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Lecture 1 - 2 (Knowledge graph embeddings): We discussed shallow node embedding models in the 
context of knowledge graphs, where the idea is to learn low-dimensional embeddings of the nodes in a graph. 

Lecture 3 - 8 (Graph neural networks): We will study graph neural networks, which are neural networks 
that learn representations of nodes that depend on the structure of the graph.

Recall key differences between shallow and deep embedding models:

• Shallow embedding models are transductive in that they do not apply to novel entities unless we train 
again on these entities. They are also inherently limited to single-graph tasks.

• We are interested in more elaborate embedding models which can use any feature information available, 
and can also generalise to novel data points, i.e., inductive models.

The remaining lectures on relational learning focus on graph neural networks: We will cover the basics and 
widely employed models, while also focusing on some limitations and extensions proposed in the literature.
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Geometric deep learning is an umbrella term for deep learning over non-Euclidian spaces (Bronstein et al.), 
primarily graphs and manifolds. The focus of this course is on graph representation learning.
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Finally, we write  to denote the adjacency matrix of a graph , and  to denote the 
rows of the adjacency matrix.

AG G = (V, E) AG
[i] ∈ ℝVG
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Machine learning algorithms make many assumptions about the data, and a common assumption is to 
assume that the data points are independent and identically distributed (i.i.d.).

These assumptions are helpful since 

• independence: no need to model the dependencies, 

• identical distribution: generalisation guarantees possible to new/unseen data points.

These assumptions are unrealistic in the context of graphs.

Suppose we are given a single graph, and we want to classify the nodes in the given graph with respect 
to a certain property (i.e., node classification).    

Such properties depend on the other nodes through edges, e.g., imagine functions that rely on node 
statistics (e.g., #neighbours), or the overall graph structure (e.g., is the node in a cycle). 

When learning functions over nodes, we cannot treat the nodes independently.
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Functions over graphs, or nodes, necessarily relate to graph properties, which carry valuable 
information. This information needs to be taken into account adequately.

Intuitively, this could be achieved by defining similarity measures, for nodes/graphs, which can then 
be used for the optimisation task.

Node degrees? 

Contains an odd-length cycle? 

Minimum vertex cover size 1, 2?

BB



Learning over Graphs

9



Learning over Graphs

9

Traditional approaches to machine learning over graph-structured data are based on:



Learning over Graphs

9

Traditional approaches to machine learning over graph-structured data are based on:

• Extracting node, or graph-level statistics or features (indicating, e.g., node/graph similarity), and



Learning over Graphs

9

Traditional approaches to machine learning over graph-structured data are based on:

• Extracting node, or graph-level statistics or features (indicating, e.g., node/graph similarity), and

• Using these features as input to standard machine learning classifiers. 



Learning over Graphs

9

Traditional approaches to machine learning over graph-structured data are based on:

• Extracting node, or graph-level statistics or features (indicating, e.g., node/graph similarity), and

• Using these features as input to standard machine learning classifiers. 

Most popular graph similarity functions are studied under the name of graph kernel methods; see, e.g., 
(Kriege et al., 2020) for a recent survey. 



Learning over Graphs

9

Traditional approaches to machine learning over graph-structured data are based on:

• Extracting node, or graph-level statistics or features (indicating, e.g., node/graph similarity), and

• Using these features as input to standard machine learning classifiers. 

Most popular graph similarity functions are studied under the name of graph kernel methods; see, e.g., 
(Kriege et al., 2020) for a recent survey. 

Modern deep learning approaches do not explicitly extract such statistics, but there are nevertheless strong 
connections between modern graph representation learning and some well-known graph kernel methods, 
such as Weisfeiler Lehman kernel (Weisfeiler and Leman, 1968)!



Learning over Graphs

9

Traditional approaches to machine learning over graph-structured data are based on:

• Extracting node, or graph-level statistics or features (indicating, e.g., node/graph similarity), and

• Using these features as input to standard machine learning classifiers. 

Most popular graph similarity functions are studied under the name of graph kernel methods; see, e.g., 
(Kriege et al., 2020) for a recent survey. 

Modern deep learning approaches do not explicitly extract such statistics, but there are nevertheless strong 
connections between modern graph representation learning and some well-known graph kernel methods, 
such as Weisfeiler Lehman kernel (Weisfeiler and Leman, 1968)!

We will discuss the Weisfeiler Lehman algorithm, and its connection to popular graph neural network 
models, in detail later in the course.
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Other models: Convolutional neural networks are well-defined over grids, but not on graphs. Long short-
term memory networks process sequential (including, e.g., tree-shaped) data, but not graphs: In fact, the 
above-mentioned problem persists, as by encoding graphs as simple sequences, we lose valuable information.

We need a new kind of deep learning framework!
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Invariance: We say that a function  is permutation-invariant if for isomorphic graphs  it holds 
that .

f G, H ∈ 𝒢
f(G) = f(H)

Equivariance: We say that a function  is permutation-equivariant if it has the property that for every 
permutation  of , it holds that .

f
π VG f(Gπ) = f(G)π

Intuitively, permutation-invariance implies that the function does not depend on the ordering of the nodes in 
the graph, and permutation-equivariance implies the output of  is permuted in a consistent way when we 
permute the nodes in the graph.

f

We can also consider functions of different forms, e.g., . Note that permutation-invariance is still 
well-defined over these functions, but we cannot speak of permutation-equivariance here.

f : 𝒢 → ℝ

Argument: These properties are important for graph representation learning tasks, as they provide a strong 
relational inductive bias! The goal is to develop a deep learning framework enhanced with these properties.
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or even approximate this well in practice.
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• Learning a function  will likely require longer training time for model  as compared to model , as 
 needs to learn “more”.
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• Learning a function  will likely require more training data for model  as compared to model , as, 
e.g.,  likely needs more examples (of orderings) so as to learn invariance to them.

f M M+
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• Having the right inductive bias for a domain is very important — This has been observed on other 
deep learning models, and motivated new architectures (e.g., the use of convolutions which are 
translation-invariant). 
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Background: (Weston et al., 2015) proposed a collection of proxy tasks (bAbI) that are aimed at 
evaluating certain reasoning capabilities in the context of question answering. (Li et al., 2016) transformed 
the “bAbI Task 19”, a kind of pathfinding, into a symbolic form, and conducted experiments. In this 
reformulation, we are given a set of connections:  

                   E s A,  B n C,  E w F,  B w E, 

where, for instance, “E s A” denotes A is reachable from E by going south. The task is to find a path 
between, e.g., B and A, such as w,s. 

This is a rather simple pathfinding problem on graphs defined over edge types s, n, e, w. Can we learn to 
predict such paths?

Note, for instance, that one would expect the answers to be the same for isomorphic graph instances: 
permutation-invariance.
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GGSNN                                           71.1  14.7 with 50 training samples 

                             92.5  5.9 with 100 training samples  

                             99.0  1.1 with 250 training samples

±

±

±

Pathfinding: How well do earlier deep learning models, e.g., LSTMs, perform on this problem?

The relational inductive bias helps a lot, both in terms of accuracy, and in the #samples needed 
Similar phenomenons have been observed in other papers and on other tasks, and we will discuss 
some of these in more detail later in the course.
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initialise the representations of the respective nodes.

G = (V, E) X ∈ ℝd×VG

These representations are updated with the information received from their respective neighbourhoods (i.e., 
message passing), and this process continues for  iterations, yielding final node representations.k

(Gilmer et al., 2017) defined a single common framework, called Message Passing Neural Networks (MPNNs), 
which captures a popular family of graph neural network models proposed in the literature.
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u , aggregate(t)({h(t−1)
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Observe that we allow different functions at different iterations: if  and  are the same 
across all iterations, it is sometimes called a homogeneous MPNN.

aggregate(t) combine(t)

Final representation: Upon termination, the final node representations will be denoted as .zu = h(k)
u
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The -th iteration is also called the -th layer of the MPNN, since each iteration can be seen as an 
“unrolling” of the network. As usual, the number of layers defines the depth of the network, and the 
embedding dimensionality is called the width of the network.
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We describe a simple, concrete base model. The idea is again to initialise every node  to a vector 
representation . Then, the representation updates are given as:  

             

where  are trainable parameter matrices and  is an element-wise non-linear 
function (e.g., ReLU), and  is a bias term (which we will omit in the sequel).
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       h(t)
u = aggregate(t)({h(t−1)

v ∣ v ∈ N(u)} ∪ {h(t−1)
u })

Here, the aggregation is not only over the set the node’s neighbours, but also the node itself.

This simplifies the message passing. For example, the base model will then simplify to a model where we do 
not distinguish between trainable matrices any more: 

                                h(t)
u = σ(W(t) ∑

v∈N(x)

h(t−1)
v + h(t−1)

u )
However, this also severely limits the expressivity of the MPNN, as the information coming from the node’s 
neighbours cannot be differentiated from the information from the node itself! 

We focus on the message passing approach without self-loops, unless explicitly mentioned otherwise.



Graph Pooling

22



Graph Pooling

22

We have defined a message passing approach to produce a set of node embeddings, but we are also 
interested in making predictions at the graph level. 



Graph Pooling

22

We have defined a message passing approach to produce a set of node embeddings, but we are also 
interested in making predictions at the graph level. 

Embedding for the entire graph: This task is often referred to as graph pooling, since we “pool” together 
the node embeddings in order to learn an embedding of the entire graph (Hamilton, 2020). 



Graph Pooling

22

We have defined a message passing approach to produce a set of node embeddings, but we are also 
interested in making predictions at the graph level. 

Embedding for the entire graph: This task is often referred to as graph pooling, since we “pool” together 
the node embeddings in order to learn an embedding of the entire graph (Hamilton, 2020). 

Final representation: For a given graph , let us denote the final graph representation as . There 
are various ways of defining  which eventually lead to different models. 

G zG = h(k)
G

zG



Graph Pooling

22

We have defined a message passing approach to produce a set of node embeddings, but we are also 
interested in making predictions at the graph level. 

Embedding for the entire graph: This task is often referred to as graph pooling, since we “pool” together 
the node embeddings in order to learn an embedding of the entire graph (Hamilton, 2020). 

Final representation: For a given graph , let us denote the final graph representation as . There 
are various ways of defining  which eventually lead to different models. 

G zG = h(k)
G

zG

Specifically, we need a mapping from the set of all the node embeddings  to . This is very 
similar to the aggregate function (whose domain is also a set of embeddings) with the only difference being 
that aggregation operates over the local neighbourhood only.

{zu1
…zun

} zG



Graph Pooling

22

We have defined a message passing approach to produce a set of node embeddings, but we are also 
interested in making predictions at the graph level. 

Embedding for the entire graph: This task is often referred to as graph pooling, since we “pool” together 
the node embeddings in order to learn an embedding of the entire graph (Hamilton, 2020). 

Final representation: For a given graph , let us denote the final graph representation as . There 
are various ways of defining  which eventually lead to different models. 

G zG = h(k)
G

zG

Specifically, we need a mapping from the set of all the node embeddings  to . This is very 
similar to the aggregate function (whose domain is also a set of embeddings) with the only difference being 
that aggregation operates over the local neighbourhood only.

{zu1
…zun

} zG

In principle, any aggregation function can also be used to generate , and common choices are sum, or 
mean, which are then typically normalised with respect to, e.g., the size of the nodes.

zG



Graph Pooling

22

We have defined a message passing approach to produce a set of node embeddings, but we are also 
interested in making predictions at the graph level. 

Embedding for the entire graph: This task is often referred to as graph pooling, since we “pool” together 
the node embeddings in order to learn an embedding of the entire graph (Hamilton, 2020). 

Final representation: For a given graph , let us denote the final graph representation as . There 
are various ways of defining  which eventually lead to different models. 

G zG = h(k)
G

zG

Specifically, we need a mapping from the set of all the node embeddings  to . This is very 
similar to the aggregate function (whose domain is also a set of embeddings) with the only difference being 
that aggregation operates over the local neighbourhood only.

{zu1
…zun

} zG

In principle, any aggregation function can also be used to generate , and common choices are sum, or 
mean, which are then typically normalised with respect to, e.g., the size of the nodes.

zG

There are various methods for graph, or more generally, relational pooling (Murphy et al., 2019).



Graph Pooling

22

We have defined a message passing approach to produce a set of node embeddings, but we are also 
interested in making predictions at the graph level. 

Embedding for the entire graph: This task is often referred to as graph pooling, since we “pool” together 
the node embeddings in order to learn an embedding of the entire graph (Hamilton, 2020). 

Final representation: For a given graph , let us denote the final graph representation as . There 
are various ways of defining  which eventually lead to different models. 

G zG = h(k)
G

zG

Specifically, we need a mapping from the set of all the node embeddings  to . This is very 
similar to the aggregate function (whose domain is also a set of embeddings) with the only difference being 
that aggregation operates over the local neighbourhood only.

{zu1
…zun

} zG

In principle, any aggregation function can also be used to generate , and common choices are sum, or 
mean, which are then typically normalised with respect to, e.g., the size of the nodes.

zG

There are various methods for graph, or more generally, relational pooling (Murphy et al., 2019).



A Limitation of Message Passing

23



A Limitation of Message Passing

23

B A C

D FE



A Limitation of Message Passing

23

Problem: We have defined MPNNs which learn embeddings of nodes and graphs.The presented message 
passing approach, however, is local, e.g., for a disconnected graph no information will flow across disjoint 
subgraphs. This is a serious limitation!

B A C

D FE



A Limitation of Message Passing

23

Problem: We have defined MPNNs which learn embeddings of nodes and graphs.The presented message 
passing approach, however, is local, e.g., for a disconnected graph no information will flow across disjoint 
subgraphs. This is a serious limitation!

Remark: A graph embedding is necessarily global in the sense that it is composed of all nodes, but it is not 
a solution to the above-mentioned problem: During message passing there are still no messages between 
disjoint subgraphs and so the learned node embeddings are “blind” to other embeddings in disjoint subgraphs. 
The graph embedding, which is based on node embeddings, will necessarily have induced limitations.

B A C

D FE



A Limitation of Message Passing

23

Problem: We have defined MPNNs which learn embeddings of nodes and graphs.The presented message 
passing approach, however, is local, e.g., for a disconnected graph no information will flow across disjoint 
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Remark: A graph embedding is necessarily global in the sense that it is composed of all nodes, but it is not 
a solution to the above-mentioned problem: During message passing there are still no messages between 
disjoint subgraphs and so the learned node embeddings are “blind” to other embeddings in disjoint subgraphs. 
The graph embedding, which is based on node embeddings, will necessarily have induced limitations.

Solution: To break this behaviour, a standard approach is to use a global feature computation on each layer 
of the MPNN (Battaglia et al., 2018), also called a global attribute computation, or global readout.
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We present a simple extension to MPNNs by allowing global readouts, where in each layer we also compute 
a feature vector for the whole graph  and combine it with local aggregations.  

Message passing with global readout: The representation  for each node  is then iteratively 
updated with the information received from its neighbourhood as well as a global feature vector as:  
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(Battaglia et al., 2018) defines a generalised message passing framework for relational reasoning over graph 
representations, and message passing with global readout can be seen as a special case of this framework.

This seemingly simple reformulation makes a significant difference in terms of the expressive power of 
MPNNs (Barcelo et al., 2020), as we shall see later in the course.
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where at each iteration, each update happens in the given equation order.

h(t)
(u,v) = combinee(h(t−1)

(u,v) , h(t−1)
u , h(t−1)

v , h(t−1)
G ),

h(t)
u = combinen(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), h(t−1)

G ),

h(t)
G = combineG(h(t−1)

G , {h(t)
u ∣ u ∈ VG}, {h(t)

(u,v) ∣ (u, v) ∈ E}),

The idea is to generate hidden embeddings  for each edge  in the graph , as well as an 
embedding  corresponding to the entire graph. 

h(u,v) (u, v) G
hG

This allows the message passing model to easily integrate edge and graph-level features, especially in the 
multi-relational context, where each edge can be labelled differently.
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 are labeled with a class, predict the labels of the remaining nodes, i.e., test nodes in the 

graph, i.e.,  for all 

G = (V, E) X ∈ ℝd×VG

{(u, yu) ∣ u ∈ Vtr ⊂ V}
yv v ∈ V∖Vtr .

Example (Kipf and Welling, 2017): Consider citation networks such as Citeseer, where nodes represent papers, 
and edges denote citation links, and a subset of the nodes/papers are labelled with a paper category (e.g., AI, 
ML). The task is to predict the category (or, categories) of the remaining papers.

Training: Based on an appropriate loss function, e.g., negative log-likelihood loss:  

︎               , 

where  is a one-hot vector indicating the class  of the training node , and the  
function denotes the predicted probability that the node  belongs to the class . 

As usual, the gradient of the loss is backpropagated through the parameters of the GNN using stochastic 
gradient descent or one of its variants. 

ℒ = ∑
u∈Vtr

− log(softmax(zu, yu))

yu yu u ∈ Vtr softmax(zu, yu)
u yu
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Test nodes: The given loss function uses only nodes from the training set  , but test nodes  
may still be observed during training, i.e., they can take part in the message passing.

Vtr Vtest = V∖Vtr

This yields two regimes for learning (Hamilton, 2020): 

• Transductive: In this regime all nodes, including test nodes, are observed during training, i.e., their 
representations are computed during message passing and they also affect the representation of other 
nodes.

• Inductive: In this regime, not all test nodes are observed during training. This means that for some test 
nodes, neither the nodes themselves nor their edges (and hence their relation to other nodes) are known.

Transductive classification example: Suppose we have access to the full citation graph at training time in 
the citation networks task, and define a subset of the nodes as the test nodes. This is a transductive task, as 
the structural information of the nodes is available, and is used during the message passing. 

Inductive classification example: Suppose we only see a subgraph of the citation graph at training time in 
the citation networks task, and we define a set of nodes from a disjoint subgraph as test nodes. This is an 
inductive task, as we have not observed the test nodes during training.
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Node classification is usually viewed as a semi-supervised learning task, and this should be understood in 
reference to transductive node classification. It is called semi-supervised since:

• We train using training labels, as standard in supervised learning

• We additionally have access to the structural information of unlabelled test nodes 

This means that we trained using both labelled and unlabelled data.

In transductive node classification, which is by far the most common node classification task on graphs,  we 
typically have access to the full graph, including all the test nodes (and, e.g., their neighbourhood), and this 
makes the term semi-supervised somewhat more appropriate (though, the standard semi-supervised setting also 
requires i.i.d. assumption, which doesn’t hold for node classification).

Inductive node classification, on the other hand, can be seen as supervised learning.

This can be noted as another instance where machine learning on graphs tends to differ from standard practices 
and terminology in machine learning. 
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𝒢 = {G1, …Gn} {(Gi, yi) ∣ Gi ∈ 𝒢tr ⊂ 𝒢}
yj Gj ∈ 𝒢∖𝒢tr

Example: The IMDB datasets (Morris et al., 2020) consist of the so-called ego-networks for each movie, and 
contains information such as actor collaborations for each movie. The task is to predict the genre (e.g., action, 
horror) of the movie.

Training is similar to node classification, except that we use the final embedding of the graph instead of nodes.

Note that graph classification is a supervised learning task: Each graph is an i.i.d. data point associated with a 
label, and the goal is to use a labeled set of graphs to learn a mapping from graphs to class labels. 
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Intuitively, graph neural networks can be seen as encoders, which, for a given graph (or set of graphs), learn an 
embedding for each node (respectively, each graph).

Taking this broader perspective, we have the liberty to choose how to use the learned embeddings, i.e., they 
can be used for any standard machine learning task, e.g., classification, regression, clustering, etc. and so they 
have natural counterparts both on node and graph-level tasks.

Example (Gilmer et al., 2017): Given a graph representing the structure of a molecule, an interesting 
application is to build a regression model that could predict that molecule’s toxicity or solubility, which is an 
application of graph regression. 

Example: Similarly, if we are interested in applications such as community detection, this can be framed as a 
node clustering problem. In a similar vein, we may want to cluster a set of graphs, i.e., graph clustering.

Graph clustering is an unsupervised learning task, a natural extension of standard clustering. 
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Convolutional neural networks (CNNs) have been very successful in machine learning problems on grid-
structured data, especially for data that requires translational equivariance/invariance with respect to this grid.

This is one of the historical perspectives behind the development of graph neural networks: The main idea is to 
generalise Euclidean convolutions to the graph domain (Bruna et al., 2014)!

This line of research has led to graph convolutional networks (GCNs), a very popular GNN model (Kipf and 
Welling, 2016), which also falls into the class of MPNNs.

Intuitively, the graph Laplacian allows a natural link between graphs and vector spaces, and so the structure of 
the graph can be exploited with the spectrum of its graph-Laplacian. The main idea is then to use this to 
generalise the convolution operator to graph domains.

We will discuss and introduce graph convolutional networks in Lecture 4!
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Another historical perspective is offered through the connection to the fundamental problem of graph 
isomorphism.

Intuitively, classifying graph-structured data requires the ability to distinguish graphs; and message passing neural 
networks cannot distinguish all graphs, and so they have limited expressive power!

The connection to graph isomorphism testing offers many interesting and theoretical insights, and has 
contributed a great deal to our understanding of graph neural networks, especially in terms of their expressive 
power (Morris et al., 2018, Xu et al, 2019).

We will cover these aspects in Lecture 5.
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It is also possible to draw connections from traditional machine learning models, i.e., through probabilistic 
graphical models.

Message passing algorithms are used in the context of probabilistic graphical models, and can be dated back to 
belief propagation in Bayesian networks (Pearl, 82).

(Dai et al., 2016) offers an alternative perspective for graph neural networks based on probabilistic graphical 
models: The message passing operation that underlies MPNNs can be viewed as a neural network analogue of 
certain message passing algorithms that are commonly used for variational inference in probabilistic models to 
infer distributions over latent variables.

We will not cover this aspect, but you will encounter, e.g., probabilistic graphical models, or variational inference 
as part of the Bayesian machine learning lectures.
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• Message passing neural networks as a framework

• A basic message passing neural network model and its extensions

• Node and graph classification and beyond

• Historical perspectives for graph neural networks

• We have not covered any concrete model beyond the very basic one: Lecture 4!

• Additional reading material: This lecture is partially based on Chapters 5 - 7 of (Hamilton, 2020)
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