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Informally, the expressive power, or the representation power, of a neural network describes its ability to 
approximate functions. Expressiveness results come with many flavours and assumptions, but the question is 
always the same: What class of functions can a neural network approximately represent? 

The celebrated universal approximation theorem states that an autoencoder network with a single hidden layer 
containing a finite number of neurons can approximate any continuous function on a compact domain to any 
desired accuracy, under mild assumptions on the activation function.

(Cybenko, 1989) proved that a fully connected sigmoid neural network with one single hidden layer can 
universally approximate any continuous function on a bounded domain with arbitrarily small error; see also, e.g.,  
(Hornik et al., 1989; Funahashi, 1989).

In particular, MLPs can approximate any continuous function on a compact domain, i.e., for any such function, 
there is a parameter configuration for an MLP, corresponding to an approximation of the function.

From a learning perspective, universal approximation is only the first step — it does not imply that the 
functions can be learned efficiently (e.g., we might need exponentially many neurons etc)!
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How can we characterise expressive power in the world of graphs?

Suppose we are interested in functions . f : 𝒢 ↦ ℝVG

One way of characterising the expressive power would be through graph distinguishability.

In this case, we want to learn graph embeddings ,  for graphs  and  such thatzG zH G H

        if and only if   is isomorphic to zG = zH G H

This would be desirable, as it implies we can distinguish all structures, and this paves the way for learning more 
general classes of functions over graphs.
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embedding of the graph on the right-hand side for MPNNs!

MPNNs cannot distinguish between two triangles and a 6-cycle — severe limitation for graph classification, 
as the predictions for these graphs will be identical regardless of the function we are trying to learn! 

Is this only a problem for graph classification?
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Consider a synthetic node classification task: Let’s say that a node is a separator node, if it that has two 
neighbours that are non-adjacent, and we want to predict whether a node is a separator node or a non-
separator node on the union of the graphs shown above. 

It is easy to see that all nodes in the 6-cycle are separator nodes, and all nodes in the triangles are non-
separator nodes.

An MPNN will either predict all nodes to be separator nodes, or all of them as non-separator nodes, 
regardless of training choices etc — either case, a random answer with exactly  accuracy.50 %
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Recall that we can define an embedding of a graph  as a multi-layer perceptron:  

                   , 

where  is vector concatenation of the rows  of the adjacency matrix .

G

f(G) = MLP(AG
[1] ⊕ … ⊕ AG

[|VG|])

⊕ AG
[i] ∈ ℝVG AG

We did not prefer embedding graphs to an MLP — not permutation-invariant.

MPNNs are superior on graph-tasks — strong inductive bias.

But we lost something — MLPs are universal and MPNNs are not!

A step forward in terms of inductive bias, but a step backwards in terms in representation capacity!

This is a trade-off: We want to constrain the learning space (e.g., incorporating inductive bias) as much as 
possible, but not so much that we induce strong limitations in the representation capacity.
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We say that two graphs  and  are isomorphic if there is a bijection between the vertex sets   and  : 

                                  

such that any two vertices   and   of   are adjacent in   if and only if  and   are adjacent in . 

Graph isomorphism is then the problem of deciding whether a given pair of graphs are isomorphic.

G H VG VH

f : VG ↦ VH

u v G G f(u) f(v) H

We can restate this with features and using matrices:  

If we have two graphs  and , represented with adjacency matrices  and , as well as associated with 
node features  and , we say that two graphs are isomorphic if and only if there exists a permutation 
matrix  such that:  

                .

G H AG AH

XG XH

P

PAGP⊤ = AH and PXG = XH
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Graph isomorphism has attracted a lot of attention in theoretical computer science, as determining the exact 
computational complexity of graph isomorphism is a long-standing open problem.

Graph isomorphism is widely suspected not to be NP-hard, but there is no known polynomial time algorithm for 
the problem. 

A major breakthrough in theoretical computer science — (Babai, 2016) presented a quasi-polynomial time 
algorithm for GI!

Graph isomorphism is therefore usually referred as an NP-intermediate problem, and is arguably the most 
natural NP-intermediate problem. 

Graph isomorphism is also known for its own complexity class GI — you may come across other problems which 
are also GI-complete.

Exact graph isomorphism testing is (unsurprisingly) beyond MPNNs.

There are, however, many practical — approximate — algorithms for graph isomorphism testing that work on 
broad classes of graphs, including colour refinement.
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Colour refinement is a very simple and effective algorithm for graph isomorphism testing. Given a graph as 
input, colour refinement is the following procedure:

1. Initialisation: All vertices in a graph are initialised to their initial colours.

2. Refinement: All vertices are recoloured depending on their current colour and the colours in their 
neighbourhoods.

3. Stop: Terminate when the colouring stabilises.

Formally, for a graph , we say that a function  colours each vertex of the graph with a 
colour from a set  of colours. 

G = (V, E) λ : VG ↦ C
C

Every graph colouring  induces a partition  of  into vertex colour classes. For two partitions  and 
 of a graph , we say that  refines , denoted , if every element of  is a (not 

necessarily proper) subset of an element of . 

λ π(λ) VG π(λ)
π(λ′ ) G π(λ) π(λ′ ) π(λ) ⪯ π(λ′ ) π(λ)

π(λ′ )

We write  if  and .π(λ) ≡ π(λ′ ) π(λ) ⪯ π(λ′ ) π(λ′ ) ⪯ π(λ)
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where double-braces denote a multiset, and  bijectively maps any pair (composed of a colour and 
a multiset of colours) to a unique value in .

𝖧𝖠𝖲𝖧
C

3. Stop: The algorithm terminates when a stable colouring is reached: That is, at iteration , where  is 
the minimal integer satisfying:

j j

    .∀u, v ∈ VG : λ( j+1)(u) = λ( j+1)(v) if and only if λ( j)(u) = λ( j)(v)

Observe that the stopping condition is well-defined, since  for any , i.e., each iteration 
corresponds to a refinement, and there exists a minimal integer  such that  .

π(λ(i+1)) ⪯ π(λ(i)) i ≥ 0
j π(λj) ≡ π(λ( j+1))
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Colour refinement can be used to check whether two given graphs  and  are non-isomorphic:G H

• Compute the stable colouring  on the disjoint union of  and . λ(k) G H

• If there is a colour  in the stable colouring, such that the numbers of vertices of colour  differ in  
and , they are non-isomorphic. 

c ∈ C c G
H

Colour refinement is sound for non-isomorphism checking: whenever it returns yes, for two graphs  and , 
they are non-isomorphic.

G H

Colour refinement is incomplete for non-isomorphism checking: even if  and  agree in every colour class size 
in the stable colouring, the graphs might not be isomorphic.

G H

Colour refinement is also known as naive vertex refinement, or 1-dimensional Weisfeiler Lehman (1-WL) 
algorithm.
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Vertex colour classes will be different for these two graphs, and so colour refinement can distinguish these 
non-isomorphic graphs. 
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Observe that the 1-WL algorithm and the neural message passing are closely related: 

Both iteratively aggregate information from local node neighbourhoods and use this aggregated information to 
update the representation of each node. 

Differently, the 1-WL algorithm aggregates and updates discrete labels while MPNNs aggregate and update 
node embeddings using neural networks.

Can we view the rounds of the 1-WL algorithm as the layers of an MPNN?

Are MPNNs (at most) as powerful as 1-WL?
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Interestingly, however, most of the popular MPNN models, such as GCNs, are not even as expressive as 1-WL.

Key ingredient: The functions  and  need to be injective to achieve maximal expressivity 
(Xu et al., 2019). 

aggregate(t) combine(t)

Indeed, we can view the rounds of the 1-WL algorithm as the layers of an MPNN with injective combine and 
aggregate functions!

MPNNs are as powerful as 1-WL test under mild assumptions.
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This is the territory of descriptive complexity — a branch of complexity theory, where the goal is to characterise 
complexity classes in terms of the logics that can capture the complexity classes (Immerman,  1995). 
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Basics: A (first-order) relational vocabulary denoted by , consists of sets  of relation,  of constant, and  
of variable names. A term is either a constant or a variable.  An atom is of the form , where  is an 
-ary relation, and  are terms. A ground atom is an atom without variables.

σ R C V
P(s1, …, sn) P

n s1, …, sn

Logical connectives and quantifiers: The logical connectives are negation ( ), conjunction ( ), and 
disjunction ( ), and quantifiers are existential quantifier ( ) and universal quantifier ( ).

¬ ∧
∨ ∃ ∀

Formulas: First-order logic ( ) formulas are inductively built from atomic formulas using the logical 
constructors and quantifiers based on the grammar rule:  

        , 

where  is an -ary relation,  are terms, and  is a variable. 

Note: We are using upper-case letters to denote relation names, and lower case letters to denote variables/
constants — In Lecture 1 & 2, we used lower case for everything to align with conventions in node embeddings.

𝖥𝖮

Φ = P(s1, …, sn) ∣ ¬Φ ∣ Φ ∧ Φ ∣ Φ ∨ Φ ∣ ∃x . Φ ∣ ∀x . Φ

P n s1, …, sn x
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A variable  in a formula  is quantified, or bound if it is in the scope of a quantifier; otherwise, it is free. x Φ

A  (first-order) sentence is a (first-order) formula without any free variables, also called a Boolean formula.

In the sequel, we write, e.g.,  to denote Boolean formulas, and  to denote formulas with free 
variables 

Φ Φ(x1, …, xk)
x1, …, xk .

As usual, some constructors are only syntactic sugar, i.e., we use usual abbreviations: 

                  ,  

                     , 

                     , 

and so we define the semantics based on the constructors , , . 

∀x . Φ ≡ ¬∃x . ¬Φ

Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

Φ → Ψ ≡ ¬Φ ∨ Ψ

¬ ∧ ∃
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We assume that constants are mapped to themselves by any interpretation (i.e., unique name assumption).
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Consider a simple set  as a domain, and define an interpretation  which interprets the relation 
 as .

{u, v, w} I
E EI = {(u, v), (v, w), (u, w)}

It is easy to see that , i.e.,  is a model of  when interpreting the free variable  as .I ⊨ Φ(u) I Φ(x) x u

Observe that this interpretation is a graph — domain elements are vertices and relations are edges!

The formula  specifies a graph property over some input graph and relative to some vertex 
interpreting !

Φ(x)
x

Logic can be used to characterise graph properties and we can view graphs as interpretations, where the 
domain is simply the set of vertices!
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language of graphs, where  means that there is an edge 
between the nodes interpreting  and .

Φ(x) = ∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z)
E(x, y)

x y

Graphs as interpretations: View the graphs  and  as 
interpretations over a domain . Then:

G H
{u, v, w}

• G ⊨ Φ(u)

• H ⊭ Φ(u)

The graph  is a model of  when  is interpreted as !G Φ(x) x u

Intuitively, any graph relative to a node  which takes part in a 
triangle is a model of .

a
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Let us focus on formulas of the form  in the language of graphs, i.e., formulas with one free variable, 
where each free variable will be instantiated with a node in the graph.

Φ(x)

Given a graph , we write  for some  to mean that the graph  satisfies  when 
interpreting the free variable  as the node .

G = (V, E) G ⊨ Φ(u) u ∈ VG G Φ(x)
x u

We will also consider formulas in the language of coloured graphs, where in addition to the binary edge relation 
we also have unary relations, that is, sets of nodes, which we may view as colours of the nodes. 

Consider, for example, the formula: 

                           . 

This formula is satisfied by nodes nodes  such that , i.e., red nodes that are connected to a 
blue and a green node.

Ψ(x) = Red(x) ∧ ∃y(E(x, y) ∧ Blue(y) ∧ ∃z(E(x, z) ∧ Green(z)))
u ∈ VG G ⊨ Ψ(u)
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Observe that reducing the number of variables used in formulas can severely reduce their expressive power. 
However, such fragments are still quite expressive, as we can re-use variables in different quantifier scopes!

For example,  can be equivalently written (by re-using the variable  in place of ) as an  formula:Ψ(x) y z 𝖥𝖮2

                                Ψ(x) = Red(x) ∧ ∃y(E(x, y) ∧ Blue(y) ∧ ∃y(E(x, y) ∧ Green(y)))
This works, intuitively, because the variables refer to different things in the scope of different quantifiers. This 
trick is not always possible: Indeed  is strictly contained in , i.e, there are formulas in  that cannot be 
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𝖥𝖮2 𝖥𝖮 𝖥𝖮
𝖥𝖮2
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Intuitively, a graph  satisfies this formula with a node  if and only if  has at most 2 red neighbours in  
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It is well-known that  is only a syntactic extension of , as counting quantifiers of the form  can be 
simulated with standard existential quantifiers, and using  variables. However, counting quantifiers add 
expressiveness if we restrict the number of variables.

𝖢 𝖥𝖮 ∃≥k x
k
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mapping the node to true or false. 

Φ(x) 𝖢𝟤

u ∈ VG Φ(u) : VG ↦ 𝔹

Following (Barcelo et al, 2020), we say that an MPNN classifier captures a logical classifier when both 
classifiers coincide over every node in every possible input graph.

Formally, an MPNN classifier  captures a logical classifier  if for every graph  and node  in , it holds 
that  evaluates to true if and only if .

M Φ(x) G u G
M(G, v) G ⊨ Φ(u)

Our goal is to identify a logic that is captured by MPNNs — identifying the expressive power of MPNNs.
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this result focuses on graph/node distinguishability, which is crucial to identify the class of functions that are 
captured by MPNNs, but it is not sufficient to characterise the class of functions that are captured.

𝖢𝟤

Recall that the above result holds already for MPNNs without any readouts. There are, however, many  node 
classifiers that cannot be expressed by MPNNs without any readouts — called aggregate-combine GNN (AC-
GNN) in the following:

𝖢𝟤

“…there are AC-GNNs that can reproduce the WL labelling, and hence AC-GNNs can be as powerful as the WL 
test for distinguishing nodes. This does not imply, however, that AC-GNNs can capture every node classifier— 
that is, a function assigning true or false to every node — that is refined by the WL test. In fact, it is not 
difficult to see that there are many such classifiers that cannot be captured by AC-GNNs; one simple example is 
a classifier assigning true to every node if and only if the graph has an isolated node.”   

(Barcelo et al., 2020)
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For example, MPNNs without any readouts cannot capture the function described by the following formula 
(Barcelo et al., 2020): 

     , 

since, e.g., the red and blue nodes may be in disjoint subgraphs and never communicate.

γ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ ∃≥2x(E(y, x) ∧ Blue(x)))

It turns out that MPNNs without any readouts can capture graded modal logic, a strict subset of .𝖢𝟤

This brings up a natural question:  Is there a class of MPNNs that can capture ?𝖢𝟤

An obvious candidate is MPNNs with global readout in the sense we defined earlier, i.e., there is a global 
feature computation happening at every layer.
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Theorem (Barcelo et al., 2020). Each  classifier can be captured by an MPNN with global readout.𝖢𝟤

This theorem is further strengthened, as this result holds even if we assume that the MPNN is homogeneous.

The result has implications on the size of the MPNN: 

The depth of the MPNN is bounded by the quantifier depth of the formula that corresponds to the target 
function, where quantifier depth is measured in the size of quantifiers as well as constructors!

This opens up new perspectives, as we can formally study ,e.g., the class of functions can be captured by 
MPNNs with restrictions on their size.

This result is also strengthened in another direction: It holds also for MPNNs with a single (final) global 
readout, but in this case we require MPNN to be non-homogeneous.
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Overall, (Barcelo et al., 2020) strengthened the earlier results of (Morris et al., 2019; Xu et al., 2019) and 
showed that every -sentence can be simulated by an MPNN with a global readout.𝖢𝟤

The proof shows how to simulate a  sentence with MPNNs intuitively following the roadmap:𝖢𝟤

• Enumerate all sub-formulas  of a given formula , such that (ϕ1, …, ϕL) Φ Φ = ϕL

• Define an MPNN   with feature vectors in  such that every component of those vectors represents a 
different sub-formula.

MΦ ℝL

•  updates the feature vector  of node  ensuring that its component corresponding to the sub-formula 
 gets a value 1 if and only if the sub-formula  is satisfied in node .

MΦ xu u
ϕi ϕi u

The precise construction establishes the described correspondences, from which the result can be derived. 

This result is not complete: MPNNs with global readout can capture , but is this all what MPNNs can 
capture? Is there a logic which MPNNs with global readout can capture, but cannot capture anything beyond?

𝖢𝟤
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Summary
• Model representation capacity & expressive power

• Graph isomorphism, colour refinement, 1-WL

• MPNNs are at most as powerful as 1-WL test

• MPNNs with injective aggregation and combine functions are as powerful as 1-WL test.

• The logic of graphs: , , ,  — an interesting connection to descriptive complexity!𝖥𝖮 𝖢 𝖥𝖮2 𝖢𝟤

• Logical characterisation of MPNNs

•  Each  classifier can be captured by an MPNNs with global readout (even with a final readout)!𝖢𝟤

•  MPNNs without global readout cannot capture , but can capture graded model logic.𝖢𝟤

• We have not discussed the practical implications of the limitations in expressive power, and neither the 
proposed tools to address such limitations — Lecture 6 & 7.
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