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where  denote the Fourier and inverse Fourier transform, respectively.
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which means that translating a signal and then convolving 
it is equivalent to convolving the signal and then translating 
the result.  

Convolution allows for a more localised processing of 
information, and this offers a strong inductive bias.  

This inductive bias is key to the successes for CNNs, as 
CNNs used convolutional filters to detect localised features, 
irrespective of their location in the image!

f(t + a) ⋆ g(t) = f(t) ⋆ g(t + a) = ( f ⋆ g)(t + a)

Excerpt from Figure 2 of (Zeiler and Fergus, 2014).
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Problem: Convolutions are inherently defined over Euclidian spaces. For signals, they are defined over the real 
domain, and convolution in CNNs applies over a contiguous tensor. 

Graphs are non-Euclidian, and do not admit a smooth structure. 

Question: Can we lift convolutions to the graph domain, to take advantage of their inductive bias?

Recall the basic MPNN model from Lecture 3, defined as:    

                                            . 

Can we interpret this model in terms of convolutions?

h(t)
u = σ(W(t)

self h
(t−1)
u + W(t)

neigh ∑
v∈N(u)

h(t−1)
v )
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where  denotes the matrix of node representations at layer  and  is the adjacency matrix of , 
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Specifically, we define a filter , where  is the identity matrix of . Q = I + A I G

We can then view the message passing layers in the basic model as a generalisation of the linear filter  to more 
complex non-linear functions. 

Q

Convolution can be done based on spectral properties of the graph, and in this case, this is defined via the 
adjacency matrix! 

This base MPNN model can be written using a graph-level equation as: 
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If we use the adjacency matrix alone as a filter, only node degrees play an important role in the convolution, and 
this filter is too simple!

Spectral properties of the graph are captured by other matrices such as the graph Laplacian, and this is another 
common means to convolve over graphs.

Recall that the Laplacian of a graph  is defined as , where  is the degree matrix of .G L = D − A D G

Intuitively, the Laplacian allocates different weights to neighbour nodes in a graph based on their overall role in 
the graph. In this respect, it is more informative than the adjacency matrix alone.

Problem:  For general graphs, commutativity with the adjacency matrix (i.e., translation-equivariance) does not 
necessarily imply commutativity with the Laplacian! 
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These matrices share the same eigenvectors! We observe the following relationship: 
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where  is the shared set of eigenvectors and  is the diagonal matrix containing the Laplacian eigenvalues. 

Lsym = I − Asym ⇒ Lsym = UΛU⊤ and Asym = U(I − Λ)U⊤

U Λ

Both Laplacian and adjacency variants are typically normalised, to ensure that they have bounded spectra, and 
thus ensure numerical stability.

The symmetric normalised Laplacian is defined as: Lsym = D− 1
2 LD− 1

2

The symmetric normalised adjacency matrix is defined as:  Asym = D− 1
2 AD− 1

2

Defining filters based on one of these matrices implies commutativity with the other, which is a very convenient 
and desirable property! 
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                         .H(t) = σ((A + I) H(t−1)W(t))

Based on graph convolutions, the basic graph convolutional network (GCN) model is defined as follows:  

                          , 

where  is a normalised version of adjacency matrix with self-loops and  is a 
learnable parameter matrix.

H(t) = σ(Â H(t−1)W(t))
Â = (D + I)− 1

2 (I + A)(D + I)− 1
2 W(t)

The basic GCN model is hence a more elaborate version of the basic MPNN model with self-loops. The basic 
GCN model implicitly captures the combine and aggregate functions: The adjacency component of  enables 
messaging between neighbours, and the added identity component makes nodes send messages to themselves. 

Â

In this basic GCN, the node base embedding is treated identically to messages from other nodes, and the 
combine and aggregate functions are intertwined. Recall that this can hinder the expressiveness of the model, 
and there are variants of GCNs without self-loops.
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Node Embeddings as a Sequence

13

GCNs are motivated from convolutions and primarily by the success of CNNs. From this perspective, we viewed 
graph convolutions as a generalisation of, e.g., image convolution.

Message passing can be seen to fit to another natural perspective:

• In a graph, every node has a state, and this state is updated after every message passing iteration to reflect 
the new information it receives. 

• This update is based on the current state of the node, as well as its previous states. 

• This process repeats until the end of message passing.

This mode of operation suggests yet another abstraction: View node embedding updates during message passing 
as a sequential process!
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context, the input sentences are processed word by word, and the state of the computation is updated based 
on the most recently viewed word, as well as a state, which stores information about all earlier words, to 
yield a final representation for the overall sentence.

• This is typically done with recurrent neural models, and a popular model is the Gated Recurrent Unit (GRU) 
defined as: 

                      

Rt = σ(XtWxr + H(t−1)Whr + br),
Zt = σ(XtWxz + H(t−1)Whz + bz),

H̃t = tanh(XtWxh + (Rt ⊙ H(t−1)) Whh + bh),

Ht = Zt ⊙ Ht−1 + (1 − Zt) ⊙ H̃t .

• Briefly, the idea it to maintain a state in memory, and then based on the new state and input, decide to 
retain or update your state.
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How to apply this sequential state abstraction to node embeddings and hence graphs?

We can view nodes as having states which are being updated based on an aggregation of all incoming 
messages from their neighbours, for a given number of message passing iterations. 

Therefore, the state abstraction for nodes in a graph gives rise to three separate computations: 

1. Message computation: Based on a node’s current state 

2. Message aggregation: Node level aggregation 

3. State update: A recurrent unit, such as GRU, that accepts the current state, the aggregation of 
messages, and yields an update. 
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This yields a model known as the gated graph neural networks (Li et al., 2016), where the representation 
 for each node  is iteratively updated as:  

                                             

That is, in the original base model message computation happens through a multiplication by a shared 
weight matrix, and aggregation is set to sum.

hu u ∈ V

h(t)
u = GRU(h(t−1)

u , ∑
v∈N(u)

W(t)h(t−1)
v ),

Several variants to the base GGNN model have been developed by simply modifying any of the three 
aforementioned components. 

Multi-layer perceptrons have been used for message computation; other gated units, such as LSTM, 
Layer-Norm LSTM, have also been applied instead of GRU; finally, we have the usual choices for different 
aggregation functions. 
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In earlier models, we discussed different choices of aggregation, but did not investigate the impact these had on 
the discrimination ability of GNNs.

More concretely, consider a simple node classification task, with basic node types red, green and yellow, where 
the features are simply the RGB values. We now consider a red node, and want to analyse how different 
functions aggregate neighbour messages: 

• Sum: Can discern between neighbourhoods based on their sizes, e.g., between 2-red neighbourhood and 3-
red neighbourhood. However, summation can lead to false equality: In this example, sum would not be able 
to distinguish between a 2-yellow and a red-green neighbourhood.

• Mean: Useful for bounding the range of aggregate messages, but cannot distinguish between neighbour sets 
such as 2-red and 3-red, as the mean operation eliminates cardinality.

• Max: Allows to highlight a relevant element in the neighbourhood, but has very limited discriminative 
ability. If we consider an ordering red < yellow < green, then green will be returned for any neighborhood 
involving at least 1 green node.
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In order to be more generally applicable, an aggregation function must be able to distinguish between distinct 
neighbourhoods, and return different results given different neighbourhood multisets.

More formally, the aggregation function must be injective relative to the neighbourhood. In fact, it is shown that 
MPNNs are at their maximal expressiveness if the aggregation function being used is injective (Xu et al.,2019).

T S
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(Xu et al., 2019)
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Graph isomorphism networks (GINs) propose a novel aggregation scheme that is injective, thereby allowing 
maximal expressiveness for aggregation.

[Lemma 5 & Corollary 6, (Xu et al., 2019)] For a  countable set , there exists a function  such 
that for any choice of , the function 

  

is unique for each pair , where  and  is a multiset of bounded size. Moreover, any function  
over such pair  can be decomposed as: 

                                                     

for some function .

𝒳 f : X → ℝn

ϵ

h(c, X) = (1 + ϵ) ⋅ f(c)∑
x∈X

f(x)

(c, X) c ∈ X X ⊂ 𝒳 g
(c, X)

g(c, X) = ψ((1 + ϵ) ⋅ f(c) + ∑
x∈X

f(x))
ψ
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The idea is to learn   to obtain an injective aggregation function. f ∘ ψ

GINs apply an MLP on all nodes, to model and learn , yielding an injective aggregation function, which is 
possible thanks to universal approximation theorem given for MLPs (Hornik et al., 1989).

f ∘ ψ

Overall, the representation  for each node  is iteratively updated as: hu u ∈ V

                         h(t)
u = MLP((1 + ϵ) ⋅ h(t−1)

u , ∑
v∈N(u)

h(t−1)
v )

Intuitively, in GINs, this MLP in fact computes the update for node representation, based on the summation of 
neighbourhood node representation, plus the current node representation, scaled up by a factor . 1 + ϵ

The scaling up of the current node representation distinguishes this node from the neighbour nodes.
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Attention is a mechanism through which neural networks 
dynamically allocate different weights to distinct inputs, based on 
their relevance to the learned task.

Attention has proven key to achieving significant improvements in 
sequential tasks such as machine translation and language 
understanding; see, e.g., (Bahdanau et al., 2015).

An example of the attention mechanism following long-distance 
dependencies in the encoder self-attention (from Figure 3 of 
(Vasvani et al., 2017)) is shown on the right hand side. 

“Many of the attention heads attend to a distant dependency of 
the verb ‘making’, completing the phrase ‘making...more 
difficult’. Attentions here shown only for the word ‘making’. 
Different colours represent different heads.”
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where   denotes the attention on a node in  when we are aggregating information at node . 

h(t)
u = σ(W(t) ∑
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Attention can therefore produce a richer weighing of a node’s neighbours, which results in potentially more 
descriptive and task-specific aggregation schemes. 

The basic idea is to assign an attention weight to each neighbour, which corresponds to having weighted 
aggregation functions e.g., weighted sum, weighted average, etc. 

This can be seen as an extension of the base MPNN model with self-loops. Having self-loops is fine here, as the 
discrimination of nodes is happening through the attention mechanism. We can of course generalise this:                                        

                                            .h(t)
u = combine(h(t−1)

u , ∑
v∈N(u)

α(u,v) h(t−1)
v )
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GATs allow nodes to assign relative importance to their neighbours throughout message passing, and compute 
updates less uniformly across the graph. Attention also slightly improves information flow in GNNs.

Furthermore, attention makes the updates more injective: This ensures that GATs are closer to the inherent 1-
WL limit (which we will discuss later in the course).

Though attention naturally fits in during aggregation, one can also imagine other more conventional uses of the 
mechanism to improve GNNs: 

• Attention for computing the global readout following, or during, message passing.

• Attention across different message passing iterations, similarly to sequence models. For instance, a GGNN 
model can compute its update by attending to its previous states at earlier iterations, much like standard 
sequence models. 
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GNN models can easily be extended to multi-head attention (Velickovic et al., 2018). 

Question: Is there a connection between Transformer and GNNs with multi-head attention?

Briefly, the transformer architecture (Vaswani et al., 2017)  defines neural network layers entirely based on the 
attention operation, and generates, at each layer, a representation for every position in the input data by using 
multiple attention heads to compute attention weights between all pairs of positions in the input, which are then 
aggregated with weighted sums based on these attention weights.

This is exactly what happens in GNNs with multi-head attention, except that the input graphs are not 
necessarily fully connected!

We can therefore view the basic Transformer model as a GNN model with multi-head attention, if we further 
assume that the GNN receives a fully connected graph as input. 
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Over-smoothing (Li et al., 2018) is a phenomenon where the representations of the nodes in the graph become 
indistinguishable after several message passing iterations. 

Over-smoothing hence makes it very hard for the model to make meaningful predictions — especially for deep 
GNN models, where the goal is to pass information across many layers so as to capture long-range 
dependencies.

Intuitively, this typically happens when messages aggregated from the neighbours are too prominent, rendering 
the effect of the embeddings from the previous layers less and less important.

Significant performance degradation has been observed when stacking many layers on GNNs (Kipf & Welling, 
2017); especially for GCNs, quoting from (Li et al., 2018):

“If a GCN is deep with many convolutional layers, the output features may be over-smoothed and vertices from 
different clusters may become indistinguishable.”                                                                                                                                              
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For example, one theoretical justification is given by (Xu et al., 2018) for GCN-like models with self-loop: 

With a -layer GCN, the influence of a node  on node  is proportional the probability of reaching node  on 
a -step random walk starting from node .
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Note that over-smoothing is a fundamental limitation for many models! 

To partially alleviate over-smoothing, a typical strategy is to define a more general update procedure 
(Hamilton et al., 2017) that concatenates each node’s previous embedding with the output of the combine 
function, so as to preserve as much information from previous rounds of message passing as possible. 

This is not a solution to the problem, but rather a way to alleviate the problem in practice.
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Over-squashing is a closely related problem; quoting (Alon and Yahav, 2021): 

“As the number of layers increases, the number of nodes in each node’s receptive field grows exponentially. This 
causes over-squashing: information from the exponentially-growing receptive field is compressed into fixed-length 
node vectors. Consequently, the graph fails to propagate messages flowing from distant nodes; the model learns 
only short-range signals from the training data; and overall, generalises poorly at test time.”
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The model then performs poorly when the prediction task depends on long-range interactions, and it is easy to 
imagine tasks that require long-range dependencies: consider the reachability task on graphs, which requires as 
many iterations as the diameter of the graph, as otherwise it will suffer from under-reaching (i.e., not receiving 
information from some nodes).
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We have already mentioned that the representation/expressive power of MPNNs are limited: 

Theoretically, their expressive power is the same as the 1-dimensional Weisfeiler-Lehman graph isomorphism 
heuristic (1-WL) in terms of distinguishing non-isomorphic (sub-)graphs.

This implies for example that the embedding learned for the graph on the left-hand side will be exactly the same 
as the embedding of the graph on the right-hand side.

This is an important limitation, which will be the topic of the next lecture.
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Summary
• An historical overview of graph neural networks:

• Graph convolutional networks: each iteration of message passing is a convolution.

• Gated graph neural network: graphs as sequences — gated units as the combine function.

• Graph isomorphism network: aggregation

• Graph attention networks: distinguish messages from nodes via attention

• Each of these models fall into the MPNN framework of (Gilmer et al, 2017).

• Additional reading material: This lecture is partially based on Chapters 5 - 7 of (Hamilton, 2020).

• We have not identified the expressive power of MPNNs: Lecture 5.

• There are a plethora of other GNN models; some cannot be classified as MPNNs: Lecture 6.
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