = {f()}, where f() is a fact of a fresh predicate
symbol, and let Σ′ = Σ ∪ {f() → p(a) | p(a) ∈ D}. It is
easy to see that D |= (Q,Σ) if and only if E is a MinEX for
(Q,Σ′) in D′.

Theorem 10. ALL-MINEX(UCQ,L) can be decided by a
polynomial number of C checks, followed by a single co-(NPC)
check, where C is the complexity of OMQA in L.



Proof. Let E ⊆ P(D) be the set to be checked to contain all
MinEXs. The set E contains all MinEXs for (Q,Σ) in D if (i)
all sets in E entail (Σ, Q); (ii) all sets in E are minimal; and
(iii) there is no MinEX outside E.

Let us consider condition (i). We can check (i) using |E|
number of enailment checks, each in C. That is, we use a
polynomial number of C checks.

Consider now conditions (ii) and (iii). Note that conditions
(ii) and (iii) hold if there is no set E′ entailing (Q,Σ) such
that, for all E ∈ E, E 6⊆ E′. Indeed, if such E′ exists, then
there are two cases. If E′ is a proper subset of E ∈ E, then
E is not a MinEX because E is not minimal. If E′ is not a
proper subset of any E ∈ E, then E′ is a superset of a MinEX
that is not in E.

Note that we can verifying the existence of such E′ by
guessing a subset E′ of D in NP and then checking that
E′ |= (Q,Σ) in C. The overall computation is in NPC , and
hence checking conditions (ii) and (iii) is in co-(NPC).

Theorem 11. Let L be a FO-rewritable language over exis-
tential rules. Then computing all MinEXs for a OMQ (Q,Σ)
in a database D over L is feasible in polynomial time in data
complexity.

Proof. Let D be a database and (Q,Σ) be an ontology-
mediated query. Since L is FO-rewritable, there is a union of
conjunctive queries QΣ such that, for every D′ ⊆ D,

D′ |= (Q,Σ) iff D′ |= QΣ.

Note that the construction of QΣ depends only on Q and Σ.
Therefore, since Q and Σ are fixed, it takes constant time to
compute the query

QΣ = QΣ
1 ∨ · · · ∨QΣ

m,

where
QΣ
i = ∃Xi

1 . . . ∃Xi
ki φ

Σ
i (Xi

1, . . . , X
i
ki)

and φΣ
i is a conjunction of atoms.

Let DΣ
i = {φΣ

i (a) | a ∈ dom(D)ki}, where we view a
conjunction of facts φΣ

i (a) as a set of facts. Thus DΣ
i is a set

of sets of facts. Note that ki only depends on (Q,Σ) and the
active domain, dom(D), is of polynomial size. Therefore, it
takes polynomial time to compute DΣ

i . Furthermore, there is
a constant number of clauses in QΣ, namely, m, and therefore
it takes polynomial time to compute DΣ = ∪mi=1DΣ

i .
Let E be the set of minimal elements of a partially ordered

set (DΣ,⊆) (i.e. subset-minimal elements of DΣ). It takes
polynomial time to compute E; go through all the elements
D′ of DΣ and check whether there is no other element D′′ in
DΣ with D′′ ( D′. If so, add D′ to E. This takes polynomial
time in the size of DΣ, and so in the size of D.

By construction, we have that every set in E is a MinEX for
(Q,Σ) in D. Now we show that E contains all such MinEXs.

Let E′ be a MinEX for (Q,Σ) in D. Then E′ |= QΣ. This
implies that E′ contains at least one set D′ ∈ DΣ. But this
implies that E′ must be in E because of minimality.

Theorem 12. ALL-MINEX(UCQ,GF) is CONP-hard in
data complexity.

Proof. We exhibit a reduction from the problem of deciding
whether a 3CNF Boolean formula is unsatisfiable. Let φ(X)
be a 3CNF formula over variables X = {x1, . . . , xn} and
clausesC = {c1, . . . , cm}. From φ(X), we build the database
D and the query (Q,Σ) as follows.

For each variable xi ∈ X , in D there are facts:

val(xi, 0) val(xi, 1),

where xi is a constant representing the respective variable in
φ, and 0 and 1 are constants representing Boolean values false
and true, respectively.

For each clause cj :
• there is a fact succ_cl(j − 1, j) in D, where j − 1 and j

are numeric constants, and intuitively stating that the jth

clause is the successor of the (j − 1)th clause; and
• there is a fact encoding the structure of cj , so, for ex-

ample, for a clause (xp ∨ xq ∨ ¬xr), there is the fact
cl(j, xp, p, xq, p, xr,n) in D, where p and n are con-
stants representing whether a variable appears as a posi-
tive or a negative literal, respectively.

In addition, there are two more facts in D: satchain(0) and
maxcl(m).

Rules Σ are the following.

val(X, 0), val(X, 1)→ sat()

cl(J,X, p, _, _, _, _), val(X, 1)→ satcl(J)

cl(J,X,n, _, _, _, _), val(X, 0)→ satcl(J)

cl(J, _, _, Y, p, _, _), val(Y, 1)→ satcl(J)

cl(J, _, _, Y,n, _, _), val(Y, 0)→ satcl(J)

cl(J, _, _, _, _, Z, p), val(Z, 1)→ satcl(J)

cl(J, _, _, _, _, Z,n), val(Z, 0)→ satcl(J)

satchain(I), succ_cl(I, J), satcl(J)→ satchain(J)

maxcl(M), satchain(M)→ sat(),

where sat() is a 0-ary predicate.
The query is Q = sat().
Observe that the TGDs and the query do not depend on

φ(X). Σ is guarded and full.
To conclude, the set E is defined as follows:

E = {{val(xi, 0), val(xi, 1)} |xi ∈ X} .

The intuition of the proof is the following. Given the first
rule of Σ, each set in E is a MinEX. Therefore, in order to
show that the reduction is correct, we simply need to prove
that φ is unsatisfiable iff there is no MinEX outside E.

First, we claim that any set of facts E such that
{val(xi, 0), val(xi, 1)} ⊆ E is not a MinEX outside E.
Indeed, if {val(xi, 0), val(xi, 1)} ( E, then E is not a
MinEX because it is not minimal, as {val(xi, 0), val(xi, 1)}
are enough to entail the query (via the first rule in Σ). If, on
the other hand, {val(xi, 0), val(xi, 1)} = E, then trivially E
is not a MinEX outside E, as {val(xi, 0), val(xi, 1)} ∈ E.

Thus, for E to be a MinEX outside E, it must be the case
that, for each xi ∈ X , {val(xi, 0)val(xi, 1)} 6⊆ E, which
means that | {val(xi, 0)val(xi, 1)} ∩ E| ≤ 1. Therefore, any
set of facts E candidate to be a MinEX outside E encodes a
proper (not necessarily complete) truth assignment for X .



Observe that, apart from the first rule of Σ, the other rules of
Σ encode the satisfiability of φ. Hence, if φ is not satisfiable,
none of the sets of facts candidate to be a MinEX outside E is
actually a MinEX, because none of them entails the query. On
the other hand, if φ is satisfiable, the set of facts encoding the
truth assignment satisfying φ is a MinEX outside E.

Theorem 13. The fp-combined, ba-combined and com-
bined complexity hardness results in Table 3 hold for
ALL-MINEX(UCQ,L).

Proof. To show that ALL-MINEX(UCQ,L) is DP-hard for
languages L ∈ {LF,AF,SF} in fp-combined complexity, we
change the proof of Theorem 6 by taking E = {D}. We
observe that E = D is the only MinEX iff φ is satisfiable and
ψ is unsatisfiable.

To show that ALL-MINEX(UCQ,A) is (NEXP ∧
CONEXP)-hard in ba-combined complexity, we change the
proof of Theorem 7 by defining E = {D} as the set for which
we have to decide whether it is the set of all MinEXs.

The other hardness results for ALL-MINEX(UCQ,L) fol-
low from the hardness of query answering, presented in Ta-
ble 1.

Theorem 15. MINEX-IRREL(UCQ,L) can be decided in
NP followed by a computation in C, where C is the complexity
of OMQA in L.

Proof. LetD be a database, let (Q,Σ) be a ontology-mediated
query, and let F ⊆ P(D). To verify that there is a MinEX
E such that, for all F ∈ F, F 6⊆ E, it is sufficient to check
the existence of a set of facts E′ ⊆ D entailing Q such that,
for all F ∈ F, F 6⊆ E′. Indeed, if such set E′ exists, there is
a subset E ⊆ E′ entailing Q and that is moreover minimal
(i.e., a MinEX that is not a superset of any of the sets F ∈ F).
Observe that checking the existence of such a set E′ is in C
(if C ⊇ NP), because we can guess E′ along with a certificate
witnessing that E′ |= (Q,Σ).

Observe that the existence of such a set E′ can be verified
by guessing E′ and then checking that E′ |= (Q,Σ). If C is
non-deterministic (in particular, C is such that NP ⊆ C), then
in C it is possible to both guessE′ and check thatE′ |= (Q,Σ).
If C is deterministic, we can guess E′ (in NP), and then check
that E′ |= (Q,Σ) via an oracle call in C.

Theorem 16. Let L be a FO-rewritable language over exis-
tential rules. Then finding a MinEX for a OMQ (Q,Σ) in a
database D over L that does not contain any of the sets in F
is feasible in polynomial time in data complexity.

Proof. By Theorem 11, the set E of all MinEXs can be com-
puted in polynomial time in the data complexity. Then it takes
polynomial time to check whether there is a MinEX in E that
does not contain any of the “forbidden” sets in F.

Theorem 17. MINEX-IRREL(UCQ,GF) is NP-hard in data
complexity.

Proof. The membership in NP is straightforward. For the
hardness, we use the following NP-hard problem in the reduc-
tion [18; 20].
Problem: PATH WITH FORBIDDEN PAIRS
Input: A directed graph G = (V,E), two vertices s, t ∈ V
and a set F ⊆ E × E.
Question: Is there a simple path P from s to t in G such that
for every (e, e′) ∈ F , {e, e′} 6⊆ P ?

We take

Σ = {p(X) ∧ r(X,Y )→ p(Y )} ,

D = {r(u, v) | (u, v) ∈ E} ∪ {p(s)} ,
Q = p(t), and

F = {{r(u1, u2), r(v1, v2)} | ((u1, u2), (v1, v2)) ∈ F} .
Observe that there is a MinEX D′ not containing any set in

F iff there is a simple path in G from s to t not using any pair
of edges in F .

Theorem 18. MINEX-IRREL(UCQ,L) is C-hard in fp-
combined (resp. ba-combined and combined) complexity
whenever OMQA of UCQ in L is C-hard in fp-combined (resp.
ba-combined and combined) complexity.

Proof. Let D be a database and (Q,Σ) be an OMQ. Take
F = ∅. Note that certainly

D |= (Q,Σ) iff there is a MinEX for (Q,Σ) in D that does
not contain any set in F.

In particular, note that this reduction works for fp-combined,
ba-combined, and combined (even data) complexity as we are
not altering neither D nor (Q,Σ).

Theorem 20. MINEX-REL(UCQ,L) can be decided by a
computation in NPIS-MINEX(UCQ,L).

Proof. Focus first on MINEX-REL(UCQ,L). Let D be a
database, let (Q,Σ) be a ontology-mediated query, and let ψ ∈
D be a fact. To check that there exists a MinEX containing ψ,
it suffices to guess a set of facts E (in NP) and then check via
an oracle that E is actually a MinEX. For the cases in which
the oracle call is in DP, a procedure in NP calling an oracle
for a problem in DP can be substituted by a procedure in NP
calling twice an oracle in NP (and hence we have membership
in ΣP

2 ).
For LARGE-MINEX(UCQ,L), the only difference is that

we need to guess a set of facts E such that |E| ≥ n.

Theorem 21. Let L be a FO-rewritable language over ex-
istential rules. Then, finding a MinEX for a OMQ (Q,Σ)
in a database D over L that contains a fact ψ is feasible in
polynomial time in data complexity.

Proof. By Theorem 11 we can compute all MinEXs in poly-
nomial time in data complexity. Having a set E, we can check
in polynomial time, whether there is a MinEX that contains a
distinguished fact ψ.

Theorem 22. MINEX-REL(UCQ,GF) is NP-hard in data
complexity.



Proof. The membership result is straightforward. For hard-
ness, we use the following NP-complete problem [27].
Problem: PATH-VIA-NODE
Input: A directed graph G = (V,E) and three vertices
s, t,m ∈ V .
Question: Is there a simple path from s to t in G that passes
through m?

We take

Σ = {p(X) ∧ r(X,Y )→ p(Y )} ,

D = {r(u, v) | (u, v) ∈ E, u, v 6= m}
∪{r(u,m1) | (u,m) ∈ E, u 6= m}
∪{r(m2, v) | (m, v) ∈ E,m 6= v}
∪{r(m1,m2)} ∪ {p(s)},

Q = p(t), and

ψ = r(m1,m2).

There is a MinEX D′ containing r(m1,m2) iff there is a
simple path in G from s to t that crosses m.

Theorem 23. MINEX-REL(UCQ,L) is ΣP
2 -hard for lan-

guages L ∈ {LF,AF,SF} in fp- and ba-combined complex-
ity.

Proof. We reduce the following ΣP
2 -complete problem to

MINEX-REL(UCQ,L∅) in fp-combined complexity, where
L∅ is an empty language. Therefore the results holds for any
language L.

Problem: QBFCNF
2,∀,¬

Input: A quantified Boolean formula Φ = ∃X∀Y ¬φ(X,Y ),
withX and Y disjoint sets of Boolean variables, and φ a 3CNF
formula.
Question: Is Φ valid?

Instances for problems MINEX-REL(UCQ,L)
and LARGE-MINEX(UCQ,L) are (D,Σ, Q, ψ) and
(D,Σ, Q, n), respectively. The ΣP

2 -hardness reductions
for MINEX-REL(UCQ,L) and LARGE-MINEX(UCQ,L)
build D and (Q,Σ) from Φ in the same way. Hence, we first
show how to build D and (Q,Σ) from Φ and then how to
obtain ψ and n from Φ.

From φ, we build the databaseDφ, the query (Qφ,Σφ), and
the fact ψφ as follows.

For each variable xi ∈ X , in Dφ there are facts:

val(xi, 0) val(xi, 1)

where xi is a constant representing the respective variable in
Φ, and 0 and 1 are constants representing Boolean values false
and true, respectively.

There are facts in Dφ that will be used to impose the con-
sistency of the truth assignments to the literals:

simlit(0, 0) opplit(0, 1)

simlit(1, 1) opplit(1, 0)

simlit(0, 2) simlit(2, 2)

simlit(1, 2) opplit(2, 2),

where 0 and 1 are constants with the same meaning as above,
2 is an additional constants used as a “jolly” (intuitively, it
will be used to bypass, in some circumstances, the check of
the satisfaction of φ(X,Y )).

There are facts in Dφ that will be used to select possible
ways of satisfying the clauses in the formula:

clsat(0, 1, 1) clsat(1, 1, 1)

clsat(0, 1, 0) clsat(1, 1, 0)

clsat(0, 0, 1) clsat(1, 0, 1)

clsat(2, 2, 2) clsat(1, 0, 0),

where 0, 1, and 2, are constants with the same meaning as
above. The predicate clsat(·, ·, ·) states what assignments to
the literals (and not to the variables) satisfy a clause. The
predicate clsat(2, 2, 2) intuitively will be used to bypass, in
some circumstances, the check of the satisfaction of φ(X,Y ).

simlit , opplit , and clsat , but clsat(2, 2, 2), are the struc-
tural facts, and we denote by DSt

φ the sets of structural facts
of Dφ.

In the program Σφ there is no TGD, hence it is trivially LF,
AF, and SF.

The query Qφ is constituted by the following pieces.
A first piece of the query checks that all the structural facts

are in the candidate MinEX:

config ≡
∧

p(c)∈DSt
φ

p(c).

A second piece of the query “reads” the assignment on the
variables inX encoded in the MinEX (and at the same time im-
poses that at least one fact between val(xi, 0) and val(xi, 1),
for each variable xi ∈ X , is in the candidate MinEX):

assignX ≡
n∧
i=1

val(xi, Ti).

Below we use the following notation: lj,k is the kth literal
in the jth clause, cj , and vj,k is the variable of lj,k.

A third piece of the query “copies” the assignment on each
variable xi onto the occurrences of xi as a positive literal in
the formula φ(X,Y ):

copy ≡
n∧
i=1

simlit(Ti, Tj,k),

where, in each predicate simlit(Ti, Tj,k), Tj,k is a variable for
the Boolean value of the literal lj,k = xi in φ(X,Y ). Observe
that, in order for copy to work properly, each variable xi must
appear as a positive literal in the clauses of φ(X,Y ) at least
once. This can be assumed without loss of generality, because
if xi always appears as a negative literal in all the clauses
of φ(X,Y ), then we can replace all the occurrences of the
negative literal ¬xi with the positive literal xi without altering
the satisfiability properties of φ(X,Y ).

A fourth piece of the query forces that the ground values
assigned to the various variables Tj,k simulating the assign-
ments to the literals are consistent. In the notation below,



`j,k ∼ `j′,k′ means that literals `j,k and `j′,k′ are both posi-
tive or negative, while `j,k 6∼ `j′,k′ means that one literal is
positive and the other is negative.

consist ≡
∧

∀(`j,k,`j′,k′ )
s.t. vj,k=vj′,k′∧
`j,k∼`j′,k′

simlit(Tj,k, Tj′,k′)

∧
∀(`j,k,`j′,k′ )

s.t. vj,k=vj′,k′∧
`j,k 6∼`j′,k′

opplit(Tj,k, Tj′,k′),

where Tj,k is a variable with the same meaning as above.
The last piece of the query checks φ(X,Y )’s satisfiability:

satisfied ≡
m∧
j=1

clsat(Tj,1, Tj,2, Tj,3).

To conclude, the query Qφ is:

Qφ = config , assignX , copy , consist , satisfied .

The fact ψφ required in the input of the problem
MINEX-REL(UCQ,L) is clsat(2, 2, 2).

Note that checking the validity of Φ = ∃X∀Y ¬φ(X,Y ) is
tantamount to checking whether there exists a truth assignment
σ̃X to X such that φ(X/σ̃X , Y ) is not satisfiable.

In the rest of the proof we show that there exists a truth
assignment σ̃X such that φ(X/σ̃X , Y ) is not satisfiable iff
there exists a MinEX for (Qφ,Σφ) in Dφ including ψφ and iff
there exists a MinEX of size nφ.

The intuition for the proof is the following. Since config and
assignX are in Qφ, a set of facts satisfying Qφ must include
the structural facts and at least one fact between val(xi, 0) and
val(xi, 1), for each variable xi ∈ X . Any set violating these
conditions is not a MinEX, because it does not entail Qφ.

Therefore, in order to prove that a MinEX for (Qφ,Σφ) in
Dφ including ψφ exists iff Φ is a ‘yes’-instance of QBFCNF

2,∀,¬,
it is sufficient to focus on the candidate MinEXs E satisfying
the conditions above.

We claim that every MinEX for (Qφ,Σφ) in Dφ contains
exactly one of val(xi, 0) and val(xi, 1) for each variable xi ∈
X . Indeed, let E be MinEX for (Qφ,Σφ) in Dφ. Therefore
E |= Qφ. Since the variables Ti’s are existentially quantified
in Qφ, exactly one of val(xi, 0) and val(xi, 1) is used in the
satisfaction of the query. Therefore, by the minimality of E,
exactly one of val(xi, 0) and val(xi, 1) is in E for each xi.
This implies that a MinEX E for (Qφ,Σφ) in Dφ encodes
a proper assignment for the Boolean variables X . Let σEX
denote the truth assignment encoded in E for the variables in
X .

If φ(X/σEX , Y ) is satisfiable, then E does not require to
include clsat(2, 2, 2) in order to entail Qφ.

If φ(X/σEX , Y ) is not satisfiable, then E requires to include
clsat(2, 2, 2) in order to entail Qφ.

Hence, there exists a truth assignment σ̃X such that
φ(X/σ̃X , Y ) is not satisfiable iff there exists a MinEX E
of (Qφ,Σφ) in Dφ including ψφ.

Theorem 24. MINEX-REL(UCQ,A) is PNEXP-hard in ba-
combined complexity.

Proof. We give a reduction from the following PNEXP-
complete problem [16]: Given a triple (m,TP1,TP2), where
m is an integer in unary notation, and TP1 and TP2 are two
tiling problems for the exponential square 2n × 2n, decide
whether there exists an initial conditions w of length m such
that TP1 has no solution with w and TP2 has a solution with
w.

For the tiling problems, we use the encoding of Lemma 30.
We create two copies for ΣTPi,|w| and DTPi for i = 1, 2
(in this reduction we do not use the facts from Dw, because
we need to build a reduction simulating a test for all initial
conditions w of length m), using disjoint predicates (we index
them with superscript i). Let then

• Σ1 = ΣTP1,|w|
1, D1 = DTP1

1, and

• Σ2 = ΣTP2,|w|
2, D2 = DTP2

2,

We now let the program

Σ = Σ1 ∪ Σ2 ∪
{initj(t), initj(t

′)→ tiling1 |
for all 0 ≤ j < m and distinct tiles t and t′} ∪

{init1(W1), . . . , initm−1(Wm−1)→ init_all},

and the database

D = D1 ∪D2 ∪
{initj(t) | for all 0 ≤ j < m and tiles t} ∪
{tiling1}.

The query is

Q = D1, D2, init_all , tiling1, tiling2,

where symbols D1 and D2 in the query mean the conjunction
of all database facts from D1 and D2, respectively.

To conclude the reduction, the fact ψ = tiling1.
Let us consider the possible (minimal) explanations. All

the explanations have to include all facts from D1 and D2,
otherwise the query would not be entailed. Furthermore, an
explanation E such that {initj(t), initj(t

′), tiling1} ⊆ E,
for some 0 ≤ j < m and two distinct tiles t and t′, is not
minimal (and hence not a MinEX), because facts initj(t) and
initj(t

′) would be enough to entail atom tiling1 via the rule
‘initj(t), initj(t

′)→ tiling1’.
Therefore, all sets of facts candidate to be MinEXs includ-

ing ψ = tiling1 have to include at most one fact initj(t), for
each 0 ≤ j < m. Moreover, since in the query there is the
atom init_all , all sets of facts candidate to be MinEXs have to
include at least one fact initj(t), for each 0 ≤ j < m, to entail
the query. Thus, all sets of facts candidate to be MinEXs in-
cluding ψ = tiling1 have to include exactly one fact initj(t),
for each 0 ≤ j < m. This means that these MinEXs encode a
proper initial condition w for the tiling problems.

Observe that a set of facts encoding an initial condition w
entails the atom tiling i via the mediation of the ontology Σi

iff TP i has a solution with initial condition w.



If TP1 has a solution with w, then tiling1 can be derived
from the rules in Σ1, and hence there is no need to include
the atom tiling1 in the explanation to entail the query. Hence,
there exists a MinEX including ψ = tiling1 iff there exists an
initial condition w such that TP1 has no solution with w and
TP2 has a solution with w.

To conclude, for the problem LARGE-MINEX, we define
the size threshold n = m+ 1.

Theorem 27. The complexity results in Table 4
and Table 5 hold for SMALL-MINEX(UCQ,L) and
LARGE-MINEX(UCQ,L), respectively.

Proof. First, we present the proofs of the results for
SMALL-MINEX(UCQ,L).
Membership Results. The proof of Theorem 15 can be
adapted to show that SMALL-MINEX(UCQ,L) be decided
in NPC , where C is the complexity of query answering. In
particular, we can guess a subset E of the database of size at
most n in NP and then check whether it entails the OMQ in C.
Note that if E entails the OMQ, then it contains as a subset a
set that of size at most n that is a MinEX.

By Theorem 11, we have that, when L is FO-rewritable and
Σ is from L, we can compute all MinEXs for (Q,Σ) in D
in polynomial time in data complexity. Having this set of all
MinEXs, we can check whether there is a MinEX of the size
smaller than n in polynomial time. Thus, in this case, finding
a MinEX of size at most n is in polynomial time.
Hardness Results. By Lemma 28, we have that
SMALL-MINEX(UCQ,GF) is NP-hard in data complexity.

The other hardness results follow from the hardness of query
answering, presented in Table 1.

Now we present the proofs of the results for
LARGE-MINEX(UCQ,L).
Membership Results. The proof of Theorem 20 can be
adapted to show that LARGE-MINEX(UCQ,L) be decided
in NP, calling an oracle for IS-MINEX(UCQ,L). In partic-
ular, given a number n, we guess a subset E of the database
of size at least n in NP and check whether it is a MinEX by
calling an oracle for IS-MINEX(UCQ,L).

When L is FO-rewritable, similarly as for
SMALL-MINEX(UCQ,L), by Theorem 11, we can
compute all all MinEXs in polynomial time. Then we can
decided in polynomial time whether there is a MinEX of size
at least n.
Hardness Results. By Lemma 29, we have that
LARGE-MINEX(UCQ,GF) is NP-hard in data complexity.
This implies that, for all not FO-rewritable languages L, the
results in data complexity for LARGE-MINEX(UCQ,L) hold
in Table 5.

The proof of Theorem 23 can be adapted to show that
LARGE-MINEX(UCQ,L) is ΣP

2 -hard for languages L ∈
{LF,AF,SF} in fp-combined complexity as follows. If we
take n to be |DSt

φ |+|X|+1, we have that there exists a truth as-
signment σ̃X such that φ(X/σ̃X , Y ) is not satisfiable iff there
exists a MinEX of (Qφ,Σφ) in Dφ of size n. This implies
that LARGE-MINEX(UCQ,L) is ΣP

2 -hard in fp-combined
complexity for all considered languages L.

The proof of Theorem 24 can be adapted to show that
LARGE-MINEX(UCQ,A) is PNEXP-hard in ba-combined
complexity as follows. If we take n to be m + 1, we have
that there exists an initial condition w such that TP1 has no
solution with w and TP2 has a solution with w iff there is
a MinEX of size larger than n. Note that this implies that
LARGE-MINEX(UCQ,A) is PNEXP-hard in combined com-
plexity too.

The other hardness results for LARGE-MINEX(UCQ,L)
in Theorem 24 follow from the hardness of query answering,
presented in Table 1.

Lemma 28. SMALL-MINEX(UCQ,GF) is NP-hard in data
complexity.

Proof. We prove the NP-hardness via a reduction from the
following NP-complete problem [25].
Problem: VERTEX-COVER
Input: A pair (G, k), where G is an undirected graph G =
(V,E) and k is an integer.
Question: Is there there a vertex cover in G of size at most k?

From the pair (G, k), we build the database D and the
ontology-mediated query (Q,Σ) as follows.

In D we have facts encoding the graph G via an incidence
graph, i.e., we have facts inc(v, e) if edge e is attached to
vertex v. We have facts vc(v) for each of the vertex v of G.
And some additional facts that will be exploited to test whether
the MinEX encodes a vertex cover for G. More formally,

D ={vc(vi) | vi ∈ V }
∪{inc(vi, ej) | edge ej is attached to vertex vi}
∪{chain(ei, ei+1) | 1 ≤ i ≤ |E| − 1}
∪{chain(s, e1), chain(em, t)}
∪{all(s), cov(t)}.

The set of TGDs is as follows:

Σ = {vc(V ) ∧ inc(V,E)→ cov(E),

all(E) ∧ chain(E,F ) ∧ cov(F )→ all(F )} .

The query is Q = all(t).
The size threshold k for the size of the MinEX is: k =

|E|+ 1 + |E|+ 2 + c. Some comments on how k is computed:
the first part |E| + 1 is the number of facts chain (i.e., all
of them) that needs to be in the MinEX in order to entail Q;
the part |E| is the number of facts inc needed in the MinEX
to entail Q (we have exactly one such fact for each edge, we
need at least one per edge to entail the query, and we do not
need more than one to guarantee minimality); the part 2 is for
the two facts all(s), cov(t); and c is for the size of the vertex
cover.

It can be shown that there exists a vertex cover of size at
most c in G iff there is a MinEX for (Q,Σ) in D of size at
most k.

Lemma 29. LARGE-MINEX(UCQ,GF) is NP-hard in data
complexity.



Proof. We use the NP-hard HAMILTONIAN PATH decision
problem in the reduction [20]. Let G = (V,E) be a directed
graph with m = |V |.

We take

Σ = {p(X) ∧ r(X,Y )→ p(Y )} ,

D = {r(u, v) | (u, v) ∈ E}
∪{r(s, v) | v ∈ V } ∪ {r(v, t) | v ∈ V }
∪{p(s)},

Q = p(t),

where s and t are two new vertices. Then there is a Hamilto-
nian path in G iff there is a MinEX of size at least m+ 1.

Lemma 30. An instance TP of the tiling problem for the
2n × 2n-square given n ≥ 0, relations H and V , and an
initial tiling condition w = w0 . . . wm−1, is reducible to
BCQ answering from acyclic TGDs in polynomial time such
that an atom ‘tiling’ is entailed from ΣTP,|w| ∪DTP ∪Dw,
where ΣTP,|w| is constructed from TP and |w|, DTP from
TP , Dw = {initj(wj) | 0 ≤ j ≤ m}, iff TP has a solution
with w.

Proof. We report the construction provided in [16]. Con-
stants t1, . . . , tk represent the tiles, and we use database
facts h(ti, tj) and v(ti′ , tj′) for all pairs of legal adja-
cent tiles (ti, tj)∈H and (ti′ , tj′)∈V , respectively (called
domino facts).

The tiling problem for the square 2n×2n of size 2n is re-
duced by divide and conquer to tiling problems for smaller
squares, which are then combined to a tiling for the given
square. To this end, every square X of size 2n, n > 0, is
composed of four subsquares X1, X2, X3, X4 of size 2n−1

each that constitute the north-west, north-east, south-west, and
south-east part of X , respectively. Obviously, a correct tiling
of X induces a correct tiling of each Xi. Moreover, it also
induces correct tilings for all other subsquares of size 2n−1

that are possible, if we refine eachXi toXi,1, Xi,2, Xi,3, Xi,4,
e.g., X1,2, X2,1, X1,4, X2,3; there are 5 such subsquares. Con-
versely, if a tiling of X tiles X1, . . . , X4 and all the other 5
subsquares correctly, then it is a correct tiling of X .

This can be readily expressed by acyclic TGDs as follows,
where a predicate tilingi(X,X1, X2, X3, X4) encodes that
X is a correct tiling of the square of size 2i, and X1, . . . , X4

are correct tilings of the subsquares of size 2i−1. For i = 1,
we set up

h(X1, X2), v(X2, X3),
h(X3, X4), v(X3, X4)→ ∃Xtiling1(X,X1, X2, X3, X4) .

This rule generates a null value to name each correct tiling of
the square of size 2 = 21. For the size 2i, i > 1, the rule to
name a correct tiling is

tilingi−1(X1, θ1,1, θ1,2, θ1,3, θ1,4),
. . .
tilingi−1(X9, θ9,1, θ9,2, θ9,3, θ9,4)

→ ∃Xtilingi(X,X1, X2, X3, X4) ,

where θj,k = Xj,k, for 1 ≤ j, k ≤ 4 and θj,1, θj,2, θj,3, θj,4,
for 4 < j ≤ 9 describes the other subsquares of size 2i−1

(e.g., for j = 5, θ5,1 = X1,2, θ5,2 = X2,1, θ5,3 = X1,4,
θ5,4 = X2,3).

It is not hard to show by an inductive argument that
the database DTP = {h(ti, tj) | (ti, tj) ∈ H} ∪
{v(ti′ , tj′) | (ti′ , tj′) ∈ V } of all domino facts entails a fact
tilingi(v, v1, v2, v3, v4) via the mediation of the program Σ
iff the square of size 2i has correct tiling named by v and com-
posed of correct tilings of its subsquares named by v1, ..., v4,
respectively.

By adding a query TGD like the following

tilingn(X,X1, X2, X3, X4)→ tiling,

it holds that DTP entails the OMQ (Σ, tiling) iff the tiling
problem has a solution.

Notice that the predicate arities are bounded, so the result
holds for this special case.

We now extend the encoding to respect an initial tiling
condition expressed by facts initj(t) stated in the lemma. To
this end, we introduce predicates btileji (X,T ) for 0 ≤ j ≤ m,
1 ≤ i ≤ n that allow us to retrieve the tile T at position (j, 0)
of the tiling X of the 2i× 2i square. We set up

tiling1(X,X1, X2, X3, X4)→ btile0
1(X,X3)

tiling1(X,X1, X2, X3, X4)→ btile1
1(X,X4)

and, for 1 < j ≤ m,

tilingi(X,X1, X2, X3, X4),
btileji−1(X3, T )→ btile01(X,T ) if j < 2i−1,

tilingi(X,X1, X2, X3, X4),

btilej−2i−1

i−1 (X3, T )→ btile01(X,T ) if 2i−1 ≤ j < 2i.

At the base case, i.e., for i = 1, the desired tile can be
retrieved straight (for j = 0, from southwest and for j = 1,
from southeast); for larger squares, the rules navigate to the
respective subsquare to continue the retrieval.

It can be shown that btileji (v, t) is in the chase of Σ′ ∪D,
where Σ′ is Σ enriched with the TGDs above, iff the correct
tiling v of the square of size 2i has tile t at position (j, 0).

To check the initial tiling, we now change the query TGD
to

btile0
n(X,T0), init0(T0),

btile0
n(X,T1), init0(T1),

. . .
btilemn (X,Tm), init0(Tm)→ tiling.

Note that these TGDs do only depend on the length |w| of
w, but not on its content. It then holds that D′ = DTP ∪
Dw, which consists of the domino facts and the initial tiling
condition w, entails the query atom ‘tiling’ via the mediation
of the the TGDs above iff the tiling problem instance TP has
a solution.
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