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course.

Themes of the lectures are:

• Relational Learning: 8 lectures by İsmail İlkan Ceylan and 1 guest lecture.

• Bayesian Machine Learning: 8 lectures by Atılım Güneş Baydın and 1 guest lecture.

For both themes, there will be a live-streamed guest lecture towards the end of the term. Please 
follow the announcements on the course website.

Assessment: Through a reproducibility challenge, as detailed in the assessment form available from 
the course webpage. More details will follow in due course. 

Practicals: There are 6 practicals planned. These practicals will provide you the necessary technical 
skills for the projects. Two of these practicals are specifically dedicated for discussing the 
assessment papers and helping you to form groups, depending on your interests.
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The lectures cover some selected (and mostly recent) topics in relational learning. There are various 
subfields of relational learning which are not covered in this course. 

The (pre-recorded) lectures for relational learning are organised as follows:

•  Knowledge graphs and embedding models (2 lectures)

•  Graph neural networks (6 lectures)

There will be dedicated office hours (from Week 4, onwards) for your questions. Please follow the 
announcements regarding this.

These topics are covered for the first time in the scope of this course, and so the material is new. 
Please email me if you spot any problems in the slides and I will revise them accordingly.
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Knowledge Graphs, as graph-structured data models, storing relations (e.g., isFriendOf) between 
entities (e.g., Alice, Bob) and thereby capture structured knowledge. 
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• Can KGs be mediators for developing more reliable and interpretable models for ML? 

• How to make learning and reasoning compatible?
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the learned vectors explicitly encode many 
linguistic regularities and patterns.  

Somewhat surprisingly, many of these 
patterns can be represented as linear 
translations.  

For example, the result of a vector 
calculation vec(“Madrid”) - vec(“Spain”) + 
vec(“France”) is closer to vec(“Paris”) than 
to any other word vector.”  

   (Mikolov et. al, 2013)

Figure 2 (Mikolov et. al, 2013): 2-dimensional PCA projection of the 
1000-dimensional Skip-gram vectors of countries and their capital 
cities. The figure illustrates ability of the model to automatically 
organize concepts and learn implicitly the relationships between them, 
as during the training no supervised information about what a capital 
city means is given.
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Problem: KGs are typically highly incomplete, which makes their 
downstream use more challenging. For example, 71% of 
individuals in Freebase lack a connection to a place of birth. 

Question: Can we automatically find new facts for our KG, solely 
based on the existing information in the KG? 

Task: Given a KG , the task of knowledge graph completion is 
to predict facts that are missing from . 

G
G

Intuition: Real-world data lies in low dimensional manifolds, so if existing facts in a KG exhibit common patterns 
then one can embed them into low-dimensional vector-spaces and use them to predict new facts.

Idea: Represent entities and relations as embeddings, while capturing latent properties of the knowledge graph, 
i.e., similar entities and relationships will be represented with similar embeddings.  Use such similarities to rank 
new predictions.
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(i) Model representation: How are the entities and relations represented?  

(ii) Scoring function: How is the likelihood of a fact to be true defined? 

(iii) Loss function: What is the objective function to be minimised?

Well-known families of models classified in terms of model representation: 

• Translational models: Embed entities as points in vector space, and model relations as translations 
operating on the embeddings of the entities.  

• Bilinear models: Embed entities and relations into vector space, and model relations as a bilinear product 
between entity and relation embeddings.  

• Neural models: Embed the entities and relations using a neural network (e.g., convolutional neural 
network).
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Train a KG Embedding 
Model M

G

Score all facts
 M𝗌𝖼𝗈𝗋𝖾 :: U ↦ ℝ

True facts

Problem: KGs typically store only positive information, and so encode only the facts that are true. There are 
no real negative examples to train with!

Negative 
Facts?

N =
Negat

ive 
fact

s

The main optimisation goal is find a vector configuration for entities and relationships so as to score/rank/
evaluate “true facts” higher than “false facts” in accordance to a dissimilarity measure.
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A negative fact for a given true fact , is a fact randomly sampled from .  The set of negative facts 
sampled for a given true fact  is denoted as .

r(h, t) Cr(h,t)

r(h, t) Nr(h,t)

Sampling from corrupted facts and using these as negative facts is standard in the literature, and various 
sampling techniques are used, e.g., uniform sampling,  adversarial sampling, etc. 

Negative sampling is not ideal, as random sampling can clearly give a potentially correct fact as a negative fact, 
and require it to be ranked lower, misleadingly. 
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It is therefore desirable to have full expressivity, as we would our model to fit the dataset reasonably well, 
regardless of the complexity of the dataset.



Model Expressiveness

22

A KGC model  is fully expressive if, for any given disjoint sets of true and false  facts over a vocabulary 
(i.e., the ground truth of a set of facts), there exists a parameter configuration for  such that  
accurately classifies all the given facts. 

M
M M

Intuitively, a fully expressive model can capture any ground truth of a given set of facts. Conversely, a model 
that is not fully expressive can fail to fit its    training set properly, and thus can underfit.

It is therefore desirable to have full expressivity, as we would our model to fit the dataset reasonably well, 
regardless of the complexity of the dataset.

Would theoretical inexpressivity surface in practice?



Model Expressiveness

22

A KGC model  is fully expressive if, for any given disjoint sets of true and false  facts over a vocabulary 
(i.e., the ground truth of a set of facts), there exists a parameter configuration for  such that  
accurately classifies all the given facts. 

M
M M

Intuitively, a fully expressive model can capture any ground truth of a given set of facts. Conversely, a model 
that is not fully expressive can fail to fit its    training set properly, and thus can underfit.

It is therefore desirable to have full expressivity, as we would our model to fit the dataset reasonably well, 
regardless of the complexity of the dataset.

Would theoretical inexpressivity surface in practice?

Theoretical inexpressivity of a model may not surface empirically, especially if the benchmark datasets are 
not very complex. Knowing the expressive limitations of a model, however, it is easy to design datasets to 
empirically observe its limitations.
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Full expressiveness  does not necessarily correlate with inductive capacity: Fully expressive models can merely 
memorise  training data and generalise poorly. It is important to develop models that are jointly  fully 
expressive and have a strong inductive capacity.

How can model inductive capacity be studied?

Inference patterns are specifications of logical properties that may exist in a KG, which, if learned, enable 
further principled inferences from existing KG facts. Inference patterns are a common means to formally 
analyse the generalisation ability of KGC systems. 

One well-known example inference pattern is symmetry: A relation  is symmetric if, for any choice of 
entities , whenever a fact   holds, then so does . 

r ∈ R
e1, e2 ∈ E r(e1, e2) r(e2, e1)

As a result, if a model learns a symmetry pattern for a relation , then it can infer facts in the symmetric 
closure of , thus providing a strong inductive bias.

r
r
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An inference pattern specifies a logical property over a KG, which means that such patterns can be formalised 
using logical rules. To formalise this, let us extend our relational vocabulary over  and  with a set  of 
variables. A first-order atom is an expression of the form , where , and . 

E R V
r(xi, xj) r ∈ R xi, xj ∈ V

For the purposes of this lecture, we are interested in universally quantified first-order rules of the form: 

, 

with . The semantics of such universally quantified first-order rules is that of first-order logic, restricted 
to a finite domain (as the set  of entities is finite). 

∀x1…xk ϕ(x1…xk) ⇒ ψ(x1…xl)

k ≥ l
E

A Boolean combination of first-order atoms is defined inductively using logical constructors , e.g., 
 and  are Boolean combinations of first-order 

atoms.

¬, ∧ , ∨
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follows: 
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which holds if and only if the relation  is symmetric, i.e., the rule is invalidated if there exists two entities 
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which holds if and only if the relation  is symmetric, i.e., the rule is invalidated if there exists two entities 
, where  is true, but  is not.

r ∈ R

∀x, y r(x, y) ⇒ r(y, x)

r
e1, e2 ∈ E r(e1, e2) r(e2, e1)

Similarly, we can express that the relations  are the inverse of each other in terms of two rules: 

, 

. 

In this case, we will use the standard abbreviation  and write .

r1, r2 ∈ R

∀x, y r1(x, y) ⇒ r2(y, x)

∀x, y r2(x, y) ⇒ r1(y, x)

⇔ ∀x, y r1(x, y) ⇔ r2(y, x)
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Inference pattern Inference rule

Symmetry   
Anti-symmetry

Inversion

Composition

Hierarchy

Intersection
Mutual exclusion

∀x, y r(x, y) ⇒ r(y, x)
∀x, y r(x, y) ⇒ ¬r(y, x)
∀x, y r1(x, y) ⇔ r2(y, x)
∀x, y, z r1(x, y) ∧ r2(y, z) ⇒ r3(x, z)
∀x, y r1(x, y) ⇒ r2(x, y)
∀x, y r1(x, y) ∧ r2(x, y) ⇒ r3(x, y)
∀x, y r1(x, y) ⇒ ¬r2(x, y)

List of inference patterns commonly used in the literature and the 
corresponding logical rules. It is assumed that .r1 ≠ r2 ≠ r3
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∀x, y r(x, y) ⇒ r(y, x)
∀x, y r(x, y) ⇒ ¬r(y, x)
∀x, y r1(x, y) ⇔ r2(y, x)
∀x, y, z r1(x, y) ∧ r2(y, z) ⇒ r3(x, z)
∀x, y r1(x, y) ⇒ r2(x, y)
∀x, y r1(x, y) ∧ r2(x, y) ⇒ r3(x, y)
∀x, y r1(x, y) ⇒ ¬r2(x, y)

List of inference patterns commonly used in the literature and the 
corresponding logical rules. It is assumed that .r1 ≠ r2 ≠ r3

These patterns are very prominent in many datasets. While these patterns and the corresponding rules are not very 
expressive, they already are a challenge for KGE models, as it is already hard for existing systems to capture these 
patterns.
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r(h, _) = {r(h, e) ∣ e ∈ E, r(h, e) ∉ Gtr ∪ Gv ∪ Gtest} ∪ {r(h, t)} .

Importantly, all facts that occur in the training, validation, or test data are filtered out from these sets 
(except the test fact itself). This is to ensure that other facts known to be true do not affect the ranking. 
This is the so-called filtered evaluation which has become standard practice in experimental evaluation 
(Bordes et al., 2013).

Every fact in these sets is ranked in accordance to the scoring function of the model in descending order.  

The rank of the entity  relative to the facts , denoted , is the rank of the fact  
in ; similarly, the rank of the entity  relative to the facts , denoted , is the 
rank of the fact  in .

e r(_, t) rank(e ∣ r(_, t)) r(e, t)
r(_, t) e r(h, _) rank(e ∣ r(h, _))

r(h, e) r(h, _)
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Hits@  is the proportion of true facts with rank at most : 

, 

where  is the indicator function that returns , if   is true, and , otherwise. 

k k

1
2 ∣ Gtest ∣ ∑

r(h,t)∈Gtest
(1(rank(h ∣ r(_, t)) ≤ k) + 1(rank(t ∣ r(h, _)) ≤ k))

1(c) 1 c 0
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facts  can be directly inferred via an inverse relation , which makes the inversion pattern very 
prominent (Toutanova & Chen, 2015). Other patterns on FB15k are symmetry/antisymmetry and 
composition patterns.

r(x, y) r′ (y, x)

FB15K-237 (Toutanova & Chen, 2015): A subset of FB15k , where inverse relations are deleted. The 
prominent patterns are composition and symmetry/antisymmetry patterns.

WN18 (Bordes et al., 2013): A subset of WordNet (Miller, 1995), featuring lexical relations between 
words. This dataset has also many inverse relations, and the main inference patterns are symmetry/
antisymmetry and inversion.

WN18RR (Dettmers et al., 2017): A subset of WN18, where inverse relations are deleted. The 
prominent inference patterns are symmetry/antisymmetry and composition.

YAGO3-10: A subset of the YAGO3 (Mahdisoltani et al., 2015), where all entities appear in at least 10 
facts.
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Dataset |E| |R| Training facts Validation facts Test facts

FB15K-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,034

YAGO3-10 123,182 37 1,079,040 5,000 5,000

Datasets with their respective #entities (| |), #relations (| |), and #facts.E R
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Summary

• Relational data is prominent in real-world applications!

• Discussed KG embedding models through the lens of the KG completion task.

• The families of translational, bilinear, and neural models are briefly discussed.

• Established evaluation criteria for different models: 

• Model expressiveness 

• Model inductive capacity and inference patterns

• Empirical evaluation: Datasets and metrics

• We have not introduced/evaluated any specific model: Next lecture!
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