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Basic algorithmic techniques
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When faced with a new algorithmic problem, one should consider

applying one of the following approaches:

� Divide-and-conquer :: divide the problem into two subproblems, solve

each problem separately and merge the solutions

� Dynamic programming :: express the solution of the original problem

as a recursion on solutions of similar smaller problems. Then instead

of solving only the original problem, solve all sub-problems that can

occur when the recursion is unravelled, and combine their solutions

� Greedy approach :: build the solution of an optimization problem one

piece at a time, optimizing each piece separately

� Inductive approach :: express the solution of the original problem

based on the solution of the same problem with one fewer item; a

special case of dynamic programming and similar to the greedy

approach



The divide-and-conquer strategy
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The divide-and-conquer strategy solves a problem by:

1. Breaking it into subproblems (smaller instances of the same problem)

2. Recursively solving these subproblems

[Base case: If the subproblems are small enough, just solve them by

brute force.]

3. Appropriately combining their answers.

Where is the work done?

In three places:

1. In dividing the problems into subproblems.

2. At the tail end of the recursion, when the subproblems are so small

they are solved outright.

3. In the gluing together of the intermediate answers.



Merge sort [CLRS 2.3.1]
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Merge sort is a divide-and-conquer algorithm.

Informal description:

It sorts a subarray A[p . . r) := A[p . . r − 1]

Divide by splitting it into subarrays A[p . . q) and A[q . . r) where

q = ⌊(p+ r)/2⌋.

Conquer by recursively sorting the subarrays.

Recursion stops when the subarray contains only one element.

Combine by merging the sorted subarrays A[p . . q) and A[q . . r) into a

single sorted array, using a procedure called MERGE(A, p, q, r).

MERGE compares the two smallest elements of the two subarrays and

copies the smaller one into the output array.

This procedure is repeated until all the elements in the two subarrays have

been copied.



Example
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Pseudocode for MERGE-SORT

DAA 2019 2. Divide and Conquer Algorithms – 6 / 52

MERGE-SORT(A, p, r)

Input: An integer array A with indices p < r.

Output: The subarray A[p . . r) is sorted in non-decreasing order.

1 if r > p+ 1
2 q = ⌊(p+ r)/2⌋
3 MERGE-SORT(A, p, q)
4 MERGE-SORT(A, q, r)
5 MERGE(A, p, q, r)

Initial call: MERGE-SORT(A, 1, n + 1)



Merge
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Input: Array A with indices p, q, r such that

� p < q < r

� Subarrays A[p . . q) and A[q . . r) are both sorted.

Output: The two sorted subarrays are merged into a single sorted

subarray in A[p . . r).



Pseudocode for MERGE

DAA 2019 2. Divide and Conquer Algorithms – 8 / 52

MERGE(A, p, q, r)

1 n1 = q − p
2 n2 = r − q
3 Create array L of size n1 + 1
4 Create array R of size n2 + 1
5 for i = 1 to n1

6 L[i] = A[p+ i− 1]
7 for j = 1 to n2

8 R[j] = A[q + j − 1]
9 L[n1 + 1] = ∞

10 R[n2 + 1] = ∞

11 i = 1
12 j = 1
13 for k = p to r − 1
14 if L[i] ≤ R[j]
15 A[k] = L[i]
16 i = i+ 1
17 else A[k] = R[j]
18 j = j + 1



Running time of MERGE
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� The first two for loops take Θ(n1 + n2) = Θ(n) time, where

n = r − p.

� The last for loop makes n iterations, each taking constant time, for

Θ(n) time.

� Total time: Θ(n).

Remark

� The test in line 14 is left-biased, which ensures that MERGE-SORT is

a stable sorting algorithm: if A[i] = A[j] and A[i] appears before A[j]
in the input array, then in the output array the element pointing to A[i]
appears to the left of the element pointing to A[j].



Characteristics of merge sort
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� The worst-case running time of MERGE-SORT is Θ(n log n), much

better that the worst-case running time of INSERTION-SORT, which

was Θ(n2).
(see next slides for the explicit analysis of MERGE-SORT).

� MERGE-SORT is stable, because MERGE is left-biased.

� MERGE and therefore MERGE-SORT is not in-place:

it requires Θ(n) extra space.

� MERGE-SORT is not an online-algorithm: the whole array A must be

specified before the algorithm starts running.



Analysing divide-and-conquer algorithms [CLRS 2.3.2]
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We often use a recurrence to express the running time of a

divide-and-conquer algorithm.

Let T (n) = running time on a problem of size n.

� If n is small (say n ≤ k), use constant-time brute force solution.

� Otherwise, we divide the problem into a subproblems, each 1/b the

size of the original.

� Let the time to divide a size-n problem be D(n).

� Let the time to combine solutions (back to that of size n) be C(n).

We get the recurrence

T (n) =

{

c if n ≤ k
a T (n/b) +D(n) + C(n) if n > k



Example: MERGE-SORT
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For simplicity, assume n = 2k.

For n = 1, the running time is a constant c.

For n ≥ 2, the time taken for each step is:

� Divide: Compute q = (p+ r)/2; so, D(n) = Θ(1).

� Conquer: Recursively solve 2 subproblems, each of size n/2;

so, 2T (n/2).

� Combine: MERGE two arrays of size n; so, C(n) = Θ(n).

More precisely, the recurrence for MERGE-SORT is

T (n) =

{

c if n = 1
2T (n/2) + f(n) if n > 1

where the function f(n) is bounded as d′ n ≤ f(n) ≤ d n for suitable

constants d, d′ > 0.



Solving recurrence equations
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We will consider three methods for solving recurrence equations:

1. Guess-and-test (called the substitution method in [CLRS])

2. Recursion tree

3. Master Theorem



Guess-and-test [CLRS 4.3]
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� Guess an expression for the solution. The expression can contain

constants that will be determined later.

� Use induction to find the constants and show that the solution works.

Let us apply this method to MERGE-SORT.

The recurrence of MERGE-SORT implies that there exist two constants

c, d > 0 such that

T (n) ≤

{

c if n = 1
2T (n/2) + d n if n > 1



Guess-and-test [CLRS 4.3]

DAA 2019 2. Divide and Conquer Algorithms – 14 / 52

� Guess an expression for the solution. The expression can contain

constants that will be determined later.

� Use induction to find the constants and show that the solution works.

Let us apply this method to MERGE-SORT.

The recurrence of MERGE-SORT implies that there exist two constants

c, d > 0 such that

T (n) ≤

{

c if n = 1
2T (n/2) + d n if n > 1

Guess. There is some constant a > 0 such that T (n) ≤ an lg n for all

n ≥ 2 that are powers of 2.

Let’s test it!



Solving the MERGE-SORT recurrence by guess-and-test
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Test. For n = 2k, by induction on k.

Base case: k = 1

T (2) = 2c+ 2d ≤ a 2 lg 2 if a ≥ c+ d

Inductive step: assume T (n) ≤ an log n for n = 2k.

Then, for n′ = 2k+1 we have:

T (n′) ≤ 2an′

2
lg
(

n′

2

)

+ d n′

= an′ lg n′ − an′ lg 2 + d n′

≤ an′ lg n′ if a ≥ d

In summary: choosing a ≥ c+ d ensures T (n) ≤ an lg n,

and thus T (n) = O(n log n).
A similar argument can be used to show that T (n) = Ω(n log n).
Hence, T (n) = Θ(n log n).



The recursion tree [CLRS 4.4]
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Guess-and-test is great, but how do we guess the solution?

One way is to use the recursion tree,

which exposes successive unfoldings of the recurrence.

The idea is well exemplified in the case of MERGE-SORT.

The recurrence is

T (n) =

{

c if n = 1
2T (n/2) + f(n) if n > 1

where the function f(n) satisfies the bounds d′ n ≤ f(n) ≤ d n, for

suitable constants d, d′ > 0.



Unfolding the recurrence of MERGE-SORT
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Assume n = 2k for simplicity.

First unfolding: cost of f(n) plus cost of two subproblems of size n/2

f(n)

T (n/2) T (n/2)

Second unfolding: for each size-n/2 subproblem, cost of f(n/2) plus cost

of two subproblems of size n/4 each.

f(n)

f(n/2)

T (n/4) T (n/4)

f(n/2)

T (n/4) T (n/4)



Unfolding the recurrence of MERGE-SORT (cont’d)
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Continue unfolding, until the problem size (= node label) gets down to 1:

f(n)

f(n/2)

f(n/4)

...
...

f(n/4)

...
...

f(n/2)

f(n/4)

...
...

f(n/4)

...
...

In total, there are lg n+ 1 levels.

� Level 0 (root) has cost C0(n) = f(n).

� Level 1 has cost C1(n) = 2f(n/2).

� Level 2 has cost C2(n) = 4f(n/4).

� For l < lg n, level l has cost Cl(n) = 2lf(n/2l).
Note that, since d′ n ≤ f(n) ≤ d n, we have d′ n ≤ Cl(n) ≤ d n.

� The last level (consisting of n leaves) has cost cn.



Analysing MERGE-SORT with the recursion tree
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The total cost of the algorithm is the sum of the costs of all levels:

T (n) =

lg n−1
∑

l=0

Cl(n) + c n .

Using the relation d′ n ≤ Cl(n) ≤ dn for l < lg n, we obtain the bounds

d′ n lg n+ c n ≤ T (n) ≤ d n lg n+ c n .

Hence, T (n) = Θ(n log n).



The Master Theorem [DPV 2.2]
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Theorem. Suppose

T (n) ≤ aT (⌈n/b⌉) +O(nd)

for some constants a > 0 and b > 1 and d ≥ 0.

Then,

T (n) =







O(nd) if d > logb a
O(nd logb n) if d = logb a
O(nlogb a) if d < logb a

Example: For MERGE-SORT, a = b = 2 and d = 1.

The master theorem gives T (n) = O(n log n).

Note. See [CLRS 4.5] for a stronger version of the Master Theorem.



Proof of the Master Theorem
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By a recursion tree argument.

First assume n is a power of b. (We shall relax this later.)

The size of the subproblems decreases by a factor of b at each recursion,

and reaches the base case after logb n divisions.

Since the branching factor is a, level k of the tree comprises ak

subproblems, each of size n/bk.



Proof cont’d
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The cost at level l is upper bounded by c al × ( n
bl
)d = c nd × ( a

bd
)l,

for a suitable constant c > 0.

Thus, the total cost is upper bounded by

T (n) ≤ c nd

(

1 +
a

bd
+
( a

bd

)2

+ · · · +
( a

bd

)logb n
)

.



Proof cont’d
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The cost at level l is upper bounded by c al × ( n
bl
)d = c nd × ( a

bd
)l,

for a suitable constant c > 0.

Thus, the total cost is upper bounded by

T (n) ≤ c nd

(

1 +
a

bd
+
( a

bd

)2

+ · · · +
( a

bd

)logb n
)

.

Now, there are three cases:

1. a < bd, i.e. d > logb a: the geometric series sums up to a constant.

Hence, T (n) = O(nd).

2. a = bd, i.e. d = logb a: the geometric series sums up to 1 + logb n.

Hence, T (n) = O(nd log n).

3. a > bd, i.e. d < logb a: the geometric series sums up to Θ
(

(

a
bd

)logb n
)

.

Since
(

a
bd

)logb n = nlogb a

nd , we have

T (n) ≤ c nd Θ
(

nlogb a

nd

)

= Θ(nlogb a). Hence, T (n) = O(nlogb a).



Extension to arbitrary integers
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We proved the Master Theorem when n is a power of b.
What about arbitrary n?

Idea: Assume that T (n) is a non-decreasing function of n
(as we expect for the running time of an algorithm).

Then, T (n) ≤ T (n′), where n′ = b⌈logb n⌉ is the smallest power of b that is

larger than n.

Example: case 2.

We know that T (n′) ≤ c (n′)d for some constant c > 0. Then,

T (n) ≤ T (n′) ≤ c (n′)d ≤ c bd⌈logb n⌉ ≤ c bd(logb n+1) ≤ c′ nd ,

with c′ = c bd. Hence, T (n) = O(nd).

The same reasoning applies to cases 2 and 3.



Changing variables
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Consider the recurrence

T (n) = 2T (n1/2) + log n

which, at first sight, does not fit the form of the Master Theorem.

A trick. By introducing the variable k = log n we get

T (n) = T (2k) = 2T (2k/2) + k

Substituting S(k) = T (2k) into the above equation, we get

S(k) = 2S(k/2) + k

By the Master Theorem, we have S(k) = O(k log k), and so

T (n) = O(log n log log n).



Further examples of divide-and-conquer algorithms
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In the following, we will see divide-and-conquer algorithms for

� search

� integer multiplication

� matrix multiplication

� selection (finding the i-th smallest element in an array)



Example 1: Search [CLRS Exercise 2.3-5]
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The Search Problem:

Input: A subarray A[p, . . , r) of distinct integers sorted in increasing

order, and an integer z

Output: “Yes” if z appears in A[p, . . , r), “No” otherwise.

BINSEARCH(A, p, r, z)

// Assume A sorted in increasing order

1 if p ≥ r
2 return “No”

3 else q = ⌊(p+ r)/2⌋
4 if z = A[q]
5 return “Yes”

6 else if z < A[q]
7 BINSEARCH(A, p, q, z)
8 else BINSEARCH(A, q + 1, r, z)



Running time of BINSEARCH
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Let T (n) be the worst-case running time of BINSEARCH on an input array

of length n = r − p. Then

T (n) ≤

{

O(1) if n = 1
T (⌈n/2⌉) +O(1) otherwise

By the Master Theorem, T (n) = O(log n).



Example 2: Integer Multiplication [DPV 2.1]
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An old observation of Carl Gauss (1777-1855)

Product of complex numbers

(a+ ib)(c+ di) = ac− bd+ (bc+ ad)i

can be done with just three real-number multiplications

ac, bd, (a+ b)(c+ d)

because bc+ ad = (a+ b)(c+ d)− ac− bd.

Can we exploit Gauss’ trick for the multiplication of binary integers?



Multiplying n-bit integers
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Divide and conquer: Split each of n-bit numbers x and y into their left

and right halves, which are each n/2-bits long:

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Since

xy = (2n/2xL + xR)(2
n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

compute xy by four (n/2)-bit multiplications xLyL, xLyR, xRyL, xRyR,

three additions and two multiplications by powers of 2 (= left-shifts).

Writing T (n) for run time on multiplying n-bit inputs, we have

T (n) = 4T (n/2) +O(n), and so T (n) = O(n2).



A faster multiplication (Karatsuba and Ofman)
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Using Gauss’ trick, three (n/2)-bit multiplications suffice:

xLyL, xRyR, (xL + xR)(yL + yR).

Reducing the number of multiplications from 4 to 3 may not look

impressive, but this little saving occurs at every level of the recursion.

Thanks to it, the running time is T (n) = 3T (n/2) +O(n), and the Master

Theorem yields

T (n) = O(nlog2 3) ≈ O(n1.59)

A significant improvement!



Example 3: Matrix multiplication [DPV 2.5, CLRS 4.2]
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Let X be a p× q matrix and Y be a q × r matrix. The product Z = X · Y
is a p× r matrix where

Zij =

q
∑

k=1

Xik · Ykj

Standard algorithm. The above definition yields an algorithm requiring

p× q × r multiplications and p× (q − 1)× r additions. In case

p = q = r = n, the total cost is 2n3 − n2 = O(n3) operations.

Can we do better?

Strassen’s divide-and-conquer method (1969)

View X and Y as each composed of four n/2× n/2 blocks:

X =





A B

C D



 Y =





E F

G H







Strassen’s method
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Then XY can be expressed in terms of these blocks (which behave as if

they are singletons):

XY =





A B

C D









E F

G H



 =





AE +BG AF +BH

CE +DG CF +DH





We use a divide-and-conquer strategy. To compute size-n product XY ,

recursively compute eight size-(n/2) products:

AE,BG,AF,BH,CE,DG,CF,DH

then do some O(n2)-time additions.

Running time: T (n) = 8T (n/2) +O(n2), which gives T (n) = O(n3),
thanks to the Master Theorem.

This is unimpressive.



Strassen’s trick
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Size-n XY can be computed from just seven size-(n/2) subproblems.

XY =





P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7





where

P1 = A(F −H) P5 = (A+D)(E +H)

P2 = (A+B)H P6 = (B −D)(G+H)

P3 = (C +D)E P7 = (A− C)(E + F )

P4 = D(G− E)

The new running time is T (n) = 7T (n/2) +O(n2); hence

T (n) = O(nlog2 7) ≈ O(n2.81).



Example 4: Selection [CLRS 9.3]
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The ith-order statistic of a set of n (distinct) elements is the i-th smallest

element (i.e. the element that is larger than exactly i− 1 other elements).

The median is the ⌊(n+ 1)/2⌋-order statistics.

The Selection Problem:

Input: A set of n (distinct) numbers and a number i, with 1 ≤ i ≤ n.

Output: The ith-order statistic of the set.

An upper bound

The selection problem can be solved in O(n log n) time:

� Sort the numbers in O(n log n) time using MERGE-SORT

� Return the i-th element in the sorted array.

But do we really need to sort first? Can’t we find a faster algorithm?



A fast algorithm for selection
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Using a divide-and-conquer approach, one can find the i-th smallest

element in O(n) time, even in the worst case!

The algorithm SELECT is based on two ideas:

Idea 1: pick an element of the array A[1 . . n], say A[q], called the pivot.

Partition the array into three subarrays, one containing the elements

smaller than A[q], one containing A[q], and one containing the elements

larger than A[q].
Reduce the search for the i-th element to one of the subarrays.

Idea 2: Choose the element A[q] in such a way that the subarray of

elements larger than A[q] and the subarray of elements smaller than A[q]
are of comparable size.

To do so, divide the array A into small groups (e.g. of size 5 or less), find

the median of each group, and compute the median of the medians.

Choose A[q] to be the median of medians.

(Of course, to find the median of medians we need to run SELECT. But the

point is that the size of the input has been reduced from n to ⌈n/5⌉.)



The partition task
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Input: An input subarray A[p . . r], containing distinct numbers, and an

array element A[q] (the pivot)

Output: An output subarray A′[p . . r] and an array index q′ such that

� A′[p . . r] consists of the same set of numbers as A[p . . r]

� A′[p . . q′ − 1] consists of numbers < A[q]

� A′[q′] = A[q].

� A′[q′ + 1 . . r] consists of numbers > A[q].

It is easy to see that the partition task can be implemented in O(n) time,

with n = r − p+ 1.

One has only to go through the elements of A, and to copy the element

A[i] (i 6= q) into one of two arrays, B and C, depending on whether

A[i] < A[q] or A[i] > A[q]. Then, the two arrays B and C can be used to

build an array A′ with the desired properties.

More interestingly, the partition can be done in place,

see CLRS 7.1 for an explicit algorithm.



The algorithm SELECT(A, i)
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Input: An array A of n distinct numbers.

Output: The i-th smallest element.

1. Divide the n input elements into ⌊n/5⌋ groups of 5 elements each,

and at most one group of the remaining nmod 5 elements.

2. Find the median of each of the ⌈n/5⌉ groups (e.g. by running

INSERTION-SORT and picking the appropriate element)

3. Use SELECT to find the median-of-medians, call it x.

4. Use x as pivot, to partition the input array into three subarray.

5. Compute the number of elements in the lower subarray (consisting of

elements < x), and denote it by k.

6. Three cases:

(a) If i = k + 1, return x.

(b) If i < k + 1, call SELECT to find i-th element of the lower

subarray.

(c) If i > k + 1, call SELECT to find (i− k − 1)-th element of the

upper subarray.



Running time analysis of SELECT
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Let T (n) be running time of SELECT on an array of n elements.

By definition T (n) =
∑

j Tj(n), where Tj(n) is the cost of implementing

line j of the program.

1. Line 1 (dividing the input array) costs O(n) time

2. Line 2 (computing ⌈n/5⌉ “baby medians”) costs O(n)

3. Line 3 (finding the median of medians) costs T (⌈n/5⌉)

4. Line 4 (partitioning) costs O(n)

5. Line 5 (computing size of subarrays) costs O(1)

6. Line 6 (selecting within a subarray) costs at most T (|Smax|),
where |Smax| is the size of the largest subarray.

Assuming that T (n) is non-decreasing, we have the recurrence

T (n) ≤ T (⌈n/5⌉) + T (|Smax|) +O(n)



Bounding the size of the subarrays
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By definition, at least half of the ⌈n/5⌉ groups have “baby medians” ≥ x.

Each of these groups has at least 3 elements > x, except for the group

containing x and, possibly, for the group with fewer than 5 elements.

elements

known

to be ≥ x

elements

known

to be < x

x

Thus the number of elements > x is at least

3

(⌈

1

2

⌈n

5

⌉

⌉

− 2

)

≥
3n

10
− 6

Hence, the size of the lower subarray (elements < x) is upper bounded by

7n/10 + 6.



Bounding the size of the subarrays (cont’d)
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A similar argument applies to the upper subarray:

� At least half of the ⌈n/5⌉ groups have “baby medians” ≤ x.

� Each of those groups has at least 3 elements < x, except for the group

containing x and, possibly, for the group with fewer than 5 elements.

� The number of elements < x is at least

3

(⌈

1

2

⌈n

5

⌉

⌉

− 2

)

≥
3n

10
− 6

� The size of the upper subarray (elements > x) is upper bounded by

7n/10 + 6.

Since the size of each subarray is an integer, we have the bound

|Smax| ≤ ⌊7n/10 + 6⌋.



Solving the recurrence of SELECT by guess-and-test
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Assuming that T (n) is non-decreasing, we have the recurrence

T (n) ≤ T (⌈n/5⌉) + T (⌊7n/10 + 6⌋) + b n

for some constant b > 0.

Guess. There is some c > 0 such that T (n) ≤ c n for all n > 0.



A useful observation
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Substituting the guess into the recurrence, we get

T (n) ≤ c⌈n/5⌉+ c⌊7n/10 + 6⌋+ bn

≤ cn/5 + c+ 7cn/10 + 6c+ bn

= 9cn/10 + 7c+ bn

= cn+ (−cn/10 + 7c+ bn)

which is at most cn provided that −cn/10 + 7c+ bn ≤ 0 or, equivalently,

c ≥ 10bn/(n− 70).

Now, if n ≥ 140, we have n/(n− 70) ≤ 2.

Hence, the inequality is satisfied if n ≥ 140 and c ≥ 20b.



Validity of the guess
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Lemma. There is some c > 0 such that T (n) ≤ c n for all n > 0.

Proof.

Let a = max{T (n)/n , n ≤ 140}.

Define c = max{a, 20b}.

Base case: For every n ≤ 140, T (n) ≤ c n by construction.

Inductive case: Suppose that the condition T (n) ≤ c n holds for all n up

to n0 ≥ 140. Then, for n = n0 + 1 we have

T (n) ≤ T (⌈n/5⌉) + T (⌊7n/10 + 6⌋) + b n

≤ c⌈n/5⌉+ c⌊7n/10 + 6)⌋+ b n

≤ cn ,

by construction (see previous slide).



Epilogue: selection vs sorting
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� SELECT finds the i-th smallest element in O(n) time.

� our best sorting algorithm so far, MERGE-SORT, sorts the array in

O(n log n) time.

It seems that finding the i-th smallest element of an array is much easier

than sorting the whole array.

Is this true?

� Yes, if the sorting algorithm is based on comparisons between

elements of the array

� No, if we know that the entries of the input array are contained in an

interval of size k = O(n). In that case, there exists a sorting algorithm

that runs in O(n) time.



A lower bound for comparison-based sorting [CLRS 8.1]
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Theorem 1. The running time of every comparison-based sorting

algorithm is Ω(n log n).

Proof. Consider the decision tree of a comparison-based algorithm on
input sequence a1 a2 a3:

a1 < a2?

a1 < a3?

No

a2 < a3?

a3 a2 a1 a2 a3 a1

a2 a1 a3

a2 < a3?

Yes

a1 < a3?

a3 a1 a2 a1 a3 a2

a1 a2 a3

Observation. The depth of the tree (= number of comparisons on the

longest branch) is the worst-case time complexity of the algorithm.



A lower bound for sorting, cont’d.
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Aim. Obtain a lower bound on the depth of a decision tree.

The decision tree has n! leaves.

� By construction every leaf is labelled by a permutation of

{ a1, a2, · · · , an }.

� Every permutation must appear as the label of a leaf.

(Why? Because every permutation could be a valid output)

Hence the decision tree has at least n! leaves.

Fact. Every binary tree of depth d has at most 2d leaves

(Proof. Easy induction on d.)

Thus the depth of the decision tree — and the worst-case complexity of

the algorithm — is at least log(n!).

Finally note that log(n!) = Ω(n log n) (Exercise).



Sorting without comparisons [CLRS 8.2]

DAA 2019 2. Divide and Conquer Algorithms – 47 / 52

Example: Counting sort

� Based, not on comparison, but on the assumption that each of the n
input elements is an integer in the range 0 to k.

� Counting sort determines for each input element x the number of

elements less than x.

� If m elements are less than x, then x belongs in (m+ 1)-th position.

� This scheme has to be modified slightly to handle multiple elements

with the same value (see line 12 in the following pseudocode).

� When k = O(n) the algorithm runs in Θ(n) time.



COUNTINGSORT
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COUNTINGSORT(A, k)

Input: An array A[1 . . n] of elements with keys ai ∈ {0, . . . , k}.

Output: An array B consisting of a sorted permutation of A
1 Create array C of size k + 1
2 for i = 0 to k
3 C[i] = 0
4 for j = 1 to n
5 C[A[j]] = C[A[j]] + 1
6 // C[i] now contains the number of elements equal to i.
7 for i = 1 to k
8 C[i] = C[i] + C[i− 1]
9 // C[i] now contains the number of elements less than or equal to i.

10 for j = n downto 1
11 B[C[A[j]]] = A[j]
12 C[A[j]] = C[A[j]]− 1



Example
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Input A 2 5 3 0 2 3 0 3
1 2 3 4 5 6 7 8

At line 6 C 2 0 2 3 0 1
0 1 2 3 4 5

At line 9 C 2 2 4 7 7 8
0 1 2 3 4 5

line 12 (1st time) B 3
1 2 3 4 5 6 7 8

C 2 2 4 6 7 8
0 1 2 3 4 5

line 12 (2nd time) B 0 3
1 2 3 4 5 6 7 8

C 1 2 4 6 7 8
0 1 2 3 4 5

line 12 (3rd time) B 0 3 3
1 2 3 4 5 6 7 8

C 1 2 4 5 7 8
0 1 2 3 4 5

line 12 (last time) B 0 0 2 2 3 3 3 5
1 2 3 4 5 6 7 8



Correctness [not proven in CLRS]
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For v ∈ {0, . . . , k}, let us define n[v] to be the number of indices

i : 1 ≤ i ≤ n such as A[i] < v. In the sorted array, the values of the index

for elements with key A[i] will go from n[A[i]] + 1 to n[A[i] + 1].

Loop invariant for the loop at lines 10-12:

For every i satisfying i > j and i ≤ n,

(I1) C[A[i]] is equal to n[A[i] + 1], minus the number of elements of A
that have key equal to A[i] and that have already been copied into B
(I2) subarray B[C[A[i]] + 1 . . n[A[i] + 1]] is filled with elements with key

equal to A[i].

� Initialisation. At the beginning, j = n, and no value of i satisfies

i > j and i ≤ n. Hence, (I1) and (I2) trivially hold.

� Termination. At termination, j = 0. Since every iteration of the loop

copies a distinct element of A into B, after n iterations all elements of

A have been copied into B. Hence, (I1) implies C[A[i]] = n[A[i]] for

every i ∈ {1, . . . , n}, and (I2) implies that the array B is sorted.



Correctness (cont’d)
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� Maintenance. Suppose that (I1) and (I2) hold for a certain value of

j ∈ {1, . . . , n}. We have to show that, after lines 11-12 have been

executed, (I1) and (I2) hold for the value j − 1.

For i > j − 1, i ≤ n, there are two possibilities:

1. A[i] 6= A[j]. In this case, the validity of (I1) and (I2) is not

affected by the execution of lines 11-12.

2. A[i] = A[j]. In this case, line 11 copies A[j] into the C[A[j]]-th
entry of the array B. This fact, combined with (I2), guarantees

that the subarray B[C[A[j]] . . n[A[j] + 1]] is filled with elements

with keys equal to A[j].
Since one element with key A[j] has been copied into B, setting

C[A[j]] = C[A[j]]− 1 guarantees the validity of (I1) for every i
such that A[i] = A[j].
Finally, decrementing j to j − 1 guarantees that the array

B[C[A[i]] + 1 . . n[A[i] + 1]] consists of elements with key A[i],
for every i such that A[i] = A[j].



Analysis of COUNTINGSORT
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� The first and third for -loops take Θ(k) time, where {0 . . k} is the

range the keys are drawn from.

� The second and fourth for -loops take Θ(n) time, where n is the size

of the input array.

� Hence the overall time is Θ(n+ k). If k = O(n) then the overall time

is Θ(n).

� In the last for -loop the elements of A are taken from right to left to

make this sorting algorithm stable.
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