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Embeddings

• TransE encodes entities  and relations , through -dimensional vectors . h, t ∈ E r ∈ R d h, t, r ∈ ℝd

• TransE scores a fact  depending how similar   and  are, i.e.,  .r(h, t) h + r t h + r ≈ t

• TransE is optimised to minimise (resp., maximise) the dissimilarity of true facts (resp., negative facts).
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− d(h′ + r, t′ ) − γ

where  is a margin hyper-parameter, and  is a set of negative samples for .γ Nr(h,t) r(h, t)

The loss function favours lower values of dissimilarity for true facts than for negative facts, and is thus a natural 
implementation of the intended criterion. 

Optimisation: The optimisation is carried out by stochastic gradient descent, where all embeddings for entities 
and relationships are first initialised randomly; at each iteration, the parameters are updated by taking a 
gradient step with constant learning rate. The algorithm is stopped based on its performance on a validation set. 
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TransE is not fully expressive, as it cannot encode the set of true 
facts  and the set of false facts  
simultaneously. 
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Consider a relation such as  with entities  to see 
a problematic example. TransE is limited in various other ways, as 
we shall see later.
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Observe that this pattern can be realised only by setting , and, this would further imply relation 
equivalence: TransE cannot capture hierarchy either.

r ≈ s

Similarly to the symmetry pattern, the lack of ability to capture the hierarchy pattern is a serious 
limitation, as it is also prevalent in datasets (e.g., the relation  implies the relation ).𝖼𝖺𝗉𝗂𝗍𝖺𝗅𝖮𝖿 𝖼𝗂𝗍𝗒𝖨𝗇
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              locatedIn(Oxford, Oxfordshire)  

              locatedIn(Oxford, UK)

The scoring function enforces entities Oxfordshire and UK to be similar, since the other elements locatedIn, 
Oxford in the function are equivalent.

Other translational models are proposed to reduce the effect of this problem; see, e.g., TransH and TransR.



RotatE

11



RotatE

11

RotatE is a popular translational model, which defines each relation  as a rotation from an entity  to an entity  
in the complex vector space. The main intuition comes from Euler’s identity: , i.e., that a 
unitary complex number can be regarded as a rotation in the complex plane.

r h t
eiθ = cosθ + i sinθ



RotatE

11

RotatE is a popular translational model, which defines each relation  as a rotation from an entity  to an entity  
in the complex vector space. The main intuition comes from Euler’s identity: , i.e., that a 
unitary complex number can be regarded as a rotation in the complex plane.

r h t
eiθ = cosθ + i sinθ

Representation: RotatE encodes entities  and relations , through -dimensional complex vectors 
, where  corresponds to a rotation with modulus  in every dimension . 

h, t ∈ E r ∈ R d
h, t, r ∈ ℂd r ∣ ri ∣ = 1 i



RotatE

11

RotatE is a popular translational model, which defines each relation  as a rotation from an entity  to an entity  
in the complex vector space. The main intuition comes from Euler’s identity: , i.e., that a 
unitary complex number can be regarded as a rotation in the complex plane.

r h t
eiθ = cosθ + i sinθ

Representation: RotatE encodes entities  and relations , through -dimensional complex vectors 
, where  corresponds to a rotation with modulus  in every dimension . 

h, t ∈ E r ∈ R d
h, t, r ∈ ℂd r ∣ ri ∣ = 1 i

Scoring: RotatE scores a fact  in accordance to a distance measure , where  
denotes element-wise product. Then, each element   of  is of the form , corresponding to a 
counterclockwise rotation by   radians about the origin of the complex plane.

r(h, t) d(h ⊙ r, t) = ∥h ⊙ r − t∥ ⊙
ri r eiθr,i

θiθr,i



RotatE

11

RotatE is a popular translational model, which defines each relation  as a rotation from an entity  to an entity  
in the complex vector space. The main intuition comes from Euler’s identity: , i.e., that a 
unitary complex number can be regarded as a rotation in the complex plane.

r h t
eiθ = cosθ + i sinθ

Representation: RotatE encodes entities  and relations , through -dimensional complex vectors 
, where  corresponds to a rotation with modulus  in every dimension . 

h, t ∈ E r ∈ R d
h, t, r ∈ ℂd r ∣ ri ∣ = 1 i

Scoring: RotatE scores a fact  in accordance to a distance measure , where  
denotes element-wise product. Then, each element   of  is of the form , corresponding to a 
counterclockwise rotation by   radians about the origin of the complex plane.

r(h, t) d(h ⊙ r, t) = ∥h ⊙ r − t∥ ⊙
ri r eiθr,i

θiθr,i

Loss: For every fact , RotatE minimises the following loss function:r(h, t)



RotatE

11

RotatE is a popular translational model, which defines each relation  as a rotation from an entity  to an entity  
in the complex vector space. The main intuition comes from Euler’s identity: , i.e., that a 
unitary complex number can be regarded as a rotation in the complex plane.

r h t
eiθ = cosθ + i sinθ

Representation: RotatE encodes entities  and relations , through -dimensional complex vectors 
, where  corresponds to a rotation with modulus  in every dimension . 

h, t ∈ E r ∈ R d
h, t, r ∈ ℂd r ∣ ri ∣ = 1 i

Scoring: RotatE scores a fact  in accordance to a distance measure , where  
denotes element-wise product. Then, each element   of  is of the form , corresponding to a 
counterclockwise rotation by   radians about the origin of the complex plane.

r(h, t) d(h ⊙ r, t) = ∥h ⊙ r − t∥ ⊙
ri r eiθr,i

θiθr,i

Loss: For every fact , RotatE minimises the following loss function:r(h, t)

,ℒ = − log σ(γ − d(h ⊙ r, t)) − ∑
r(h′ ,t′ )∈Nr(h,t)

1
k

log σ(d(h′ ⊙ r, t′ ) − γ)



RotatE

11

RotatE is a popular translational model, which defines each relation  as a rotation from an entity  to an entity  
in the complex vector space. The main intuition comes from Euler’s identity: , i.e., that a 
unitary complex number can be regarded as a rotation in the complex plane.

r h t
eiθ = cosθ + i sinθ

Representation: RotatE encodes entities  and relations , through -dimensional complex vectors 
, where  corresponds to a rotation with modulus  in every dimension . 

h, t ∈ E r ∈ R d
h, t, r ∈ ℂd r ∣ ri ∣ = 1 i

Scoring: RotatE scores a fact  in accordance to a distance measure , where  
denotes element-wise product. Then, each element   of  is of the form , corresponding to a 
counterclockwise rotation by   radians about the origin of the complex plane.

r(h, t) d(h ⊙ r, t) = ∥h ⊙ r − t∥ ⊙
ri r eiθr,i

θiθr,i

Loss: For every fact , RotatE minimises the following loss function:r(h, t)

,ℒ = − log σ(γ − d(h ⊙ r, t)) − ∑
r(h′ ,t′ )∈Nr(h,t)

1
k

log σ(d(h′ ⊙ r, t′ ) − γ)

where  is a fixed margin,  is the sigmoid function, and  is a set of  negative samples for .γ σ Nr(h,t) k r(h, t)



RotatE vs TransE

12



RotatE vs TransE

12

Figure taken from (Sun et al), showing a comparative 1-dimensional embedding of the models TransE and RotatE. Rotations 
in each individual dimension enable RotatE to capture symmetry.



RotatE vs TransE

12

Figure taken from (Sun et al), showing a comparative 1-dimensional embedding of the models TransE and RotatE. Rotations 
in each individual dimension enable RotatE to capture symmetry.

Question: Does RotatE capture TransE as a special case?
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To additionally realise the fact , we need . But then this would additionally imply the fact  
since the rotation  from  will result in . 

s(b, c) a ≈ c r(c, b)
r c b

This observation is not limited to this configuration: RotatE sets  and  symmetric to capture the initial two 
facts, though the relations need not be symmetric. If we consider the set  as the set of false facts, 
and then it is easy to see that RotatE cannot fit these facts simultaneously.

r s
F = {r(c, b)}

Consider the set of true facts . We can realise the facts  in 
RotatE by the following configuration:
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It is rather easy to see that all patterns captured by TransE can be captured by RotatE.

Unlike TransE, RotatE can also capture symmetry, as explained earlier. 

What about the hierarchy pattern  which is not captured by TransE?∀x, y r(x, y) ⇒ s(x, y)

The hierarchy pattern cannot be captured by RotatE for very similar reasons as TransE.

To capture facts of the form  we need the rotations from  to  need to be 
similar, i.e., , effectively enforcing relation equivalence.

r(a, b), s(a, b), . . . a b
r ≈ s
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Mr[i,j] = {1  if r(ei, ej) ∈ G,
0  otherwise.

Many bilinear models use tensor/matrix representation for relations and so they are also referred as tensor 
factorisation methods.

Differently from translational models, bilinear models typically use a multiplicative approach, i.e., a bilinear 
product, to represent the relationships, hence the name “bilinear”. 
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Though expressive, using a full rank matrix is prone to overfitting, and this has motivated a line of research, 
where several restrictions are imposed on the representation.
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Scoring: DistMult scores a fact  similar to RESCAL, with the restriction to the diagonal matrix: .r(h, t) h⊤Drt

DistMult cannot capture all pairwise interactions between the  components of  and  any more. Why?h t

DistMult cannot differentiate between head entity and tail entity since . This means that all 
relations are modelled as symmetric regardless, i.e., even anti-symmetric relations will be represented as 
symmetric.

h⊤Drt = t⊤Drh

Expressiveness: DistMult is not fully expressive, i.e., clearly underfitting any dataset with facts from an 
asymmetric relation. 

While very inexpressive, DistMult is scalable, i.e., linear in .d
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Scoring: ComplEx scores a fact  as , where  defines the complex conjugate of , and  
denotes the real part of a complex vector. 

r(h, t) Re(h⊤Drt) t t Re

Expressiveness: Intuitively, by modelling head and tail entity embeddings for the same entity as complex 
conjugates, ComplEx introduces asymmetry and thus can also model asymmetric relations. ComplEx is fully 
expressive for KGs.

ComplEx is an interesting trade-off, as it generalises DistMult to a fully expressive model, while still using 
diagonal matrices, which are less prone to overfitting.
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Neither model can capture composition (or intersection): The main reason is that the scoring functions 
described by ComplEx or by DistMult are not injective, and injectivity is a necessary condition for capturing 
composition (Sun et al, 2019). 

Both ComplEx and DistMult can capture the hierarchy pattern: For DistMult, simply define the relation  as 
a scalar multiplication of a relation , e.g., for , set . Then, any  implies , and and 
hence . The argument for ComplEx is analogous. 

r
s λ > 1 s = λr h⊤Drt h⊤Dst

∀x, y r(x, y) ⇒ s(x, y)

Note that this does not mean that bilinear models can capture relational hierarchies, i.e., it only means that 
one instance of such rule can be captured. Hierarchies captured in bilinear models are inherently linear, and 
this is an important limitation as we shall see later.
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representation space.  For instance, Oxford being a City is captured by 2 boxes, one for the Oxford entity and 
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Beyond entity classification: This representation is tailored towards entity classification and so is limited to 
classes, e.g., to unary relations. The model does not naturally scale to capture interactions between entities, 
which makes it difficult to apply in the KG completion setting.

A naive solution to this problem is to represent entity pairs, as well as binary relations with boxes, but this 
results in a quadratic blow up in the representation space, and destroys any parameter sharing, which 
negatively affects learning. 

Box embeddings have also been used for the task of query answering, see, e.g.,  Query2Box (Ren et al.).

Can box embeddings be used for knowledge graph completion?
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The final embedding of a head entity  relative to a fact  is given by: . Similarly, the 
final embedding of a tail entity  relative to a fact  is given by: .

h r(h, t) hr(h,t) = h + bt
t r(h, t) tr(h,t) = t + bh

In BoxE, a (binary) relation , is represented in terms of two -dimensional hyper-rectangles, or boxes, 
, corresponding to a head box and a tail box, respectively. 

r ∈ R d
rh, rt ∈ ℝd
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Scoring: BoxE defines a distance function that determines how close a head entity is to a head box, and 
similarly, how close a tail entity is to a tail box. BoxE scores a fact  as the sum of the L-  norms of 
such function: 

, 

where dist is a distance function that grows slowly if a point is in the box (relative to the centre of the box), 
but grows rapidly if the point is outside of the box, so as to drive points more effectively into their target 
boxes and ensure they are minimally changed, and can remain there once inside. 
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where dist is a distance function that grows slowly if a point is in the box (relative to the centre of the box), 
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Box sizes are dynamic and their position matters: Every relation may be represented with boxes of different 
size and their relative position in relation to entities are part of scoring. Hence, BoxE can be seen as a hybrid 
spatio-translational model. 

The final entity representation is dynamic: Every entity can have a potentially different final embedding 
relative to a different fact, since the bump vector depends on the other entity occurring in the fact. 
Expressive!



How Expressive is BoxE?

25



How Expressive is BoxE?

25

Intuitively, head and tail boxes define regions, such that a fact citizenOf(Hitchcock, UK) holds when the final 
embedding of the entity Hitchcock appears in the box citizenOf(h)  and the the final embedding of the entity 
UK appears in the box citizenOf(t).



How Expressive is BoxE?

25

Intuitively, head and tail boxes define regions, such that a fact citizenOf(Hitchcock, UK) holds when the final 
embedding of the entity Hitchcock appears in the box citizenOf(h)  and the the final embedding of the entity 
UK appears in the box citizenOf(t).

Hitchcock

UK

citizenOf(h) citizenOf(t)residentOf(h)

residentOf(t)

citizenOf(Hitchcock, UK)

residentOf(Hitchcock, UK)



How Expressive is BoxE?

25

Intuitively, head and tail boxes define regions, such that a fact citizenOf(Hitchcock, UK) holds when the final 
embedding of the entity Hitchcock appears in the box citizenOf(h)  and the the final embedding of the entity 
UK appears in the box citizenOf(t).

Hitchcock

UK

citizenOf(h) citizenOf(t)residentOf(h)

residentOf(t)

citizenOf(Hitchcock, UK)

residentOf(Hitchcock, UK)



How Expressive is BoxE?

25

Intuitively, head and tail boxes define regions, such that a fact citizenOf(Hitchcock, UK) holds when the final 
embedding of the entity Hitchcock appears in the box citizenOf(h)  and the the final embedding of the entity 
UK appears in the box citizenOf(t).

Hitchcock

UK

citizenOf(h) citizenOf(t)residentOf(h)

residentOf(t)

citizenOf(Hitchcock, UK)

residentOf(Hitchcock, UK)



How Expressive is BoxE?

25

Intuitively, head and tail boxes define regions, such that a fact citizenOf(Hitchcock, UK) holds when the final 
embedding of the entity Hitchcock appears in the box citizenOf(h)  and the the final embedding of the entity 
UK appears in the box citizenOf(t).

Hitchcock

UK

citizenOf(h) citizenOf(t)residentOf(h)

residentOf(t)

citizenOf(Hitchcock, UK)

residentOf(Hitchcock, UK)

Expressiveness: BoxE is indeed fully expressive. Any fact  can be made false in the model, by defining a 
bump vector for, e.g., the head entity  such that the tail entity  is pushed outside of the tail box of  in a 
single dimension. This operation can be done for all false facts without “harming” the set of true facts, using 

 dimensions.

r(h, t)
h t r

E × R
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Many other inference patterns, e.g., inverse, mutual exclusion, intersection can be captured by configuring 
boxes in various ways. 

This approach does not work for the composition pattern: ! In fact, BoxE 
cannot capture composition as an inference pattern.

∀x, y, z r(x, y) ∧ s(y, z) ⇒ t(x, z)
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For another example, consider bilinear models which can separately capture the hierarchy rules:  

 and . 

Jointly capturing these imposes either  or  (Gutiérrez-Basulto et al.). 

∀x, y r1(x, y) ⇒ r3(x, y) ∀x, y r2(x, y) ⇒ r3(x, y)
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This means that even a simple relational hierarchy cannot be captured by any of these systems. BoxE can 
capture these inference patterns also in this general sense, and can capture, e.g., relational hierarchies.
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h, t ∈ ℝd r ∈ ℝd d(h + r, t) = ∥h + r − t∥

h, t ∈ ℂd r ∈ ℂd d(h ⊙ r, t) = ∥h ⊙ r − t∥

h, t ∈ ℝd Mr ∈ ℝd × ℝd h⊤Mrt
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A summary of the models covered in the lecture: Entity representations  and relation representations  
are given, and the scoring function is given for an arbitrary fact . 
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Model specific representation constraints are excluded from the Table, and so are regularisation constraints. Please 
refer to the respective original work for the details.

rh, rt ∈ ℝdHyper-rect’s
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Inference pattern TransE RotatE BoxE DistMult ComplEX

Symmetry N/N Y/Y Y/Y Y/Y Y/Y
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Composition Y/N Y/N N/N N/N N/N
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Inference pattern TransE RotatE BoxE DistMult ComplEX

Symmetry N/N Y/Y Y/Y Y/Y Y/Y
Anti-symmetry Y/Y Y/Y Y/Y N/N Y/Y

Inversion Y/N Y/Y Y/Y N/N Y/Y

Composition Y/N Y/N N/N N/N N/N

Hierarchy N/N N/N Y/Y Y/N Y/N

Intersection Y/N Y/N Y/Y N/N N/N
Mutual exclusion Y/Y Y/Y Y/Y Y/N Y/N

A summary of the inference patterns / generalised inference patterns that can be captured by selected models.

Another bilinear model TuckER, coincides with ComplEX in terms of the listed inference patterns.
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We have not discussed neural models and focused on so-called shallow embedding models so far. 

General approach: Neural models either use a neural network as a scoring function (e.g., ConvE), or use 
existing embedding models for scoring, but learn the embeddings with a neural network (e.g., r-GCN). 

Expressiveness vs Interpretability: Neural models are typically expressive, but they are hard to interpret and 
evaluate, since they are mostly black-box.

Practical: Shallow embedding models are state-of-the-art on many benchmark datasets.

Conceptual: Shallow approaches are inherently transductive (i.e., limited to the entities they are trained on; 
see, e.g., (Hamilton et al., 2017)), while some neural models learn inductive representations (i.e., once 
learned, they can be applied to unseen entities).

We will briefly revisit knowledge graph completion in the context of graph neural networks, later in the course.
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• Beyond Euclidian spaces, e.g., Poincare embeddings.

• Other geometrical abstractions, e.g., TorusE.

• Practical considerations: Many regularisation/optimisation techniques are omitted, see especially for recent 
evaluations (Rufinelli, 2020).

• Higher-arity knowledge bases: Real-world data is not necessarily in the form of binary atoms, forming a 
graph. Facts can be of higher arity, e.g., hasDegreeFrom(Hawking,Cambridge,DPhil), and very few models can 
handle data with arbitrary arity relations.

• Rule injection: KGs usually have an accompanying schema, or an ontology, encoding the general domain 
knowledge in the form of first-order rules. Ideally, all predictions in the KG completion task should comply with 
such knowledge. Is it possible to inject such knowledge into the embedding models and to what extent?

• Other tasks: Taks beyond KG completion, e.g., entity classification, query answering with embedding models.
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• Model inductive capacity and inference patterns
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