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Abstract—Bluetooth (BR/EDR) is a pervasive technology for
wireless communication used by billions of devices. The Bluetooth
standard includes a legacy authentication procedure and a secure
authentication procedure, allowing devices to authenticate to
each other using a long term key. Those procedures are used
during pairing and secure connection establishment to prevent
impersonation attacks. In this paper, we show that the Bluetooth
specification contains vulnerabilities enabling to perform imper-
sonation attacks during secure connection establishment. Such
vulnerabilities include the lack of mandatory mutual authenti-
cation, overly permissive role switching, and an authentication
procedure downgrade. We describe each vulnerability in detail,
and we exploit them to design, implement, and evaluate master
and slave impersonation attacks on both the legacy authentication
procedure and the secure authentication procedure. We refer to
our attacks as Bluetooth Impersonation AttackS (BIAS).

Our attacks are standard compliant, and are therefore effective
against any standard compliant Bluetooth device regardless the
Bluetooth version, the security mode (e.g., Secure Connections),
the device manufacturer, and the implementation details. Our
attacks are stealthy because the Bluetooth standard does not
require to notify end users about the outcome of an authentication
procedure, or the lack of mutual authentication. To confirm
that the BIAS attacks are practical, we successfully conduct
them against 31 Bluetooth devices (28 unique Bluetooth chips)
from major hardware and software vendors, implementing all
the major Bluetooth versions, including Apple, Qualcomm, Intel,
Cypress, Broadcom, Samsung, and CSR.

Index Terms—Bluetooth, Authentication, Impersonation, At-
tacks, Wireless Security

I. INTRODUCTION

Bluetooth is a pervasive technology for low power wireless

networks. Bluetooth provides Bluetooth BR/EDR and Bluetooth

Low Energy (BLE) wireless stacks. In this paper we focus on

Bluetooth BR/EDR and refer to it as Bluetooth. Bluetooth is

deployed in billions of devices such as mobile phones, IoT

devices, laptops, cars, medical devices and industrial devices.

Bluetooth is regulated by the Bluetooth Special Interest Group

(SIG), that maintains and reviews the Bluetooth standard [6].

The standard is freely available and it contains around 3000

pages. A single vulnerability in a security mechanism defined

in the standard translates into billions of exploitable devices.

The Bluetooth standard specifies a security architecture

that provides confidentially and integrity at the link layer [6,

p. 1646]. Two Bluetooth devices that have never met before

and want to establish a secure connection, first have to pair.

While pairing, the devices agree upon and authenticate a long

term key. This key is then used to derive session keys for

subsequent secure connections. Two Bluetooth devices are

expected to pair once and securely connect multiple times.

During secure connection establishment the devices have to

authenticate the possession of the long term key that they have

established while pairing.

In a recent paper, researchers showed that Bluetooth secure

connection establishment is vulnerable to man-in-the-middle

attacks, even if the victims are already paired [4]. In that work

however, the attack assumes that there is a legitimate secure

connection to break into. The attacker cannot target isolated

Bluetooth devices, because the attacker cannot prove possession

of the victims’ long term key during secure connection

establishment.

In this paper, we demonstrate that the Bluetooth standard

contains vulnerabilities enabling an attacker to imperson-

ate a device and to establish a secure connection with a

victim, without possessing the long term key shared by

the impersonated device and the victim. Our attacks target

the authentication phase of secure connection establishment.

In particular we attack the legacy authentication procedure
used for Legacy Secure Connections (LSC) and the secure
authentication procedure used for Secure Connections (SC).

The attacker does not have to be present when the victim

and the impersonated device are paring, and does not need to

observe any previous communication between them. We show

how to exploit the identified vulnerabilities to mount master and

slave impersonation attacks on both the legacy authentication

procedure and the secure authentication procedure. Our attacks

work even when the victims are using Bluetooth’s strongest

security modes, e.g., SSP and Secure Connections. Our attacks

target the standardized Bluetooth authentication procedure, and

are therefore effective against any standard compliant Bluetooth

device. We refer to our attacks as Bluetooth Impersonation
Attacks (BIAS).

Our proof of concept implementation leverages a Bluetooth

development kit (described in detail in Section VI) to send the

required messages, however any device with full access to the

Bluetooth firmware and a Bluetooth baseband transceiver can

perform the BIAS attacks. We use our implementation to verify

that the vulnerabilities in the authentication mechanisms are

indeed present in real devices, and not just a quirk of the stan-

dard. We successfully attack 31 Bluetooth devices (28 unique

Bluetooth chips) from major hardware and software vendors,

representing all the major Bluetooth versions, including Apple,

Qualcomm, Intel, Cypress, Broadcom, Samsung, and CSR.



We summarize our main contributions as follows:

• We present the BIAS attacks, the first attacks capable

of bypassing Bluetooth’s authentication procedure during

secure connection establishment. Our attacks allow to

impersonate Bluetooth master and slave devices and

establish secure connections without knowing the long

term key shared between the victim and the impersonated

device. Our attacks exploit several flaws that we identify in

the Bluetooth standard, such as lack of integrity protection,

encryption, and mutual authentication. Our attacks are

standard compliant, they are effective against Legacy

Secure Connections and Secure Connections, and they are

stealthy, i.e., no messages are show to the end user.

• We present our BIAS toolkit, that automates the con-

duction of the BIAS attacks on Bluetooth. Our toolkit

configures an attack device in order to support several

features, such as features impersonation, role switching,

unilateral authentication, and Secure Connections down-

grade.

• To demonstrate that the BIAS attacks are a serious threat,

we use our implementation to successfully attack 16

Legacy Secure Connections and 15 Secure Connections

devices, evaluating a total of 28 unique Bluetooth chips.

Our device sample includes diverse software and hardware

vendors, and all major Bluetooth versions.

We disclosed the BIAS attacks and related mitigations to

the Bluetooth SIG in December 2019. The Bluetooth SIG

acknowledged our findings and issued an errata to update the

standard.

The rest of the paper is organized as follows: in Section II

we introduce the Bluetooth stack. In Section III we present

our system and adversary model and in Section IV we present

our BIAS attacks on Legacy Secure Connections and Secure

Connections. In Section V we discuss an alternative BIAS

reflection attacks on Secure Connections. Our implementation

is discussed in Section VI. We evaluate the impact and

effectiveness of our attacks in Section VII and we discuss

the attacks and our proposed countermeasures in Section VIII.

We present the related work in Section IX. We conclude the

paper in Section X.

II. BACKGROUND

A. Bluetooth BR/EDR

Bluetooth Basic Rate Extended Data Rate (BR/EDR), re-

ferred in this section as Bluetooth, is a wireless technology

for low power and short range communication, and it is the

de facto standard for wireless personal area network (PAN).

Bluetooth at the physical layer uses the 2.4 GHz ISM band with

frequency hopping spread spectrum. Two connected Bluetooth

devices hop between 79 channels at regular time interval, and

each channel has a bandwidth of 1 MHz. Bluetooth allows to

use adaptive frequency hopping to mitigate interference with

wireless devices in range. A Bluetooth network is composed of

a master device that coordinates and synchronizes up to seven

slave devices. Two devices can switch master and slave roles

anytime after establishing an Asynchronous Connection-Less

(ACL) physical link, i.e., after baseband paging [6, p. 2100].

The specification of Bluetooth is freely available [6], and it

is maintained by the Bluetooth SIG. The specification divides

the Bluetooth stack into two main components the host and

the controller and specifies a standard interface them, i.e., the

Host Controller Interface (HCI). The standard specifies also

an HCI protocol that is used by the host to send commands

to the controller, and by the controller sends event to the

host. The host is implemented by the device main operating

system, while the controller is implemented by the firmware

of the device Bluetooth chip. The standard does not provide

a reference implementation for the host and the controller,

and the Bluetooth vendors typically use their proprietary

implementations.

The Bluetooth standard defines mechanisms to protect a

Bluetooth connection at the link layer using Legacy Secure

Connections procedures or Secure Connections procedures.

Pairing is used by two Bluetooth devices to agree upon a long

term key. The most secure and widespread pairing mechanism

is Secure Simple Pairing (SSP), which uses Elliptic Curve

Diffie Hellman (ECDH) for key agreement [6, p. 1691]. If

the pairing devices support Secure Connections, then SSP is

performed on the P-256 curve, otherwise on the P-192 curve.

After pairing, and according to the security procedures in use,

the devices compute a long term key from the ECDH shared

secret, and they mutually authenticate such key. Pairing is

performed over the air, and it uses the Link Manager Protocol

(LMP).

Once two paired devices share a long term key, then

they can establish multiple secure connections. Each secure

connection uses a different session key, that is computed from

the long term key and other public parameters. Bluetooth secure

connection establishment is neither encrypted nor integrity

protected, and it is used by two devices to exchange their

capabilities, authenticate the long term key, compute the session

key, and activate the secure connection. If the connecting

devices support Secure Connections, then the secure connection

establishment uses the secure authentication procedure and

the connection is encrypted and integrity protected using

AES CCM. Otherwise, with Legacy Secure Connections, the

secure connection establishment uses the legacy authentication

procedure, and the connection is encrypted using the E0 stream

cipher. The secure connection establishment is conducted over

the air, and it uses the LMP protocol.

III. SYSTEM AND ATTACKER MODEL

In this section we define our system and attacker models,

as well as the notation we use in the rest of the paper.

A. System Model

We consider two victim devices, Alice and Bob, who are

using a secure Bluetooth link to communicate (see Figure 1).

Note that we do not require both victims to be present at

the time of the attack, we only assume that two legitimate

devices exist and have communicated in the past. We assume



Fig. 1: Bluetooth Impersonation AttackS (BIAS) overview.

Alice and Bob, the victims, share a long term key that is

unknown to the attacker. The goal of the attacker (Charlie) is to

establish a “secure connection” with Bob while impersonating

Alice, or Alice while impersonating Bob. As Alice and Bob

have different Bluetooth roles, the attacker cannot use the same

impersonation attack for both.

that Alice and Bob already share a long term key, known as

the link key. The key has been agreed by having completed

Bluetooth’s Secure Simple Pairing (either using Legacy Secure

Connections or Secure Connections), and by having used a

strong association model (such as passkey entry).

Without loss of generality, we assume that Bob is the

Bluetooth master and Alice is the Bluetooth slave. Bob wants

to establish a secure connection with Alice using the existing

key described above. Conversely, Alice is willing to accept a

connection from Bob using this key. Our impersonation attacks

take place during secure connection establishment, that is when

Alice and Bob exchange their capabilities, authenticate the long

term key, compute the session key, and activate encryption. The

secure connection is established either using Legacy Secure

Connections or Secure Connections, according the capabilities

of Alice and Bob. In both cases we assume that all the security

primitives in use, such as AES and HMAC, are perfectly secure.

Alice and Bob can have established previous secure connections

using the long term key, although this is not a requirement.

B. Attacker Model

The attacker goal is to establish a secure Bluetooth con-

nection with Alice (or Bob), pretending to be Bob (or Alice).

In Section IV we show how this can be accomplished by

impersonating either Alice or Bob.

The attacker (Charlie) does not posses the long term key

shared by Alice and Bob, and he does not observe them

while they securely pair. Charlie is capable of eavesdropping,

decoding and manipulating unencrypted packets, as well as

jamming the Bluetooth spectrum. Charlie knows the public

information about Alice and Bob, such as their Bluetooth names,

Bluetooth addresses, protocol version numbers, and capabilities.

As secure connection establishment is not encrypted, Charlie

can collect Alice and Bob’s characteristics by eavesdropping

their communication. After the secure connection between

Alice and Bob is already established, Charlie can jam the

Bluetooth spectrum to force Alice and Bob to disconnect, and

re-establish a secure connection.

C. Notation

KL indicates the long term key resulting from pairing, know

as the link key. Bluetooth authentication procedures involve

challenge response protocols, and we indicate a challenge sent

by a verifier with C, and a response from a prover with R. We

indicate with HL() the hash function used for Legacy Secure

Connections authentication, and with HS() the hash function

used for Secure Connections authentication. Those functions

generate R from a number of parameters, including C. We

indicate the concatenation operator with ‖ and with rand(n) a

function to generate n random bytes. A Bluetooth address is

indicated with BTADD. We use M, S, A, B and C subscripts

to indicate quantities related to the master, slave, Alice, Bob

and Charlie. For example, the master sends CM to the slave,

and the slave responds by sending RS back.

IV. BLUETOOTH IMPERSONATION ATTACKS (BIAS)

Alice and Bob pair once to agree upon KL, and then

authenticate that they posses KL upon secure connection es-

tablishment using either Legacy Secure Connections or Secure

Connections. The 3-tuple that uniquely identifies their secure

bond is (KL, BTADDA, BTADDB). When impersonating

Alice or Bob, Charlie can change his Bluetooth address to

BTADDA or BTADDB , but he cannot prove the ownership of

KL. This is the fundamental assumption behind Bluetooth’s

authentication guarantees, and this assumption should protect

against impersonation attacks.

In our work we present Bluetooth impersonation attacks

exploiting that: i) Bluetooth secure connection establishment

is neither encrypted nor integrity protected, ii) Legacy Secure

Connections secure connection establishment does not require

mutual authentication, iii) a Bluetooth device can perform a role

switch anytime after baseband paging, iv) devices who paired

using Secure Connections can use Legacy Secure Connections

during secure connection establishment. As our impersonation

attacks are at the architectural level of Bluetooth, they are

effective against any standard compliant Bluetooth device. Our

attacks are also stealthy, because the standard does not require

to notify the user about (the lack of) mutual authentication

and the usage of Secure Connections. We call our attacks

Bluetooth Impersonation AttackS (BIAS).
To conduct the BIAS attacks, Charlie targets Legacy Secure

Connections and Secure Connections authentication procedures

during secure connection establishment. Both procedures

authenticate KL using a challenge response protocol, and the

procedure selection depends on Alice and Bob’ supported

features. The standard claims that both procedures protect

secure connection establishment against impersonation attacks,

as an attacker who does not know KL cannot provide a

correct response to a challenge. The presented BIAS attacks

on Legacy Secure Connections (see Section IV-A) and Secure

Connections (see Section IV-B), demonstrate that Bluetooth

secure connection establishment is vulnerable to master and

slave impersonation attacks.



Alice (slave)

A

Charlie (master)

C

Alice shares KL with Bob and not with Charlie

Connection request as Bob

Accept connection with Bob

Auth

CM = rand(16)

RS = HL(KL, CM , BTADDS)

Session key negotiation and secure link activation

Charlie impersonates Bob (the master)

Fig. 2: BIAS master impersonation attack on Bluetooth legacy

authentication procedure. Charlie establishes a connection with

Alice pretending to be Bob. Charlie sends CM to Alice, gets RS

from Alice. As the Bluetooth standard does not mandate to use

the legacy authentication procedure mutually while establishing

a secure connection, Alice does not have to authenticate that

Charlie knows KL.

A. BIAS Attacks on Legacy Secure Connections

Anytime Alice (slave) and Bob (master) want to establish

a secure connection they use a procedure to authenticate KL,

and the standard defines such procedure as legacy authen-
tication procedure [6, p. 558]. The procedure is described

in Figure 10 and works as follows. The master computes

and sends CM to the slave. The slave computes the response

RS = HL(KL, CM ,BTADDS), and sends it to the master.

The master then computes a response using the same function

with the same inputs, and compares it against RS . If the values

are equal, then the master concludes that he is sharing the

same KL with the slave.

The legacy authentication procedure provides unilateral

authentication. When Alice and Bob are pairing such procedure

is used two times to achieve mutual authentication, i.e., Alice

authenticates Bob and then Bob authenticates Alice. A central

issue is that the Bluetooth standard does not require to use
the legacy authentication procedure mutually during secure
connection establishment, see [6, p. 559] and [6, p. 1671]. From

our experiments, presented in Section VII, we confirm that all

Legacy Secure Connections devices that we tested are using

the legacy authentication procedure unilaterally during secure

connection establishment as only the master authenticates the

slave. Thus, if Charlie can impersonate the master, then he can

complete secure connection establishment without having to

authenticate to the slave.

Charlie impersonates Bob (master), and completes the secure

connection establishment with Alice as described in Figure 2.

Charlie (slave)

C

Bob (master)

B

Bob shares KL with Alice and not with Charlie

Connection request to Alice

Switch

Slot offset

Role switch request as Alice

Accepted role switch

Charlie is the master

Accept connection as Alice

Auth

CM = rand(16)

RS = HL(KL, CM , BTADDS)

Session key negotiation and secure link activation

Charlie impersonates Alice (the slave)

Fig. 3: BIAS slave impersonation attack on Bluetooth legacy

authentication procedure. Bob requests a connection to Charlie

who is impersonating Alice, and Charlie requests a role switch

before accepting the connection request. Bob accepts the

role switch and becomes the network slave (prover). Charlie,

the network master (verifier), sends CM to Bob, and Bob

authenticates to Charlie by sending him RS . Bob does not have

to authenticate that Charlie knows KL.

Charlie requests a connection to Alice pretending to be Bob,

and Alice accepts the connection. Charlie connects as Bob

by forging Bob’s addresses and capabilities that are public.

Charlie sends CM to Alice, and Alice computes RS based

on KL, CM , and BTADDS , and sends RS to Charlie. Then,

Charlie completes the session key negotiation and secure link

activation as Bob, without having to prove he owns KL to

Alice.

Charlie can also impersonate the slave by maliciously taking

advantage of Bluetooth’s role switch procedure. Bluetooth

uses a master slave medium access protocol, to keep the

master and the slave synchronized. The standard specifies

that the master and slave roles can be switched anytime after

baseband paging is completed [6, p. 595]. This is problematic

because Charlie can use this to impersonate the slave device by

initiating a role switch and become the master (verifier) before

the unilateral authentication procedure is started, and then

complete the secure connection establishment without having

to authenticate. In our experiments we are able to reliably

perform this adversarial role switch for all except one of our

tested devices (more details in Section VII). This feature of

Bluetooth was never investigated in a security context, and is

thus an entirely novel attack technique.



Charlie impersonates Alice (slave), and completes the secure

connection establishment with Bob as in Figure 3. Bob requests

a connection to Charlie (posing as Alice). Charlie sends a slot

offset synchronization packet and then a role switch request to

Bob. The role switch procedure is not authenticated, but Bob

has to accept the request to be standard compliant. Charlie (the

new master), accepts the connection and immediately starts the

unilateral legacy authentication procedure by sending CM to

Bob. Bob authenticates to Charlie by sending him RS . Then,

Charlie completes the session key negotiation and secure link

activation as Alice, without having to authenticate KL to Bob.

In summary, Charlie is capable of impersonating both the

master and slave for every possible usage of unilateral legacy

authentication. The root problems are that the specification of

Bluetooth Legacy Secure Connections does not mandate mutual

authentication for secure connection establishment and that role

switch is allowed anytime after baseband paging. From our

experiments we see that the legacy authentication procedure is

used mutually while pairing, e.g., Alice authenticates to Bob

first and then Bob authenticates to Alice. This does not protect

against our impersonation attacks, as they are conducted during

secure connection establishment and not during pairing.

B. BIAS Downgrade Attacks on Secure Connections

In this section we describe how Charlie can impersonate

Secure Connections devices using standard compliant down-

grade attacks. Secure Connections uses stronger cryptographic

primitives than Legacy Security Connections, and is considered

the most secure way to pair and establish secure connections.

All Secure Connections devices that we test are vulnerable to

our downgrade attacks (see Section VII).

Secure Connections provides a mutual authentication pro-

cedure, known in the standard as the secure authentication
procedure [6, p. 559]. The procedure is described in Figure 11

and works as follows. Alice (slave) and Bob (master) exchange

CS and CM in no particular order. Both then compute

RM‖RS = HS(KL,BTADDM ,BTADDS , CM , CS),

using the HS() hash function. The Bluetooth standard is not

quite clear regarding the order of the responses. In [6, p. 559]

the slave should send RS first, but in [6, p. 1673] the master

sends RM first. In our experiments, the slave always sends RS

first and we adopt this convention. After the mutual computation

of the responses, Alice sends RS to Bob and Bob sends RM

to Alice. Alice and Bob verify that the responses that they get

match the ones that they compute. If the both verifications are

successful then KL is mutually authenticated.

Our BIAS attack on Secure Connections is enabled by

a downgrade vulnerability in the specification of Secure

Connections. In particular, the Bluetooth standard does not
require two devices that used Secure Connections for pairing
to always use Secure Connections for secure connection
establishment, and does not protect the negotiation of Secure
Connections. In other words, Alice and Bob, even if they

support and they already paired using Secure Connections, can

establish secure connections using Legacy Secure Connections.

Alice (slave)

A

Charlie (master)

C

Alice shares KL with Bob and not with Charlie

Alice and Bob support Secure Connections

Secure Connections not supported

Secure Connections supported

Downgrade to Legacy Secure Connections

Connection request as Bob

Accept connection with Bob

Auth

CM = rand(16)

RS = HL(KL, CM , BTADDS)

Session key negotiation and secure link activation

Charlie impersonates Bob (the master)

Fig. 4: BIAS master impersonation downgrade attack on

Bluetooth secure authentication procedure. Secure connection

establishment, including feature exchange, is neither encrypted

nor integrity protected. During feature exchange Charlie, as

Bob, declares that Secure Connections is not supported and

Alice declares that Secure Connections is supported. The secure

connection establishment is downgraded to Legacy Secure

Connections. Charlie establishes a connection with Alice as

Bob. Charlie, sends CM to Alice, and gets RS from Alice.

Charlie starts the session key negotiation without having to

authenticate to Alice.

Charlie takes advantage of these vulnerabilities to pretend

that the impersonated device (either Alice or Bob) does not

support Secure Connections to downgrade secure connection

establishment with the victim to Legacy Secure Connections. As

a result of the downgrade, Charlie and the victim use the legacy

authentication procedure rather than the secure authentication

procedure, and Charlie can bypass secure connection establish-

ment authentication as in IV-A. In the following paragraphs

we describe the master and slave downgrade attacks on Secure

Connections in detail.

Assuming that Alice and Bob have already paired and they

support Secure Connections, then Charlie impersonates Bob

(master) as described in Figure 4. During the feature exchange

phase Charlie, pretending to be Bob, tells Alice that Secure

Connections is not supported. Even if Alice tells Charlie

that she does support Secure Connections, secure connection

establishment is downgraded to Legacy Secure Connections.

Then, Charlie establishes a connection with Alice as Bob.



Charlie (slave)

C

Bob (master)

B

Bob shares KL with Alice and not with Charlie

Alice and Bob support Secure Connections

Secure Connections supported

Secure Connections not supported

Downgrade to Legacy Secure Connections

Connection request to Alice

Switch

Slot offset

Role switch request as Alice

Accepted role switch

Charlie is the master

Accept connection as Alice

Auth

CM = rand(16)

RS = HL(KL, CM , BTADDS)

Session key negotiation and secure link activation

Charlie impersonates Alice (the slave)

Fig. 5: BIAS slave impersonation downgrade attack on

Bluetooth secure authentication procedure. Secure connection

establishment, including feature exchange, is neither encrypted

nor integrity protected. During feature exchange Charlie, as

Alice, declares that Secure Connections is not supported

and Bob declares that Secure Connections is supported. The

secure connection establishment is downgraded to Legacy

Secure Connections. Bob establishes a connection with Charlie.

Charlie, sends CM to Bob, and gets RS from Bob. Charlie

starts the session key negotiation without having to authenticate

to Bob.

Charlie, being the only verifier, performs unilateral legacy

authentication, and he establishes a secure connection without

having to authenticate to Alice.

Charlie impersonates Alice (slave) as described in Figure 5.

During the feature exchange phase, Bob tells Alice that he

supports Secure Connections. Charlie as Alice, tells Bob that

he does not support Secure Connections. The secure connection

establishment is downgraded to Legacy Secure Connections.

Bob sends a connection request to Alice and Charlie performs

a role switch and becomes the master, before accepting the

connection request. Charlie, being the only verifier, performs

unilateral legacy authentication, and he establishes a secure

connection without having to authenticate to Bob.

Alice (slave)

A

Charlie (master)

C

Alice shares KL with Bob and not with Charlie

Alice and Bob support Secure Connections

Connection request as Bob

Accept connection with Bob

Auth

CM = rand(16)

CS = rand(16)

RS

Switch

Role switch request

Accepted role switch

Charlie is the slave, Alice expects RS from Bob

RS (reflected)

Session key negotiation and secure link activation

Charlie impersonates Bob (the master)

Fig. 6: BIAS master impersonation reflection attack on Blue-

tooth secure authentication procedure. Charlie establishes a

connection with Alice, pretending to be Bob. Charlie sends

CM to Alice, and Alice sends CS to Charlie. Alice computes

RM and RS and sends RS to Charlie. Charlie performs a

role switch, Alice becomes the master and expects RS from

Charlie. Charlie reflects RS to Alice and completes the secure

authentication procedure without possessing KL.

V. BIAS REFLECTION ATTACKS ON SECURE CONNECTIONS

We now present another (alternative) way to attack Secure

Connections authentication using reflection attacks. In a reflec-

tion attack, the attacker tricks the victim into answering his own

challenge and giving the response to the attacker. The attacker

then authenticates to the victim by reflecting (sending back)

the response. We note that while we interpret the standard as

not protecting against reflection attacks, we do not present an

implementation as part of this work.

Our reflection attacks assume that Charlie is able to switch

role during the secure authentication procedure after receiving a

response from the remote victim. The Bluetooth standard allows

role switching anytime after baseband paging [6, p. 595], but

it is not clear about the possibility to role switch in the middle

of an authentication procedure. In the rest of this section we

describe what would happen if this is the case. In the following,

we assume that the slave always sends R first as in [6, p. 559].

Figure 6 describes how Charlie reflects RS back to Alice

(slave), while impersonating Bob (master). Charlie sends

a connection request to Alice pretending to be Bob, and



Charlie (slave)

C

Bob (master)

B

Bob shares KL with Alice and not with Charlie

Alice and Bob support Secure Connections

Connection request to Alice

Switch

Slot offset

Role switch request as Alice

Accepted role switch

Charlie is the master

Accept connection

Auth

CS = rand(16)

CM = rand(16)

RS

Switch

Role switch request

Accepted role switch

Charlie is the slave, Bob expects RS from Alice

RS (reflected)

Session key negotiation and secure link activation

Charlie impersonates Alice (the slave)

Fig. 7: BIAS slave impersonation reflection attack on Bluetooth

secure authentication procedure. Bob sends a connection

request to Alice. Charlie, who impersonates Alice, requests

a role switch before accepting the connection request. Bob

accepts the role switch and Charlie becomes the master and

connects with Bob. Charlie sends CM to Bob, and Bob sends

CS to Charlie. Bob computes RM and RS and sends RS to

Charlie. Charlie becomes the slave by performing another

role switch, reflects RS to Bob and completes the secure

authentication procedure without possessing KL.

Alice accepts the connection. Charlie sends CM to Alice,

and Alice sends CS to Charlie. The values and the ordering

of the challenges do not influence the effectiveness of our

attacks. Alice computes RM and RS using HS as described

in Section IV-B, but Charlie cannot compute such responses

because he does not know KL. Right after Alice sends RS to

Charlie, Charlie sends a role switch request to Alice, Alice

accepts the role switch and Charlie becomes the new slave.

Now Alice, the new master, expects RS from Charlie, thus

Charlie reflects RS to Alice, and completes the secure (mutual)

authentication procedure without knowing KL.

Charlie can also reflect RS back to Bob (master) while

impersonating Alice (slave) as described in Figure 7. This re-

Fig. 8: The CYW920819EVB-02 development board from

Cypress. The board includes a CYW20819 SoC (inside the

dashed white square region). The SoC implements Bluetooth

5.0, supports Secure Connections, and is managed over USB.

flection attack uses the same logic of the master impersonation

reflection attack that we just described. What changes is the

first step of the attack, where Charlie has to pretend to be

Alice (the slave) and he has to perform an extra role switch to

become the master before accepting the connection with Bob.

The Bluetooth standard mentions that “the usage of

BTADDM and BTADDS in the secure authentication procedure

(HS) prevents a simple reflection attack” [6, p. 1672]. Using

unique identifiers as part of a challenge response protocol is a

common reflection attack countermeasure. However, it is not

enough in this case because roles can be switched before and

after the responses are computed and sent.

The standard has a footnote in the specification of the legacy

authentication procedure saying “The reflection attack actually

forms no threat because all service requests are dealt with

on a FIFO basis. When preemption is introduced, this attack

is potentially dangerous.” [6, p. 1671]. This is a reasonable

warning, but it should be extended to the secure authentication

procedure, and it does not prevent to use a priority queue

instead of a FIFO to manage services. Overall, we argue that

the standard should include our reflection attacks in the threat

model and explicitly disallow role switching during the secure

authentication procedure.

VI. IMPLEMENTATION

We implement the BIAS attacks presented in Sections IV-A

and Section IV-B using a CYW920819EVB-02 evaluation

board and a Linux laptop. In this section we describe the board,

and the relevant information about its Bluetooth firmware that

we reverse engineered. Then, we present our BIAS toolkit, that

is the first toolkit that automates the impersonation of arbitrary

Bluetooth devices and the setup needed to conduct the BIAS

attacks. Finally, we explain how we use the BIAS toolkit to

implement master and slave impersonation attacks on Legacy

Secure Connections and Secure Connections.

A. CYW920819EVB-02 Bluetooth Development Board

To implement the BIAS attacks we use the CYW920819EVB-

02 development board [9] (in Figure 8) and a Linux laptop. The

board includes a CYW20819 SoC, that implements Bluetooth



5.0 and supports Secure Connections [8]. The CYW20819 main

core is an ARM Cortex M4 clocked at 96 MHz and using the

ARMv7E-M architecture. The board provides access via USB

to the HCI UART bus, used to interface a Bluetooth host (e.g.,

our laptop) with the board Bluetooth controller, and the HCI

peripheral bus used for logging and debugging. The board has

a JTAG interface that we use for hardware level debugging

with a J-Link EDU debug probe [28]. We program the board

cross-compiling the code from our laptop using the libraries,

drivers and tools provided by the ModusToolbox SKD [10].

The board stores the Bluetooth firmware in 1 MB of read-

only ROM, and the Bluetooth application in a 256 KB on-

chip flash that is readable, writable and executable. The board

has a 176 KB on-chip RAM, and executing the application

from flash allows to save RAM space with minimal memory

latency overhead. We write application code on our laptop,

cross compile it for the board, and load it via USB on the

board’s flash memory. Loading the application code is referred

in the board’s documentation as “re-flashing the firmware”,

but what is re-flashed is the application code, as the Bluetooth

firmware cannot be re-flashed.

B. Reverse Engineering the Board Bluetooth Firmware

The implementation of our BIAS attacks requires to modify

the board’s Bluetooth firmware as the firmware implements

authentication and secure session establishment procedures.

Unfortunately, the board SDK does not include the firmware

source code, and the capability to re-flash a modified firmware.

However, we find that the SDK contains the firmware debug-

ging symbols, and supports proprietary HCI commands to read

and write the board’s RAM [7]. We use the proprietary read

RAM command to dump the RAM content into a binary blob

at runtime. Then we find a Makefile containing the memory

layout information, and using such information we extract

several regions from the binary blob including ROM, RAM,

and patch RAM.

The ROM region contains the firmware code, the RAM

region contains the runtime memory, including the stack and

the heap, and the patch RAM contains a table of patches that

are applied after boot using a proprietary patching mechanism

from Cypress, known as “PatchRom”. PatchRom allows patch

the firmware without having to change the ROM by redirecting

code from ROM at runtime to patches in RAM. Patching slots

have to be used wisely as the board only has 16 slots.

To reverse engineer the board’s Bluetooth firmware, we load

the dumped ROM, the symbols, the RAM, and the patch RAM

regions into a Ghidra project [32]. Ghidra is an open source

disassembler and decompiler developed by the US National

Security Agency (NSA), compatible with ARM binaries. We

configure the Ghidra project to use the ARM Cortex M4

architecture in thumb mode and we perform a first pass of

Ghidra automatic analysis. We spent a considerable amount

of time reverse engineering the firmware to uncover its main

components, data structures, and control flow blocks. Those

information are essential to develop correct firmware patches

Fig. 9: Our BIAS Toolkit. The toolkit takes as inputs an

Impersonation File (IF) containing information about the

device to be impersonated and an Attack File (AF) that

contains information about the laptop and the board. The

toolkit, among others, produces bias.py that can be used

with InternalBlue [23] to setup our CYW920819EVB-02 to

conduct the BIAS attacks.

to implement the BIAS attacks. In the remaining we describe

the most relevant findings about the board Bluetooth firmware.

The firmware has a standard ARM Cortex M4 memory

layout and interrupt vector table, and the entry point is the

reset interrupt handler. The firmware boots using slimboot,

initialize the RAM and the peripherals, and then loads the OS

kernel. The OS is ThreadX, a proprietary real time operating

systems (RTOS) [21]. The firmware execution environment is

multi-threaded, and it is managed by a real-time and priority-

based scheduler.

The firmware implements the LMP protocol using an API

based on tasks. Whenever an LMP packet is received or has to

be sent, a specific task is created according to the type of LMP

packet. Each type of packet has a callback, and the callbacks

are stored in a table in RAM. A LMP dispatcher calls the

appropriate callback according to the type of LMP packet. HCI

packets are handled using the same logic.

Interrupts are used to communicate between the SoC main

ARM core and the peripheral devices. The firmware interfaces

with a security module peripheral to accelerate in hardware

the computations of standard security primitives, such as AES

and SHA-1. The firmware does not use address space layout

randomization, data execution prevention and stack canaries,

indeed we can perform arbitrary control flow manipulations

on the firmware.

C. Our BIAS Toolkit

After collecting enough information by reverse engineering

the board firmware, we developed the BIAS toolkit to automate

our BIAS attacks. To the best of our knowledge, the BIAS
toolkit is the first implementing Bluetooth impersonation

attacks. We plan to release the toolkit as open source at

https://github.com/francozappa/bias. In our experiments, pre-

sented in Section VII, we use our toolkit to successfully attack

31 Bluetooth device (28 unique Bluetooth chips).

Figure 9 presents an high level description of the BIAS
toolkit. The toolkit takes as inputs the Impersonation File (IF)

and the Attack File (AF). The Impersonation File contains

information about the device that we impersonate, such as

Bluetooth address, Bluetooth name, and Secure Connections



Feature Description

Impersonation Impersonate Bluetooth address, name, version,
chipset, device class, and features.

Role Switch 1 Role switch before accepting a connection request
from a master.

Role Switch 2 Role switch at any point in time that is legal in the
specification.

Secure Connections Enable either Legacy Secure Connections or Secure
Connections.

No Authentication Ignore authentication requests and missing link
keys.

Link Key Mgmt Read, write and delete link keys from the firmware.

Logging Enable Link Manager (LM) logging on the board,
including LMP packets.

KNOB Attack Downgrade the entropy of the Bluetooth session
keys as in [4].

TABLE I: BIAS toolkit main features. The BIAS toolkit allows

the attack device to impersonate a victim, perform arbitrary role

switches, disable Secure Connections, ignore authentication

requests, manage link keys, log LMP packets, and chain BIAS

and KNOB attacks.

support. The Attack File contains information about the attack

device such as the name of the HCI interface used by our

laptop, and the addresses of the functions that we want to

patch in the board Bluetooth firmware.

The toolkit, given IF and AF, produces a bias.py Python

script that can be used with InternalBlue [23]. InternalBlue is an

open source toolkit that provides a Python API to interact with

Cypress Bluetooth chips, including the CYW20819 used by

our board. Using a shell script and bias.py we transform our

attack device into the impersonated device, and we configure the

attack device to perform the BIAS attacks. The implementation

details of our attacks are presented in Section VI-D (Legacy

Secure Connections) and Section VI-E (Secure Connections).

The main features of the BIAS toolkit are summarized in

Table I. The Impersonation feature allows to modify the attack

device such that it impersonates the victim specified in IF.

The Role Switch features allow the attack device to perform

master and slave role switches in different scenarios, e.g.,

when starting secure connection establishment. The Secure

Connections feature enables or disables Secure Connections

for the attack device and is used in the Secure Connections

downgrade attack. The No Authentication feature allows the

attack device to ignore remote authentication requests and

missing link keys, and is used to exploit unilateral Legacy

Secure Connections authentication. The Link Key Mgmt feature

enables to read, write, and delete link keys from the attack

device. The Logging feature enables Link Manager logging

by sending a vendor specific HCI command to the board. The

KNOB attack feature allows to downgrade the entropy of the

session key as in [4], after completing a BIAS attack.

Our BIAS toolkit takes advantage of InternalBlue Python

API. We use sendHciCommand(opcode, args) to send

HCI commands from the laptop to the board, including the Cy-

press proprietary ones. With this capability we are able, among

Nexus 5 Pixel 2

Bluetooth Address CC:FA:00:70:DC:B6 40:4E:36:A8:BF:5F

Bluetooth Name nex pixel2

Core specification 4.1 5.0

Chip vendor Broadcom Qualcomm

Chip subversion 24841 702

Device class 0c025a 0c025a

Feature page 0 bffecffedbff7b8f fffe8ffed83f5b87

Feature page 1 0700000000000000 0f00000000000000

Feature page 2 3008000000000000 4503000000000000

IO mask 01 01

OOB mask 00 00

AuthReq mask 03 03

Secure Connections False True

TABLE II: We use our BIAS toolkit to impersonate, among

others, a Nexus 5 and a Pixel 2. The Nexus 5 supports

Legacy Secure Connections, and the Pixel 2 supports Secure

Connections.

others, to change the Bluetooth address of the board. We write

and read the firmware RAM using writeMem(address,
value) and readMem(address, bytes). Those capa-

bilities allow to change, among others, the board Blue-

tooth name and Secure Connections support and to write

our patches in RAM. InternalBlue internally uses pwntools,

and we use pwntools’s asm(code, vma) to create our

patches before writing them to the firmware RAM. We use

patchRom(address, asmbranch) to patch the board

firmware such that once the firmware execution reaches

address it executes asmbranch which in turn jumps to the

address of one of our patches in RAM. The firmware patching

capability allows, among others, to perform adversarial role

switches and unilateral legacy authentication.

D. BIAS Implementation for Legacy Secure Connections

The master and slave BIAS attacks on Legacy Secure

Connections take advantage of unilateral legacy authentication

and the adversarial role switch as described in Section IV-A.

To implement such attacks, our attack device needs the

following capabilities. The attack device has to impersonate a

Bluetooth device that supports Legacy Secure Connections,

has to switch role before accepting a connection from a

master, and has to ignore authentication requests from the

remote victim, if any, and perform the standard compliant

unilateral authentication procedure. We now describe how we

implement such capabilities on our attack device consisting of

a CYW920819EVB-02 board connected to a Linux laptop (as

in Figure 9).

In this section we use as a reference example the imperson-

ation of a Nexus 5 smartphone. The Nexus 5 runs Android

6.0.1, and includes a CYW4339 Bluetooth 4.1 SoC. Using

our BIAS toolkit, we select the Nexus 5 Impersonation File

(IF) from our database and we configure our attack device

to impersonate all the capabilities listed in the left column of

of Table II. As a result, a user discovering Bluetooth devices



cannot tell our attack device apart from our Nexus 5 as they

advertise the same capabilities with the same identifiers.

Then we use our toolkit to configure the adversarial role

switch and the unilateral authentication for the board, taking

advantage of the Attack File (AF) that we provide. The role

switch is configured by patching the board firmware. We hook

the function that handles remote connection requests and we

patch it such that our board always role switch from slave

to master before accepting a connection request. Unilateral

legacy authentication is enforced by two more patches to the

board firmware. The first patch immediately starts the legacy

authentication procedure after a connection is established. The

second patch immediately starts the session key negotiation

procedure after the board authenticates the remote victim. As a

result, our attack device, while impersonating the Nexus 5, does

not have to authenticate during secure session establishment

regardless of its Bluetooth role.

RP = E1(KL,BTADDP , CV ) (1)

To validate the responses produced by the legacy authentication

procedure we implement the HL hash function introduced in

Section IV-A. Such hash function uses E1 to compute the

response (RP ) from the link key (KL), the Bluetooth address

of the prover (BTADDP ), and the challenge sent by the verifier

(CV ) as in Equation 1. E1 internally uses the SAFER+ block

cipher and we implement it as well. To check the correctness

of our implementation we successfully test it against the test

vectors in the standard [6, p. 1620].

E. BIAS Implementation for Secure Connections

In this section we present the implementation of the Secure

Connections downgrade attack that we describe in Section IV-B.

Such attack requires the following capabilities. The attack

device has to impersonate a device that supports Secure Con-

nections but downgrade to Legacy Secure Connections during

secure connection establishment. The attack device has to

switch role before accepting a connection from a master device,

and perform the standard compliant unilateral authentication.

We now describe how we implement those capabilities on our

attack device consisting of the CYW920819EVB-02 board

connected to a Linux laptop (as in Figure 9).

In this section we use as a reference example the imperson-

ation of a Pixel 2 smartphone. The Pixel 2 runs Android 10,

and includes the Snapdragon 835 Bluetooth 5.0 SoC. Using

our BIAS toolkit, we select the Pixel 2 Impersonation File

(IF) from our database and we configure our attack device to

impersonate all the capabilities listed in the right column of

of Table II. As a result, a user discovering Bluetooth devices

cannot tell our attack device apart from our Pixel 2 as they

advertise the same capabilities with the same identifiers.

Then we use our toolkit to configure the Secure Connections

downgrade, adversarial role switch and unilateral authentication

for the board via the related AF. The Secure Connections

downgrade is implemented using a patch that modifies the

Secure Connections support flags in the board Bluetooth

firmware. Adversarial role switch and unilateral authentication

are implemented using the same patches that we describe in Sec-

tion VI-D. As a result, our attack board, while impersonating

the Pixel 2, downgrades the authentication procedure used for

secure connection establishment and bypasses authentication.

KA = h4(KL, ”btdk”,BTADDM ,BTADDS) (2)

RM‖RS = h5(KA, CM , CS) (3)

To validate the responses produced by the secure authentication

procedure while the victims are pairing we implement the HS

hash function presented in Section IV-B. The hash function

internally uses h4 as in Equation 2 to compute a device

authentication key (KA) from KL, the ”btdk” string, BTADDM

and BTADDS . Then, KA, CM and CS are used by h5 to

compute the concatenation of RM and RS as in Equation 3. We

implement h4 and h5 following their specification [6, p. 1699],

and we test our implementation using the test vectors provided

in the standard [6, p. 1615].

VII. EVALUATION

In this section we describe our BIAS attacks evaluation

setup and results. We successfully conducted master and

slave impersonation attacks on 16 Legacy Secure Connections

devices and on 15 Secure Connections devices, using a total

of 28 unique Bluetooth chips.

A. Evaluation Setup

We consider an attack scenario with victim A, victim B,

and the attacker. Victim A and the attack device are two

CYW920819EVB-02 development boards connected to two

laptops running Linux, supporting Secure Connections. Victim

B is any other Bluetooth device at our disposal, and it might

support Secure Connections. Victim A is paired with victim B,

and the attacker does not know their long term key (KL). The

attacker impersonates victim A, and tries to establish secure

connections with victim B as a master and as a slave by using

our BIAS toolkit. We perform four BIAS attacks:

1) LSC MI: Legacy Secure Connections (LSC) Master

Impersonation

2) LSC SI: Legacy Secure Connections Slave Impersonation

3) SC MI: Secure Connections (SC) Master Impersonation

4) SC SI: Secure Connections Slave Impersonation

In the following two paragraphs we describe how we test that

victim B is vulnerable to our four attacks.

a) Master Impersonation: The attack device impersonates

victim A that is not required to be present. We start a secure

connection establishment from the attack device to victim B.

If victim B does not ask the attack device to authenticate (as

in Figure 2), then victim B is vulnerable to LSC MI. If victim

B supports Secure Connections, then it is also vulnerable to

SC MI, because the authentication procedure is downgraded

from secure to legacy (as in Figure 4).



b) Slave Impersonation: The attack device impersonates

victim A that is not required to be present. We start a

secure connection establishment from victim B to victim A.

If the attack board switches role from slave to master before

accepting the connection request, performs unilateral legacy

authentication, and starts the session key negotiation without

being asked by victim B to authenticate (as in Figure 3), then

victim B is vulnerable to LSC SI. If victim B supports Secure

Connections, then it is also vulnerable to SC SI, because the

authentication procedure is downgraded from secure to legacy

(as in Figure 4).

Our evaluation setup allows to test the BIAS attacks against

a target victim in a matter of minutes, and is low cost as it uses

cheap hardware and open source software. Our attack device

consists of a CYW920819EVB-02 board connected to a Linux

laptop. The board costs around 50 USD and any Linux laptop,

or even a Raspberry PI, can be used to control the board. Other

researchers interested in the BIAS attacks can easily reproduce

our setup to test more devices.

B. Evaluation Results

Table III shows our evaluation results. The first column

contains the Bluetooth chip name, and the second column

contains the names of the device(s) that we evaluate using

such chip. The third and fourth columns evaluate the LSC

MI and LSC SI BIAS attacks. The fifth and sixth columns

evaluate the SC MI and SC SI BIAS attacks. A solid circle (○)

indicates that a chip and the related devices are vulnerable to an

attack, and an empty circle (○␣) indicates that a chip and related

devices are not vulnerable. Secure Connections is optional in

the Bluetooth standard, and we use - in the SC columns when

a chip/device does not support Secure Connections.

Table III confirms that all the 31 Bluetooth devices (28
unique Bluetooth chips) that we evaluate are vulnerable to
our BIAS attacks. Our list of vulnerable device includes

Bluetooth chips, from Intel, Qualcomm (Snapdragon), Cypress

(including Broadcom wireless IoT business [11]), Apple,

Samsung (Exynos), and CSR (Cambridge Silicon Radio).

Furthermore, the list of vulnerable devices includes a mix

of proprietary and open source Bluetooth host stacks from

Android (Bluedroid and Fluoride), Apple (iOS, iPadOS, and

macOS), Linux (BlueZ), Microsoft (Windows 10 and Windows

Phone), Cypress, and CSR. Overall, we attack 16 Legacy

Secure Connections devices and 15 Secure Connections devices,

supporting Bluetooth versions 5.0, 4.2, 4.1, and lower or equal

to 4.0.

The only exception is the ThinkPad 41U5005 mouse. The

mouse is not vulnerable to our LSC SI attack. In particular,

when we let the mouse establish a secure connection with

our attack device, even if the attack device switches role

and completes the unilateral legacy authentication, the mouse

always asks the attack board to authenticate before starting the

session key negotiation.

The table confirms that our BIAS attacks are standard

compliant, as the attacks are effective regardless the Bluetooth

chip, the Bluetooth host stack, the usage of Secure Connections,

LSC SC

Chip Device(s) MI SI MI SI

Bluetooth v5.0
Apple 339S00397 iPhone 8 ○ ○ ○ ○
CYW20819 CYW920819EVB-02 ○ ○ ○ ○
Intel 9560 ThinkPad L390 ○ ○ ○ ○
Snapdragon 630 Nokia 7 ○ ○ ○ ○
Snapdragon 636 Nokia X6 ○ ○ ○ ○
Snapdragon 835 Pixel 2 ○ ○ ○ ○
Snapdragon 845 Pixel 3, OnePlus 6 ○ ○ ○ ○

Bluetooth v4.2
Apple 339S00056 MacBookPro 2017 ○ ○ ○ ○
Apple 339S00199 iPhone 7plus ○ ○ ○ ○
Apple 339S00448 iPad 2018 ○ ○ ○ ○
CSR 11393 Sennheiser PXC 550 ○ ○ - -
Exynos 7570 Galaxy J3 2017 ○ ○ - -
Intel 7265 ThinkPad X1 3rd ○ ○ - -
Intel 8260 HP ProBook 430 G3 ○ ○ - -

Bluetooth v4.1
CYW4334 iPhone 5s ○ ○ - -
CYW4339 Nexus 5, iPhone 6 ○ ○ - -
CYW43438 RPi 3B+ ○ ○ ○ ○
Snapdragon 210 LG K4 ○ ○ ○ ○
Snapdragon 410 Motorola G3, Galaxy J5 ○ ○ ○ ○

Bluetooth v≤ 4.0
BCM20730 ThinkPad 41U5008 ○ ○␣ - -
BCM4329B1 iPad MC349LL ○ ○ - -
CSR 6530 PLT BB903+ ○ ○ - -
CSR 8648 Philips SHB7250 ○ ○ - -
Exynos 3470 Galaxy S5 mini ○ ○ - -
Exynos 3475 Galaxy J3 2016 ○ ○ - -
Intel 1280 Lenovo U430 ○ ○ - -
Intel 6205 ThinkPad X230 ○ ○ - -
Snapdragon 200 Lumia 530 ○ ○ - -

TABLE III: BIAS evaluation results. For each of the 28 Blue-

tooth chips tested, the table shows if the chip is vulnerable (○)

or not (○␣) to the Legacy Secure Connections (LSC) Master

Impersonation (MI) and Slave Impersonation (SI) attacks.

Additionally, the last two columns show our results for the

Secure Connections (SC) MI and SI attacks. (-) indicates that

a device does not support Secure Connections.

and the Bluetooth version number. Furthermore, all devices in

the market using any of the vulnerable chips in Table III should

be vulnerable to our BIAS attacks. Based on our results, we

recommend the Bluetooth SIG to fix the standard as soon as

possible, and we provide a list of BIAS attacks countermeasures

in Section VIII-C.

VIII. DISCUSSION

In this section we discuss how to combine our BIAS attack

with the KNOB attack [4]. We also comment on the BIAS

attack root causes and countermeasures.

A. Combination of BIAS and KNOB Attacks

Our BIAS attacks, and the KNOB attack proposed in [4] are

both standard compliant, but they are different as they reach

different goals by exploiting different phases of Bluetooth

secure connection establishment. Our BIAS attacks target link

key authentication, and they allow the attacker to authenticate

as master and slave without having to posses the link key. The



KNOB attack targets session key negotiation, and allows the

attacker to lower the entropy of the session key (to brute force

it). The KNOB attack alone cannot impersonate a Bluetooth

device as the attacker does not posses the long term key.

The BIAS and KNOB attacks can be chained to impersonate

a Bluetooth device, complete authentication without possessing

the link key, negotiate a session key with low entropy, establish

a secure connection, and brute force the session key. The

combination of the two attacks is novel and powerful. For

example, the attacker can impersonate the recipient of a

sensitive file and recover the plaintext, or impersonate an

unlocker and unlock a device by sending encrypted commands.

B. BIAS Attacks Root Causes

The BIAS attacks evaluated in Section VII are enabled by

four root causes (RC) that we identity in the Bluetooth standard.

The combination of those root causes allows an attacker to

perform master and slave impersonation attacks on LSC and

SC. In the following we summarize the root causes:

1) Integrity. Bluetooth secure connection establishment is not

integrity protected, despite the devices already sharing a

long term key (KL). The lack of integrity protection allows

an attacker to modify the capabilities of the impersonated

victim, including Secure Connections support.

2) Legacy Mutual Authentication. Bluetooth Legacy Secure

Connections does not mandate to use mutually the

legacy authentication procedure [6, p. 559]. When the

procedure is used unilaterally there is only one verifier,

and the attacker can impersonate the verifier and complete

the secure connection establishment without having to

authenticate to the victim.

3) Role Switching. Bluetooth role switch can be performed

anytime after baseband paging [6, p. 595]. In an unilateral

authentication scheme this is problematic, as the attacker

might start the secure connection establishment procedure

as the prover and become the verifier to avoid being asked

to authenticate.

4) Secure Connections Downgrade. Bluetooth does not en-

force the usage of Secure Connections between pairing and

secure connection establishment. Hence, two devices who

paired using Secure Connections can use Legacy Secure

Connections to establish subsequent secure connections.

The attacker exploits this fact to downgrade a Secure

Connections secure connection establishment to Legacy

Secure Connections in order to use the vulnerable legacy

authentication procedure.

Table IV shows which root cause is needed to launch the

BIAS attacks evaluated in Section VII. We use × when a root

causes is needed, otherwise we use - (a hyphen). The lack

of integrity protection is needed in any case, as the attacker

has to modify the capabilities of the impersonated victim to

establish secure connections. The lack of mutual authentication

of Legacy Secure Connections is also needed in any case, as the

attacker exploits it for Legacy Secure Connections and when

downgrading Secure Connections. The role switching is needed

for slave impersonations, as the attacker when impersonating

LSC SC

MI SI MI SI

1) Integrity × × × ×
2) Legacy Mutual Authentication × × × ×
3) Role Switching - × - ×
4) Secure Connections Downgrade - - × ×

TABLE IV: Mapping between BIAS root causes and attacks.

× indicates that a root cause is needed, a hyphen (-) indicates

that a root cause is not needed. LSC means Legacy Secure

Connections, SC means Secure Connections, MI is Master

Impersonation and SI is Slave Impersonation.

the slave has to become the master (verifier) before accepting

a connection request. The Secure Connections downgrade is

needed only when Secure Connections is in use.

C. BIAS Attacks Countermeasures

The BIAS attacks exploit vulnerabilities in the Bluetooth

standard and here we propose three countermeasures to address

them. Our countermeasures also address the four attack root

causes (RC) presented in Section VIII-B. We do not propose

countermeasures acting on top of Bluetooth as they are not

fixing the vulnerabilities in the standard.

1) Integrity. To mitigate the lack of integrity protection during

secure connection establishment, the standard should

mandate to use the long term key (KL) to protect the

secure connection establishment. The long term key is

established during pairing and should be always available

before establishing a secure connection. This would

prevent manipulation of the Bluetooth capabilities and

active man-in-the-middle attacks.

2) Legacy Mutual Authentication and Role Switching. To

mitigate the lack of mandatory mutual authentication for

Legacy Secure Connections and the related issues with

role switching, the standard should mandate to always use

the legacy authentication procedure mutually. This would

force the attacker to authenticate the long term key, even

if he switches from slave to master before accepting a

secure connection request.

3) Secure Connections Downgrade. To mitigate the Secure

Connections downgrade attack, the standard should en-

force that two devices who paired with Secure Connections

are always using it for secure connection establishment.

Alternatively, the standard might suggest to notify the user

in case of a Secure Connections downgrade and the user

should decide whether to accept or reject the downgraded

secure connection.

We note that the Bluetooth standard includes “Secure

Connections Only Mode” to force devices using only Secure

Connections mechanisms, such as secure authentication pro-

cedure and AES CCM. That mode is still vulnerable to the

reflection attack presented in Section V, and breaks backward

compatibility with Legacy Secure Connections devices. We

note that none of the devices that we tested is using “Secure

Connections Only Mode”.



IX. RELATED WORK

A recent survey about Bluetooth security is provided by

NIST [26]. The survey states that for Bluetooth version from

1.0 up to 3.0 “If device A is the authentication initiator to

B, encryption setup will begin after that initial authentication.

If the encryption setup being successful is good enough to

satisfy B, then B may never bother to attempt to authenticate

A”. In our opinion, this claim should be restated saying that

for all Bluetooth versions—if Legacy Secure Connections is

in use—then device A and device B are not mandated to

mutually authenticate before encryption setup. The survey

mentions the possibility of impersonation attacks only in the

context of broadcast encryption, where a single (master) key

is used by all devices to protect the communication, assuming

that the attacker knows the key. Our BIAS attacks are much

more problematic, because they work in any situation without

requiring the knowledge of the long term key.

Secure session establishment is one of two important security

mechanism provided by Bluetooth. The other one is pairing,

which evolved from legacy pairing to Secure Simple Pairing

(SSP). Legacy pairing was broken [16], [33], [29], [20]. SSP

was vulnerable to man-in-the-middle attacks [15], [14], [31].

Regarding Bluetooth impersonation attacks, in [19] the

authors discuss a relay attack on legacy pairing used to

impersonate devices in different Bluetooth networks (piconets).

Our BIAS attacks are not simple relay attacks, are effective

on both legacy pairing and SSP, and allow to impersonate

devices in any piconet. In [22] the authors discuss a replay

attack targeting unprotected information. Our BIAS attacks are

targeting information protected with the long term key and a

simple reply attack is not enough to achieve our goals. In [24]

impersonation is discussed in the context of a MitM attack

on the pairing phase, and reflection attacks are considered as

MitM attacks against authentication. Our BIAS attacks do not

require a MitM attacker to be conducted. In [12] the authors

are not considering impersonation attacks at all.

An attacker might target implementation bugs on specific

Bluetooth devices. For example, the BlueBorne attack vector [5]

exploits several flows on Android, iOS, Windows, and Linux

implementations. As our BIAS attacks are at the architectural

level, they are effective regardless the implementation details.

The Bluetooth cryptographic primitives have been extensively

analyzed for weaknesses. The E0 stream cipher (used for

Legacy Secure Connections encryption) was investigated [13],

and is considered relatively weak in [26]. SAFER+ (used for

authentication) was analyzed in [18]. AES CCM (used for

Secure Connections encryption) was also analyzed [17], [27]

and is FIPS compliant. Nevertheless, our BIAS attacks are

effective even with perfectly secure cryptographic primitives.

Several attempts were made to build a low-cost and open

source Bluetooth sniffer for over the air eavesdropping [30],

[1], [25]. Unfortunately, an affordable and reliable solution is

still not here. On the other hand, HCI packets can be sniffed by

having root access on the sniffed device, and InternalBlue [23]

is providing LMP monitoring for a wide range of chips.

X. CONCLUSION

In this work we present the BIAS attacks, our attacks allow

to impersonate Bluetooth devices by exploiting vulnerabilities

in the specification of Bluetooth authentication and secure

connection establishment. We found such vulnerabilities by

manual inspection of the Bluetooth standard and leveraging

our prior work related to Bluetooth security [4], [3], [2].

As a result of a BIAS attack, an attacker completes secure

connection establishment while impersonating Bluetooth master

and slave devices, without having to know and authenticate the

long term key shared between the victims. The BIAS attacks

are standard compliant, and are effective against Legacy Secure

Connections (using the legacy authentication procedure) and

Secure Connections (using the secure authentication procedure).

The BIAS attacks are the first uncovering issues related

to Bluetooth’s secure connection establishment authentication

procedures, adversarial role switches, and Secure Connections

downgrades. The BIAS attacks are stealthy, as Bluetooth secure

connection establishment does not require user interaction.

The BIAS attacks are at the architectural level of Bluetooth,

thus all standard compliant Bluetooth devices are a potential

target. We support this claim, by successfully attacking 31

Bluetooth devices (28 unique Bluetooth chips). Our evaluation

sample includes 16 Legacy Secure Connections and 15 Secure

Connections devices from several hardware and software

vendors, using all major Bluetooth versions. We suggest that the

Bluetooth specification should be updated to address our BIAS

attacks, and we provide a list of root causes with dedicated

mitigations to counter the them.
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APPENDIX

Figure 10 presents the (unilateral) legacy authentication.

Figure 11 presents the (mutual) secure authentication.

Alice (slave)

A

Bob (master)

B

Alice shares KL with Bob

Connection request

Accept connection

Auth

CM = rand(16)

RS = HL(KL, CM , BTADDS)

Session key negotiation and secure link activation

Bob authenticates that Alice knows KL

Fig. 10: Legacy authentication procedure. The legacy authen-

tication procedure provides unilateral authentication. Mutual

authentication is achieved when the procedure is completed

twice, with Bob and Alice as verifier, respectively.

Alice (slave)

A

Bob (master)

B

Alice shares KL with Bob

Alice and Bob support Secure Connections

Connection request

Accept connection

Auth

CM = rand(16)

CS = rand(16)

RS

RM

Session key negotiation and secure link activation

Alice and Bob mutually authenticate KL

Fig. 11: Secure authentication procedure. Alice and Bob

exchange CM and CS in no particular order. Both compute

RM and RS using HS . Alice sends RS and Bob sends RM . If

both posses KL, the received value matches the local version.
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