
 İsmail İlkan Ceylan Advanced Topics in Machine Learning, University of Oxford 05.02.2021

Relational Learning

1

Lecture 6: Higher-Order Graph Neural Networks

Overview

2

Overview
• Motivation

2

Overview
• Motivation

• The Weisfeiler-Lehman hierarchy

2

Overview
• Motivation

• The Weisfeiler-Lehman hierarchy

• Higher-order graph neural networks

2

Overview
• Motivation

• The Weisfeiler-Lehman hierarchy

• Higher-order graph neural networks

• Higher-order message passing neural networks: k-GNNs

2

Overview
• Motivation

• The Weisfeiler-Lehman hierarchy

• Higher-order graph neural networks

• Higher-order message passing neural networks: k-GNNs

• Invariant/Equivariant graph networks

2

Overview
• Motivation

• The Weisfeiler-Lehman hierarchy

• Higher-order graph neural networks

• Higher-order message passing neural networks: k-GNNs

• Invariant/Equivariant graph networks

• Provably powerful graph networks

2

Overview
• Motivation

• The Weisfeiler-Lehman hierarchy

• Higher-order graph neural networks

• Higher-order message passing neural networks: k-GNNs

• Invariant/Equivariant graph networks

• Provably powerful graph networks

• Expressive power in real-world data

2

Overview
• Motivation

• The Weisfeiler-Lehman hierarchy

• Higher-order graph neural networks

• Higher-order message passing neural networks: k-GNNs

• Invariant/Equivariant graph networks

• Provably powerful graph networks

• Expressive power in real-world data

• Homophily and heterophily: Comparative perspectives

2

Overview
• Motivation

• The Weisfeiler-Lehman hierarchy

• Higher-order graph neural networks

• Higher-order message passing neural networks: k-GNNs

• Invariant/Equivariant graph networks

• Provably powerful graph networks

• Expressive power in real-world data

• Homophily and heterophily: Comparative perspectives

• Summary

2

Motivation

3

Towards More General Graph Neural Networks

4

Towards More General Graph Neural Networks

4

We focused on a specific family of graph neural networks — MPNNs.

Towards More General Graph Neural Networks

4

We focused on a specific family of graph neural networks — MPNNs.

Graph neural networks are neural architectures dedicated to learning functions over graph-structured data, and
this does not need to be through a specific message passing framework, or even, message passing.

Towards More General Graph Neural Networks

4

We focused on a specific family of graph neural networks — MPNNs.

Graph neural networks are neural architectures dedicated to learning functions over graph-structured data, and
this does not need to be through a specific message passing framework, or even, message passing.

This leads us to a more general definition: In a GNN, nodes in the input graph are assigned vector
representations, which are updated iteratively through series of invariant or equivariant computational layers —
and their precise form is a design choice.

Towards More General Graph Neural Networks

4

We focused on a specific family of graph neural networks — MPNNs.

Graph neural networks are neural architectures dedicated to learning functions over graph-structured data, and
this does not need to be through a specific message passing framework, or even, message passing.

This leads us to a more general definition: In a GNN, nodes in the input graph are assigned vector
representations, which are updated iteratively through series of invariant or equivariant computational layers —
and their precise form is a design choice.

We have seen several limitations of MPNNs, including their limitations in expressive power.

Towards More General Graph Neural Networks

4

We focused on a specific family of graph neural networks — MPNNs.

Graph neural networks are neural architectures dedicated to learning functions over graph-structured data, and
this does not need to be through a specific message passing framework, or even, message passing.

This leads us to a more general definition: In a GNN, nodes in the input graph are assigned vector
representations, which are updated iteratively through series of invariant or equivariant computational layers —
and their precise form is a design choice.

We have seen several limitations of MPNNs, including their limitations in expressive power.

The focus of this lecture is the so-called higher-order graph neural networks, which use higher-order
representations of the graphs, e.g., higher-order tensors, to be able to approximate a larger class of functions.

Towards More General Graph Neural Networks

4

We focused on a specific family of graph neural networks — MPNNs.

Graph neural networks are neural architectures dedicated to learning functions over graph-structured data, and
this does not need to be through a specific message passing framework, or even, message passing.

This leads us to a more general definition: In a GNN, nodes in the input graph are assigned vector
representations, which are updated iteratively through series of invariant or equivariant computational layers —
and their precise form is a design choice.

We have seen several limitations of MPNNs, including their limitations in expressive power.

The focus of this lecture is the so-called higher-order graph neural networks, which use higher-order
representations of the graphs, e.g., higher-order tensors, to be able to approximate a larger class of functions.

One way of achieving more expressive models is through a richer message passing approach — and this is
related to Weisfeiler-Lehman hierarchy.

The Weisfeiler-Lehman Hierarchy

5

A Tale of Two Graphs

6

A Tale of Two Graphs

6

Problem: The embedding learned for the graph on the left-hand side will be exactly the same as the
embedding of the graph on the right-hand side for MPNNs!

A Tale of Two Graphs

6

Problem: The embedding learned for the graph on the left-hand side will be exactly the same as the
embedding of the graph on the right-hand side for MPNNs!

1-WL cannot distinguish the nodes in the respective graphs — and so neither can MPNNs.

A Tale of Two Graphs

6

Problem: The embedding learned for the graph on the left-hand side will be exactly the same as the
embedding of the graph on the right-hand side for MPNNs!

1-WL cannot distinguish the nodes in the respective graphs — and so neither can MPNNs.

(Y,{{Y,Y}}) (Y,{{Y,Y}})

(Y,{{Y,Y}}) (Y,{{Y,Y}})

(Y,{{Y,Y}}) (Y,{{Y,Y}})
(Y,{{Y,Y}}) (Y,{{Y,Y}})

(Y,{{Y,Y}})

(Y,{{Y,Y}}) (Y,{{Y,Y}})

(Y,{{Y,Y}})

A Tale of Two Graphs

6

Problem: The embedding learned for the graph on the left-hand side will be exactly the same as the
embedding of the graph on the right-hand side for MPNNs!

1-WL cannot distinguish the nodes in the respective graphs — and so neither can MPNNs.

(Y,{{Y,Y}}) (Y,{{Y,Y}})

(Y,{{Y,Y}}) (Y,{{Y,Y}})

(Y,{{Y,Y}}) (Y,{{Y,Y}})
(Y,{{Y,Y}}) (Y,{{Y,Y}})

(Y,{{Y,Y}})

(Y,{{Y,Y}}) (Y,{{Y,Y}})

(Y,{{Y,Y}})

What if we extend the 1-WL algorithm to consider, e.g., pairs of nodes when colouring?

A Tale of Two Graphs

7

A Tale of Two Graphs

7

A Tale of Two Graphs

7

A Tale of Two Graphs

7

A Tale of Two Graphs

7

This extended algorithm is called the 2-dimensional WL algorithm, and it can distinguish these two graphs!

-dimensional Weisfeiler-Lehmank

8

-dimensional Weisfeiler-Lehmank

8

Given a graph , the -dimensional WL algorithm generalises colour refinement as follows:G = (V, E) k

-dimensional Weisfeiler-Lehmank

8

Given a graph , the -dimensional WL algorithm generalises colour refinement as follows:G = (V, E) k

• We consider -tuples of nodes, where is the WL-dimension.k (v1, …, vk) ∈ Vk
G k ∈ ℕ

-dimensional Weisfeiler-Lehmank

8

Given a graph , the -dimensional WL algorithm generalises colour refinement as follows:G = (V, E) k

• We consider -tuples of nodes, where is the WL-dimension.k (v1, …, vk) ∈ Vk
G k ∈ ℕ

• We consider a colouring function that colours each -tuple of nodes of the graph with a
colour from a set of colours. This colour will depend on the isomorphism type of the tuple, e.g., a
-cycle and a -tree will have different colours.

λ : Vk
G ↦ C k

C
k k

-dimensional Weisfeiler-Lehmank

8

Given a graph , the -dimensional WL algorithm generalises colour refinement as follows:G = (V, E) k

• We consider -tuples of nodes, where is the WL-dimension.k (v1, …, vk) ∈ Vk
G k ∈ ℕ

• We consider a colouring function that colours each -tuple of nodes of the graph with a
colour from a set of colours. This colour will depend on the isomorphism type of the tuple, e.g., a
-cycle and a -tree will have different colours.

λ : Vk
G ↦ C k

C
k k

Partitions of into vertex colour classes, and the refinement relation is defined as before.π(λ) VG ⪯

-dimensional Weisfeiler-Lehmank

8

Given a graph , the -dimensional WL algorithm generalises colour refinement as follows:G = (V, E) k

• We consider -tuples of nodes, where is the WL-dimension.k (v1, …, vk) ∈ Vk
G k ∈ ℕ

• We consider a colouring function that colours each -tuple of nodes of the graph with a
colour from a set of colours. This colour will depend on the isomorphism type of the tuple, e.g., a
-cycle and a -tree will have different colours.

λ : Vk
G ↦ C k

C
k k

Partitions of into vertex colour classes, and the refinement relation is defined as before.π(λ) VG ⪯

We denote a -tuple as , and define a substitution as .k t = (u1, …, uk) t[v/i] = (u1, …, ui−1, v, ui+1, …, uk)

-dimensional Weisfeiler-Lehmank

9

-dimensional Weisfeiler-Lehmank

9

For a given a graph , and a dimension , and an initial colouring of -tuples:G = (V, E) k ≥ 1 λ(0) k

-dimensional Weisfeiler-Lehmank

9

For a given a graph , and a dimension , and an initial colouring of -tuples:G = (V, E) k ≥ 1 λ(0) k

1. Initialisation: All -tuples , are initialised to their initial colours .k t ∈ Vk
G λ(0)(t)

-dimensional Weisfeiler-Lehmank

9

For a given a graph , and a dimension , and an initial colouring of -tuples:G = (V, E) k ≥ 1 λ(0) k

1. Initialisation: All -tuples , are initialised to their initial colours .k t ∈ Vk
G λ(0)(t)

2. Refinement: The colour of a -tuple is refined by combining the colours of its
neighbourhood, which is defined as the set of all -tuples in which at most one node differs from :

k t = (u1, …, uk)
k t

-dimensional Weisfeiler-Lehmank

9

For a given a graph , and a dimension , and an initial colouring of -tuples:G = (V, E) k ≥ 1 λ(0) k

1. Initialisation: All -tuples , are initialised to their initial colours .k t ∈ Vk
G λ(0)(t)

2. Refinement: The colour of a -tuple is refined by combining the colours of its
neighbourhood, which is defined as the set of all -tuples in which at most one node differs from :

k t = (u1, …, uk)
k t

 ,λ(i+1)(t) = 𝖧𝖠𝖲𝖧(λ(i)(t), {{(λ(i)(t[v/1]), …, λ(i)(t[v/k])) ∣ v ∈ VG)}})

-dimensional Weisfeiler-Lehmank

9

For a given a graph , and a dimension , and an initial colouring of -tuples:G = (V, E) k ≥ 1 λ(0) k

1. Initialisation: All -tuples , are initialised to their initial colours .k t ∈ Vk
G λ(0)(t)

2. Refinement: The colour of a -tuple is refined by combining the colours of its
neighbourhood, which is defined as the set of all -tuples in which at most one node differs from :

k t = (u1, …, uk)
k t

 ,λ(i+1)(t) = 𝖧𝖠𝖲𝖧(λ(i)(t), {{(λ(i)(t[v/1]), …, λ(i)(t[v/k])) ∣ v ∈ VG)}})
where double-braces denote a multiset, and bijectively maps any pair to a unique value in .𝖧𝖠𝖲𝖧 C

-dimensional Weisfeiler-Lehmank

9

For a given a graph , and a dimension , and an initial colouring of -tuples:G = (V, E) k ≥ 1 λ(0) k

1. Initialisation: All -tuples , are initialised to their initial colours .k t ∈ Vk
G λ(0)(t)

2. Refinement: The colour of a -tuple is refined by combining the colours of its
neighbourhood, which is defined as the set of all -tuples in which at most one node differs from :

k t = (u1, …, uk)
k t

 ,λ(i+1)(t) = 𝖧𝖠𝖲𝖧(λ(i)(t), {{(λ(i)(t[v/1]), …, λ(i)(t[v/k])) ∣ v ∈ VG)}})
where double-braces denote a multiset, and bijectively maps any pair to a unique value in .𝖧𝖠𝖲𝖧 C

3. Stop: The algorithm terminates when a stable colouring is reached: That is, at iteration , where is
the minimal integer satisfying:

j j

-dimensional Weisfeiler-Lehmank

9

For a given a graph , and a dimension , and an initial colouring of -tuples:G = (V, E) k ≥ 1 λ(0) k

1. Initialisation: All -tuples , are initialised to their initial colours .k t ∈ Vk
G λ(0)(t)

2. Refinement: The colour of a -tuple is refined by combining the colours of its
neighbourhood, which is defined as the set of all -tuples in which at most one node differs from :

k t = (u1, …, uk)
k t

 ,λ(i+1)(t) = 𝖧𝖠𝖲𝖧(λ(i)(t), {{(λ(i)(t[v/1]), …, λ(i)(t[v/k])) ∣ v ∈ VG)}})
where double-braces denote a multiset, and bijectively maps any pair to a unique value in .𝖧𝖠𝖲𝖧 C

3. Stop: The algorithm terminates when a stable colouring is reached: That is, at iteration , where is
the minimal integer satisfying:

j j

 .∀t, t′ ∈ Vk
G : λ(j+1)(t) = λ(j+1)(t′) if and only if λ(j)(t) = λ(j)(t′)

-dimensional Weisfeiler-Lehmank

10

-dimensional Weisfeiler-Lehmank

10

There are different versions of the Weisfeiler-Lehman algorithm leading to inconsistent dimension counts. We
follow the version of Cai et al. (1992), as it has been adopted as the standard in the literature on graph
isomorphism testing. This version is also known as folklore Weisfeiler-Lehman algorithm, and sometimes
denoted as -FWL.k

-dimensional Weisfeiler-Lehmank

10

There are different versions of the Weisfeiler-Lehman algorithm leading to inconsistent dimension counts. We
follow the version of Cai et al. (1992), as it has been adopted as the standard in the literature on graph
isomorphism testing. This version is also known as folklore Weisfeiler-Lehman algorithm, and sometimes
denoted as -FWL.k

In the other version of the algorithm, the update step is defined slightly differently, and based on set of
tuples, instead of ordered tuples. All in all:

-dimensional Weisfeiler-Lehmank

10

There are different versions of the Weisfeiler-Lehman algorithm leading to inconsistent dimension counts. We
follow the version of Cai et al. (1992), as it has been adopted as the standard in the literature on graph
isomorphism testing. This version is also known as folklore Weisfeiler-Lehman algorithm, and sometimes
denoted as -FWL.k

In the other version of the algorithm, the update step is defined slightly differently, and based on set of
tuples, instead of ordered tuples. All in all:

• Both variants of the algorithm lead to the same expressive power modulo the shift in dimension counts:
For any , folklore -WL is equivalent to -WL (Grohe, 2017).k ≥ 2 k (k + 1)

-dimensional Weisfeiler-Lehmank

10

There are different versions of the Weisfeiler-Lehman algorithm leading to inconsistent dimension counts. We
follow the version of Cai et al. (1992), as it has been adopted as the standard in the literature on graph
isomorphism testing. This version is also known as folklore Weisfeiler-Lehman algorithm, and sometimes
denoted as -FWL.k

In the other version of the algorithm, the update step is defined slightly differently, and based on set of
tuples, instead of ordered tuples. All in all:

• Both variants of the algorithm lead to the same expressive power modulo the shift in dimension counts:
For any , folklore -WL is equivalent to -WL (Grohe, 2017).k ≥ 2 k (k + 1)

• The folklore WL hierarchy is proper: For each there is a pair of non-isomorphic graphs
distinguishable by folklore -WL but not by folklore -WL.

k ≥ 1
(k + 1) k

-dimensional Weisfeiler-Lehmank

10

There are different versions of the Weisfeiler-Lehman algorithm leading to inconsistent dimension counts. We
follow the version of Cai et al. (1992), as it has been adopted as the standard in the literature on graph
isomorphism testing. This version is also known as folklore Weisfeiler-Lehman algorithm, and sometimes
denoted as -FWL.k

In the other version of the algorithm, the update step is defined slightly differently, and based on set of
tuples, instead of ordered tuples. All in all:

• Both variants of the algorithm lead to the same expressive power modulo the shift in dimension counts:
For any , folklore -WL is equivalent to -WL (Grohe, 2017).k ≥ 2 k (k + 1)

• The folklore WL hierarchy is proper: For each there is a pair of non-isomorphic graphs
distinguishable by folklore -WL but not by folklore -WL.

k ≥ 1
(k + 1) k

• -WL and -WL have the same expressive power — different from the folklore WL.1 2

-dimensional Weisfeiler-Lehmank

10

There are different versions of the Weisfeiler-Lehman algorithm leading to inconsistent dimension counts. We
follow the version of Cai et al. (1992), as it has been adopted as the standard in the literature on graph
isomorphism testing. This version is also known as folklore Weisfeiler-Lehman algorithm, and sometimes
denoted as -FWL.k

In the other version of the algorithm, the update step is defined slightly differently, and based on set of
tuples, instead of ordered tuples. All in all:

• Both variants of the algorithm lead to the same expressive power modulo the shift in dimension counts:
For any , folklore -WL is equivalent to -WL (Grohe, 2017).k ≥ 2 k (k + 1)

• The folklore WL hierarchy is proper: For each there is a pair of non-isomorphic graphs
distinguishable by folklore -WL but not by folklore -WL.

k ≥ 1
(k + 1) k

• -WL and -WL have the same expressive power — different from the folklore WL.1 2

We will always refer to the folklore version of this algorithm in the sequel, unless stated explicitly otherwise.

A Tale of Two Graphs

11

A Tale of Two Graphs

11

Recall that for all two graphs and satisfy the same -sentences if and only if -WL does
not distinguish them (Cai et al., 1992).

k ≥ 2 G H 𝖢𝗄 (k − 1)

A Tale of Two Graphs

11

Recall that for all two graphs and satisfy the same -sentences if and only if -WL does
not distinguish them (Cai et al., 1992).

k ≥ 2 G H 𝖢𝗄 (k − 1)

To see why separator and non-separator nodes can be distinguished for the given graphs with 2-WL, it is
sufficient to formalise this as a logical node classifier in :𝖢𝟥

A Tale of Two Graphs

11

Recall that for all two graphs and satisfy the same -sentences if and only if -WL does
not distinguish them (Cai et al., 1992).

k ≥ 2 G H 𝖢𝗄 (k − 1)

To see why separator and non-separator nodes can be distinguished for the given graphs with 2-WL, it is
sufficient to formalise this as a logical node classifier in :𝖢𝟥

 .Φ(x) = ∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z)

A Tale of Two Graphs

11

Recall that for all two graphs and satisfy the same -sentences if and only if -WL does
not distinguish them (Cai et al., 1992).

k ≥ 2 G H 𝖢𝗄 (k − 1)

To see why separator and non-separator nodes can be distinguished for the given graphs with 2-WL, it is
sufficient to formalise this as a logical node classifier in :𝖢𝟥

 .Φ(x) = ∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z)

It is easy to see that the graph on the left hand side satisfies for any node , and the graph on the
right hand side does not. That is, there are -sentences, distinguishing these graphs, and so must 2-WL.

Φ(u) u
𝖢𝟥

Higher-Order Graph Neural
Networks

12

Higher-Order Message Passing
Neural Networks

13

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

14

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

14

The -GNN model (Morris et al., 2019) is a generalisation of MPNNs based on the -dimensional WL
algorithm.

k (k − 1)

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

14

The -GNN model (Morris et al., 2019) is a generalisation of MPNNs based on the -dimensional WL
algorithm.

k (k − 1)

The idea is still based on message passing, but a higher-order form, where we perform message passing directly
between subgraph structures, rather than individual nodes.

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

14

The -GNN model (Morris et al., 2019) is a generalisation of MPNNs based on the -dimensional WL
algorithm.

k (k − 1)

The idea is still based on message passing, but a higher-order form, where we perform message passing directly
between subgraph structures, rather than individual nodes.

We can therefore view this model as a higher-order MPNN.

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

14

The -GNN model (Morris et al., 2019) is a generalisation of MPNNs based on the -dimensional WL
algorithm.

k (k − 1)

The idea is still based on message passing, but a higher-order form, where we perform message passing directly
between subgraph structures, rather than individual nodes.

We can therefore view this model as a higher-order MPNN.

This form of message passing can capture structural information that is not visible at the node-level.

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

15

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

15

-GNNs of (Morris et al., 2019) have the same power as folklore -WL. For example, -GNNs can distinguish
the two graphs shown above, by the #triangles they contain, given by the Boolean formula in :
3 2 3

𝖢𝟥

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

15

-GNNs of (Morris et al., 2019) have the same power as folklore -WL. For example, -GNNs can distinguish
the two graphs shown above, by the #triangles they contain, given by the Boolean formula in :
3 2 3

𝖢𝟥

 Φ = ∃≥9x(∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z))

Weisfeiler-Lehman: From 1-GNNs to -GNNsk

15

-GNNs of (Morris et al., 2019) have the same power as folklore -WL. For example, -GNNs can distinguish
the two graphs shown above, by the #triangles they contain, given by the Boolean formula in :
3 2 3

𝖢𝟥

 Φ = ∃≥9x(∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z))
This formula states that there are at least three triangles, which is satisfied by the graph on the left hand side
but not by the graph on the right hand side. -GNNs with are strictly more powerful than MPNNs.k k ≥ 3

Hierarchical Variants

16

Hierarchical Variants

16

Hierarchical variants of -GNNs, called 1- -GNNs, aim to combine graph representations learned at different
granularities. The idea is to apply message passing starting from one-hot indicator vectors as initial features,
and applying the usual node-level message passing (1-WL), and afterwards using the resulting representations
to learn better representations for pairs of nodes, with a higher-order message passing (2-WL), etc., illustrated
in Figure 1 of (Morris et al., 2019), as shown above.

k k

Hierarchical Variants

16

Hierarchical variants of -GNNs, called 1- -GNNs, aim to combine graph representations learned at different
granularities. The idea is to apply message passing starting from one-hot indicator vectors as initial features,
and applying the usual node-level message passing (1-WL), and afterwards using the resulting representations
to learn better representations for pairs of nodes, with a higher-order message passing (2-WL), etc., illustrated
in Figure 1 of (Morris et al., 2019), as shown above.

k k

Hierarchical Variants

17

Hierarchical Variants

17

In this hierarchical approach the initial messages in a -GNN are based on the output of lower-dimensional
GNNs, which allows the model to effectively capture graph structures of varying granularity.

Many real-world graphs inherit a hierarchical structure in this sense, and so a hierarchical message passing
approach is potentially helpful — and this is empirically confirmed in the evaluation of (Morris et al., 2019).

k

Limitations of -GNNsk

18

Limitations of -GNNsk

18

The higher-order -GNNs have -WL expressive power, but need memory to run — excessive
memory requirements. These higher-order models require intractably-sized intermediate tensors in practice.

k (k − 1) O(|V |k)

Limitations of -GNNsk

18

The higher-order -GNNs have -WL expressive power, but need memory to run — excessive
memory requirements. These higher-order models require intractably-sized intermediate tensors in practice.

k (k − 1) O(|V |k)

In fact, it is implemented only up to -GNNs (corresponding to -WL expressiveness), which already requires
cubic memory allocations — already intractable on existing benchmarks.

3 2

Limitations of -GNNsk

18

The higher-order -GNNs have -WL expressive power, but need memory to run — excessive
memory requirements. These higher-order models require intractably-sized intermediate tensors in practice.

k (k − 1) O(|V |k)

In fact, it is implemented only up to -GNNs (corresponding to -WL expressiveness), which already requires
cubic memory allocations — already intractable on existing benchmarks.

3 2

Time complexity of the message passing also increases combinatorially in ! k

Limitations of -GNNsk

18

The higher-order -GNNs have -WL expressive power, but need memory to run — excessive
memory requirements. These higher-order models require intractably-sized intermediate tensors in practice.

k (k − 1) O(|V |k)

In fact, it is implemented only up to -GNNs (corresponding to -WL expressiveness), which already requires
cubic memory allocations — already intractable on existing benchmarks.

3 2

Time complexity of the message passing also increases combinatorially in ! k

Limitations of -GNNsk

18

The higher-order -GNNs have -WL expressive power, but need memory to run — excessive
memory requirements. These higher-order models require intractably-sized intermediate tensors in practice.

k (k − 1) O(|V |k)

In fact, it is implemented only up to -GNNs (corresponding to -WL expressiveness), which already requires
cubic memory allocations — already intractable on existing benchmarks.

3 2

Time complexity of the message passing also increases combinatorially in ! k

-GNNs are more expressive than MPNNs, but still limited in their expressive power, as -GNN is strictly
more expressive than -GNN for any .
k (k + 1)

k k ≥ 2

Limitations of -GNNsk

18

The higher-order -GNNs have -WL expressive power, but need memory to run — excessive
memory requirements. These higher-order models require intractably-sized intermediate tensors in practice.

k (k − 1) O(|V |k)

In fact, it is implemented only up to -GNNs (corresponding to -WL expressiveness), which already requires
cubic memory allocations — already intractable on existing benchmarks.

3 2

Time complexity of the message passing also increases combinatorially in ! k

-GNNs are more expressive than MPNNs, but still limited in their expressive power, as -GNN is strictly
more expressive than -GNN for any .
k (k + 1)

k k ≥ 2

Though being permutation-invariant, the non-hierarchical version of the algorithm is somewhat limited in that
the explicit connection to node-level information is lost and only -tuples are considered. k

Limitations of -GNNsk

18

The higher-order -GNNs have -WL expressive power, but need memory to run — excessive
memory requirements. These higher-order models require intractably-sized intermediate tensors in practice.

k (k − 1) O(|V |k)

In fact, it is implemented only up to -GNNs (corresponding to -WL expressiveness), which already requires
cubic memory allocations — already intractable on existing benchmarks.

3 2

Time complexity of the message passing also increases combinatorially in ! k

-GNNs are more expressive than MPNNs, but still limited in their expressive power, as -GNN is strictly
more expressive than -GNN for any .
k (k + 1)

k k ≥ 2

Though being permutation-invariant, the non-hierarchical version of the algorithm is somewhat limited in that
the explicit connection to node-level information is lost and only -tuples are considered. k

This can hurt the inductive bias, especially when node level features are very important for the task at hand!

Invariant/Equivariant Graph
Networks

19

Invariant/Equivariant Graph Networks

20

Invariant/Equivariant Graph Networks

20

Invariant (resp., equivariant) graph networks (Maron et al., 2019a) represent graphs as a higher-order tensor,
where node adjacency is directly encoded.

Invariant/Equivariant Graph Networks

20

Invariant (resp., equivariant) graph networks (Maron et al., 2019a) represent graphs as a higher-order tensor,
where node adjacency is directly encoded.

Let us restate the properties invariance and equivariance using features and based on MPNNs.

Invariant/Equivariant Graph Networks

20

Invariant (resp., equivariant) graph networks (Maron et al., 2019a) represent graphs as a higher-order tensor,
where node adjacency is directly encoded.

Let us restate the properties invariance and equivariance using features and based on MPNNs.

MPNNs are permutation-invariant:

for any permutation matrix , adjacency matrix , and feature matrix .

𝖯𝖮𝖮𝖫(MPNN(PAP⊤, PX)) = 𝖯𝖮𝖮𝖫(P(MPNN(A, X)))
P A X

Invariant/Equivariant Graph Networks

20

Invariant (resp., equivariant) graph networks (Maron et al., 2019a) represent graphs as a higher-order tensor,
where node adjacency is directly encoded.

Let us restate the properties invariance and equivariance using features and based on MPNNs.

MPNNs are permutation-equivariant:

for any permutation matrix , adjacency matrix , and feature matrix .

P(MPNN(A, X)) = MPNN(PAP⊤, PX)

P A X

MPNNs are permutation-invariant:

for any permutation matrix , adjacency matrix , and feature matrix .

𝖯𝖮𝖮𝖫(MPNN(PAP⊤, PX)) = 𝖯𝖮𝖮𝖫(P(MPNN(A, X)))
P A X

Invariant/Equivariant Graph Networks

21

Invariant/Equivariant Graph Networks

21

Idea: Based on a tensor representation of graphs, define a GNN model based on permutation equivariant/
invariant tensor operations.

Invariant/Equivariant Graph Networks

21

Idea: Based on a tensor representation of graphs, define a GNN model based on permutation equivariant/
invariant tensor operations.

Formally, we consider an order -tensor where the first channels of this tensor are indexed
by the nodes of the graph. We write to denote a permutation of the first channels of this tensor
according the node permutation matrix .

(k + 1) T ∈ ℝ|V|k×d k
P ⋆ T k

P

Invariant/Equivariant Graph Networks

21

Idea: Based on a tensor representation of graphs, define a GNN model based on permutation equivariant/
invariant tensor operations.

Formally, we consider an order -tensor where the first channels of this tensor are indexed
by the nodes of the graph. We write to denote a permutation of the first channels of this tensor
according the node permutation matrix .

(k + 1) T ∈ ℝ|V|k×d k
P ⋆ T k

P

A linear invariant layer can be defined as such that for all permutations :

 .

ℒ : ℝ|V|k×d1 ↦ ℝd2 P

ℒ × (P ⋆ T) = (ℒ × T)

Invariant/Equivariant Graph Networks

21

Idea: Based on a tensor representation of graphs, define a GNN model based on permutation equivariant/
invariant tensor operations.

Formally, we consider an order -tensor where the first channels of this tensor are indexed
by the nodes of the graph. We write to denote a permutation of the first channels of this tensor
according the node permutation matrix .

(k + 1) T ∈ ℝ|V|k×d k
P ⋆ T k

P

A linear invariant layer can be defined as such that for all permutations :

 .

ℒ : ℝ|V|k×d1 ↦ ℝd2 P

ℒ × (P ⋆ T) = (ℒ × T)

A linear equivariant layer can be defined as such that for all permutations :

 .

ℒ : ℝ|V|k1×d1 ↦ ℝ|V|k2×d2 P

ℒ × (P ⋆ T) = P ⋆ (ℒ × T)

Invariant/Equivariant Graph Networks

22

Invariant/Equivariant Graph Networks

22

Based on this abstraction, invariant -order GNN model (Maron et al., 2019b), or -IGNs, is defined as:

 ,

where are equivariant linear layers (with up to different channels), is an invariant layer, and
denotes element-wise non-linearity. Figure 1 of (Maron et al., 2019c) illustrates the model.

k k

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℒd ∘ σ ∘ ⋯ ∘ σ ∘ ℒ1

ℒ1, …, ℒd k ℋ σ

Invariant/Equivariant Graph Networks

22

Based on this abstraction, invariant -order GNN model (Maron et al., 2019b), or -IGNs, is defined as:

 ,

where are equivariant linear layers (with up to different channels), is an invariant layer, and
denotes element-wise non-linearity. Figure 1 of (Maron et al., 2019c) illustrates the model.

k k

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℒd ∘ σ ∘ ⋯ ∘ σ ∘ ℒ1

ℒ1, …, ℒd k ℋ σ

Invariant/Equivariant Graph Networks

23

The input to the -order invariant GNN is a tensor , where the first two channels correspond to the
adjacency matrix of the graph and the remaining channels encode the initial node features.

The model is called -order, as it allows equivariant layers with channels, and this directly correlates with the
expressive power of the model.

k T ∈ ℝ|V|2×d

k k

Expressive Power of Invariant Graph Networks

24

Expressive Power of Invariant Graph Networks

24

It has been shown that -IGNs are as powerful as -WL test.k k

Expressive Power of Invariant Graph Networks

24

It has been shown that -IGNs are as powerful as -WL test.k k

Theorem 1 (Maron et al., 2019a). Given two graphs that can be distinguished by the -WL graph
isomorphism test, there exists a -order network so that . On the other direction for every two
isomorphic graphs and -order network , .

G, G′ k
k F F(G) ≠ F(G′)

G, G′ k F F(G) = F(G′)

Expressive Power of Invariant Graph Networks

24

It has been shown that -IGNs are as powerful as -WL test.k k

Theorem 1 (Maron et al., 2019a). Given two graphs that can be distinguished by the -WL graph
isomorphism test, there exists a -order network so that . On the other direction for every two
isomorphic graphs and -order network , .

G, G′ k
k F F(G) ≠ F(G′)

G, G′ k F F(G) = F(G′)

If we bound the size of the input graphs with , measured in the number of nodes, then -th order invariant
networks can distinguish any pair of non-isomorphic graphs. Note that invariant networks with order-2 tensors
could already be computationally challenging!

n n

Expressive Power of Invariant Graph Networks

24

It has been shown that -IGNs are as powerful as -WL test.k k

Theorem 1 (Maron et al., 2019a). Given two graphs that can be distinguished by the -WL graph
isomorphism test, there exists a -order network so that . On the other direction for every two
isomorphic graphs and -order network , .

G, G′ k
k F F(G) ≠ F(G′)

G, G′ k F F(G) = F(G′)

If we bound the size of the input graphs with , measured in the number of nodes, then -th order invariant
networks can distinguish any pair of non-isomorphic graphs. Note that invariant networks with order-2 tensors
could already be computationally challenging!

n n

Invariant networks are shown to be universal (Maron et al., 2019c), but with tensor orders of !O(|V |2)

Expressive Power of Invariant Graph Networks

24

It has been shown that -IGNs are as powerful as -WL test.k k

Theorem 1 (Maron et al., 2019a). Given two graphs that can be distinguished by the -WL graph
isomorphism test, there exists a -order network so that . On the other direction for every two
isomorphic graphs and -order network , .

G, G′ k
k F F(G) ≠ F(G′)

G, G′ k F F(G) = F(G′)

If we bound the size of the input graphs with , measured in the number of nodes, then -th order invariant
networks can distinguish any pair of non-isomorphic graphs. Note that invariant networks with order-2 tensors
could already be computationally challenging!

n n

Invariant networks are shown to be universal (Maron et al., 2019c), but with tensor orders of !O(|V |2)

More specifically, invariant networks are universal with tensor order . An alternative proof is given by

(Keriven and Peyré, 2019), who also showed a universality result for the equivariant case.

n(n − 1)
2

Limitations of Invariant Graph Networks

25

Limitations of Invariant Graph Networks

25

Similarly to -GNNs, -IGNs may lose the inductive bias of node information relative to standard MPNNs. k k

Limitations of Invariant Graph Networks

25

Similarly to -GNNs, -IGNs may lose the inductive bias of node information relative to standard MPNNs. k k

They also only use adjacency information implicitly, via features in the initial tensor, but do not limit
interactions solely to edge-connected nodes. This may hurt inductive bias when the property being learned is
local.

Limitations of Invariant Graph Networks

25

Similarly to -GNNs, -IGNs may lose the inductive bias of node information relative to standard MPNNs. k k

They also only use adjacency information implicitly, via features in the initial tensor, but do not limit
interactions solely to edge-connected nodes. This may hurt inductive bias when the property being learned is
local.

Indeed, -IGNs are inherently designed for graph-level computations: the correspondence with node tuples, is
only implicit, unlike -GNNs, where tuples have representations that are explicitly maintained and updated.

k
k

Limitations of Invariant Graph Networks

25

Similarly to -GNNs, -IGNs may lose the inductive bias of node information relative to standard MPNNs. k k

They also only use adjacency information implicitly, via features in the initial tensor, but do not limit
interactions solely to edge-connected nodes. This may hurt inductive bias when the property being learned is
local.

Indeed, -IGNs are inherently designed for graph-level computations: the correspondence with node tuples, is
only implicit, unlike -GNNs, where tuples have representations that are explicitly maintained and updated.

k
k

Finally, these models are also prohibitive to run for large values of , due to their very large memory and
computational requirements.

k

Provably Powerful Graph
Networks

26

Provably Powerful Graph Networks

27

Provably Powerful Graph Networks

27

Provably powerful graph networks (PPGNs) are special
type of invariant networks, motivated by the search for
more expressive, yet still scalable, GNN models

Provably Powerful Graph Networks

27

Provably powerful graph networks (PPGNs) are special
type of invariant networks, motivated by the search for
more expressive, yet still scalable, GNN models

PPGN works with 2 tensors, and is defined as follows:

 ,

where, as in -IGNs, is an invariant layer, and
 are blocks have the structure shown in Figure 2

of (Maron et al., 2019a).

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℬd ∘ ⋯ ∘ ℬ1

k ℋ
ℬ1, …, ℬd

Provably Powerful Graph Networks

27

Provably powerful graph networks (PPGNs) are special
type of invariant networks, motivated by the search for
more expressive, yet still scalable, GNN models

PPGN works with 2 tensors, and is defined as follows:

 ,

where, as in -IGNs, is an invariant layer, and
 are blocks have the structure shown in Figure 2

of (Maron et al., 2019a).

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℬd ∘ ⋯ ∘ ℬ1

k ℋ
ℬ1, …, ℬd

Briefly, given an input the idea is to apply
MLP to each feature of the input tensor independently
(i.e., 3 MLPs), and then perform matrix multiplication
between matching features.

T ∈ ℝ|V|×|V|×d

Provably Powerful Graph Networks

28

Provably Powerful Graph Networks

28

Matrix multiplication is equivariant, and thus the PPGN
building block is equivariant, which makes the overall
PPGN, represented by function , invariant.F

Provably Powerful Graph Networks

28

Matrix multiplication is equivariant, and thus the PPGN
building block is equivariant, which makes the overall
PPGN, represented by function , invariant.F

Furthermore, PPGNs are strictly more powerful than
MPNNs. In fact, PPGNs can distinguish any pair of graphs
that can be distinguished by folklore 2-WL.

Provably Powerful Graph Networks

28

Matrix multiplication is equivariant, and thus the PPGN
building block is equivariant, which makes the overall
PPGN, represented by function , invariant.F

Furthermore, PPGNs are strictly more powerful than
MPNNs. In fact, PPGNs can distinguish any pair of graphs
that can be distinguished by folklore 2-WL.

Intuitively, the matrix multiplication yields a richer
aggregation, which corresponds to 2-WL aggregation.

Provably Powerful Graph Networks

28

Matrix multiplication is equivariant, and thus the PPGN
building block is equivariant, which makes the overall
PPGN, represented by function , invariant.F

Furthermore, PPGNs are strictly more powerful than
MPNNs. In fact, PPGNs can distinguish any pair of graphs
that can be distinguished by folklore 2-WL.

Intuitively, the matrix multiplication yields a richer
aggregation, which corresponds to 2-WL aggregation.

PPGNs have therefore the same power as 3-GNNs, but the
strong point is that they maintain only embeddings,
which makes them more memory-efficient than 3-GNNs.

O(n2)

Expressive Power in the
Real World

29

Expressive Power in Real-World Data

30

Expressive Power in Real-World Data

30

MPNNs cannot distinguish very basic graph pairs, but we also observe that this limitation is not very
pronounced empirically, as modern-day benchmarks are unlikely to include limiting cases.

Expressive Power in Real-World Data

30

MPNNs cannot distinguish very basic graph pairs, but we also observe that this limitation is not very
pronounced empirically, as modern-day benchmarks are unlikely to include limiting cases.

This can intuitively be explained by the following factors:

Expressive Power in Real-World Data

30

MPNNs cannot distinguish very basic graph pairs, but we also observe that this limitation is not very
pronounced empirically, as modern-day benchmarks are unlikely to include limiting cases.

This can intuitively be explained by the following factors:

1. 1-WL edge cases typically correspond to data that is highly regular, whereas real-world data is
overwhelmingly uneven and variable, e.g., knowledge graphs, where some entities are connected to
hundreds of other entities, and others connect to very few, if any.

Expressive Power in Real-World Data

30

MPNNs cannot distinguish very basic graph pairs, but we also observe that this limitation is not very
pronounced empirically, as modern-day benchmarks are unlikely to include limiting cases.

This can intuitively be explained by the following factors:

1. 1-WL edge cases typically correspond to data that is highly regular, whereas real-world data is
overwhelmingly uneven and variable, e.g., knowledge graphs, where some entities are connected to
hundreds of other entities, and others connect to very few, if any.

2. Real-world graphs are also typically large, and involve thousands, and potentially millions, of nodes. At this
scale, the limitations of 1-WL are less likely to surface, as it is highly probable that some local substructure
within the large graph can help distinguish it. In fact, 1-WL can distinguish almost all graphs as the
number of graph nodes tends to infinity (Babai et al., 1980), i.e., it can distinguish these graphs with
probability almost 1.

Expressive Power in Real-World Data

31

 Figure 5 of (Newman, 2013)

Expressive Power in Real-World Data

31

Hence, it is hard to quantitatively evaluate the expressiveness of existing models using existing benchmarks —
as it is not very likely to hit pairs of indistinguishable graphs.

 Figure 5 of (Newman, 2013)

Expressive Power in Real-World Data

31

Hence, it is hard to quantitatively evaluate the expressiveness of existing models using existing benchmarks —
as it is not very likely to hit pairs of indistinguishable graphs.

This does not suggest, however, that lack of expressiveness cannot be an issue in practice.

 Figure 5 of (Newman, 2013)

Expressive Power in Real-World Data

31

Hence, it is hard to quantitatively evaluate the expressiveness of existing models using existing benchmarks —
as it is not very likely to hit pairs of indistinguishable graphs.

This does not suggest, however, that lack of expressiveness cannot be an issue in practice.

This has been noted and new synthetic datasets dedicated to quantify the effect of expressive power are
proposed (Abboud et al., 2020) with a detailed comparison against higher-order models, as we will see in more
detail in Lecture 7.

 Figure 5 of (Newman, 2013)

Expressive Power in Real-World Data

32

Expressive Power in Real-World Data

32

There is an excellent survey covering types of graphs observed in real-world data (Newman, 2013):

Expressive Power in Real-World Data

32

There is an excellent survey covering types of graphs observed in real-world data (Newman, 2013):

“In many networks it is found that if vertex A is connected to vertex B and vertex B to vertex C, then there is a
heightened probability that vertex A will also be connected to vertex C. In the language of social networks, the
friend of your friend is likely also to be your friend.

Expressive Power in Real-World Data

32

There is an excellent survey covering types of graphs observed in real-world data (Newman, 2013):

“In many networks it is found that if vertex A is connected to vertex B and vertex B to vertex C, then there is a
heightened probability that vertex A will also be connected to vertex C. In the language of social networks, the
friend of your friend is likely also to be your friend.

In terms of network topology, transitivity means the presence of a heightened number of triangles in the
network — sets of three vertices each of which is connected to each of the others. It can be quantified by
defining a clustering coefficient thus: C

Expressive Power in Real-World Data

32

There is an excellent survey covering types of graphs observed in real-world data (Newman, 2013):

“In many networks it is found that if vertex A is connected to vertex B and vertex B to vertex C, then there is a
heightened probability that vertex A will also be connected to vertex C. In the language of social networks, the
friend of your friend is likely also to be your friend.

In terms of network topology, transitivity means the presence of a heightened number of triangles in the
network — sets of three vertices each of which is connected to each of the others. It can be quantified by
defining a clustering coefficient thus: C

 C = 3 ×
#triangles in the network

#connected triples of vertices
,

Expressive Power in Real-World Data

32

There is an excellent survey covering types of graphs observed in real-world data (Newman, 2013):

“In many networks it is found that if vertex A is connected to vertex B and vertex B to vertex C, then there is a
heightened probability that vertex A will also be connected to vertex C. In the language of social networks, the
friend of your friend is likely also to be your friend.

In terms of network topology, transitivity means the presence of a heightened number of triangles in the
network — sets of three vertices each of which is connected to each of the others. It can be quantified by
defining a clustering coefficient thus: C

 C = 3 ×
#triangles in the network

#connected triples of vertices
,

where a “connected triple” means a single vertex with edges running to an unordered pair of others.”

Expressive Power in Real-World Data

33

 Figure 5 of (Newman, 2013)

Expressive Power in Real-World Data

33

 Figure 5 of (Newman, 2013)

“In simple terms, is the mean probability that two vertices that are network neighbours of the same other
vertex will themselves be neighbours.” (Newman, 2013)

C

Expressive Power in Real-World Data

33

 Figure 5 of (Newman, 2013)

“In simple terms, is the mean probability that two vertices that are network neighbours of the same other
vertex will themselves be neighbours.” (Newman, 2013)

C

The graph shown above has 1 triangle and 8 connected triples, and so has a clustering coefficient of 3/8 .

Expressive Power in Real-World Data

33

 Figure 5 of (Newman, 2013)

“In simple terms, is the mean probability that two vertices that are network neighbours of the same other
vertex will themselves be neighbours.” (Newman, 2013)

C

The graph shown above has 1 triangle and 8 connected triples, and so has a clustering coefficient of 3/8 .

There are other ways of defining cluster coefficient but they rely on being able to detect triangles.

Homophily and Heterophily

34

Homophily and Heterophily

35

Homophily and Heterophily

35

Within a graph, homophily intuitively describes a strong positive correlation between nodes and their
neighbours.

Homophily and Heterophily

35

Within a graph, homophily intuitively describes a strong positive correlation between nodes and their
neighbours.

More specifically, homophily implies that a node is highly likely to share features and attributes with its
neighbours in the graph.

Homophily and Heterophily

35

Within a graph, homophily intuitively describes a strong positive correlation between nodes and their
neighbours.

More specifically, homophily implies that a node is highly likely to share features and attributes with its
neighbours in the graph.

For example, homophily is prominent in citation networks, where connected papers (i.e., papers citing one
another) tend to tackle similar research areas.

Homophily and Heterophily

35

Within a graph, homophily intuitively describes a strong positive correlation between nodes and their
neighbours.

More specifically, homophily implies that a node is highly likely to share features and attributes with its
neighbours in the graph.

For example, homophily is prominent in citation networks, where connected papers (i.e., papers citing one
another) tend to tackle similar research areas.

Conversely, heterophily describes negative correlations between nodes and their neighbours: A node tends to
have contrasting features relative to its neighbours.

Homophily and Heterophily

35

Within a graph, homophily intuitively describes a strong positive correlation between nodes and their
neighbours.

More specifically, homophily implies that a node is highly likely to share features and attributes with its
neighbours in the graph.

For example, homophily is prominent in citation networks, where connected papers (i.e., papers citing one
another) tend to tackle similar research areas.

Conversely, heterophily describes negative correlations between nodes and their neighbours: A node tends to
have contrasting features relative to its neighbours.

For instance, protein graphs exhibit heterophily, as the proteins that interact with one another are usually
different from a composition perspective.

MPNNs vs Higher-Order Models

36

MPNNs vs Higher-Order Models

36

Both homophily and heterophily are data-driven inductive biases. That is, the inductive bias they provide, unlike
permutation-invariance and local message passing, does not rely on structural properties of graphs, but on the
application domain and the specific input instances.

MPNNs vs Higher-Order Models

36

Both homophily and heterophily are data-driven inductive biases. That is, the inductive bias they provide, unlike
permutation-invariance and local message passing, does not rely on structural properties of graphs, but on the
application domain and the specific input instances.

These biases are prominent in real-world applications, and are commonly exploited.

MPNNs vs Higher-Order Models

36

Both homophily and heterophily are data-driven inductive biases. That is, the inductive bias they provide, unlike
permutation-invariance and local message passing, does not rely on structural properties of graphs, but on the
application domain and the specific input instances.

These biases are prominent in real-world applications, and are commonly exploited.

MPNNs, by virtue of their structure, are well-suited to model homophily and heterophily.

MPNNs vs Higher-Order Models

36

Both homophily and heterophily are data-driven inductive biases. That is, the inductive bias they provide, unlike
permutation-invariance and local message passing, does not rely on structural properties of graphs, but on the
application domain and the specific input instances.

These biases are prominent in real-world applications, and are commonly exploited.

MPNNs, by virtue of their structure, are well-suited to model homophily and heterophily.

Indeed, their computations are restricted to local operations, and neighbour aggregation. Thus, they can more
easily capture correlations by simply adjusting combination and aggregation weights.

MPNNs vs Higher-Order Models

36

Both homophily and heterophily are data-driven inductive biases. That is, the inductive bias they provide, unlike
permutation-invariance and local message passing, does not rely on structural properties of graphs, but on the
application domain and the specific input instances.

These biases are prominent in real-world applications, and are commonly exploited.

MPNNs, by virtue of their structure, are well-suited to model homophily and heterophily.

Indeed, their computations are restricted to local operations, and neighbour aggregation. Thus, they can more
easily capture correlations by simply adjusting combination and aggregation weights.

By contrast, higher-order models are more global, and so cannot naturally be restricted to this setting, unless
empowered with some local variants.

MPNNs vs Higher-Order Models

36

Both homophily and heterophily are data-driven inductive biases. That is, the inductive bias they provide, unlike
permutation-invariance and local message passing, does not rely on structural properties of graphs, but on the
application domain and the specific input instances.

These biases are prominent in real-world applications, and are commonly exploited.

MPNNs, by virtue of their structure, are well-suited to model homophily and heterophily.

Indeed, their computations are restricted to local operations, and neighbour aggregation. Thus, they can more
easily capture correlations by simply adjusting combination and aggregation weights.

By contrast, higher-order models are more global, and so cannot naturally be restricted to this setting, unless
empowered with some local variants.

For example, -GNN, for larger , would require non-uniform handling of its connected tuples, based on local
neighbourhoods, and -IGN processes all nodes simultaneously, and thus must learn to filter out non-local
features!

k k
k

Summary

37

Summary
• The WL hierarchy and its relevance to GNNs

37

Summary
• The WL hierarchy and its relevance to GNNs

• Higher-order graph neural networks

37

Summary
• The WL hierarchy and its relevance to GNNs

• Higher-order graph neural networks

• Higher-order message passing neural networks: -GNNs, hierarchical variants, limitationsk

37

Summary
• The WL hierarchy and its relevance to GNNs

• Higher-order graph neural networks

• Higher-order message passing neural networks: -GNNs, hierarchical variants, limitationsk

• Invariant/Equivariant graph networks: universality, limitations

37

Summary
• The WL hierarchy and its relevance to GNNs

• Higher-order graph neural networks

• Higher-order message passing neural networks: -GNNs, hierarchical variants, limitationsk

• Invariant/Equivariant graph networks: universality, limitations

• Provably powerful graph neural networks: expressive power, scalability

37

Summary
• The WL hierarchy and its relevance to GNNs

• Higher-order graph neural networks

• Higher-order message passing neural networks: -GNNs, hierarchical variants, limitationsk

• Invariant/Equivariant graph networks: universality, limitations

• Provably powerful graph neural networks: expressive power, scalability

• Expressive power may not surface in existing benchmarks, but it still is relevant!

37

Summary
• The WL hierarchy and its relevance to GNNs

• Higher-order graph neural networks

• Higher-order message passing neural networks: -GNNs, hierarchical variants, limitationsk

• Invariant/Equivariant graph networks: universality, limitations

• Provably powerful graph neural networks: expressive power, scalability

• Expressive power may not surface in existing benchmarks, but it still is relevant!

• Homophily and heterophily: MPNNs vs higher-order models

37

Summary
• The WL hierarchy and its relevance to GNNs

• Higher-order graph neural networks

• Higher-order message passing neural networks: -GNNs, hierarchical variants, limitationsk

• Invariant/Equivariant graph networks: universality, limitations

• Provably powerful graph neural networks: expressive power, scalability

• Expressive power may not surface in existing benchmarks, but it still is relevant!

• Homophily and heterophily: MPNNs vs higher-order models

• There are other extensions of MPNNs, particularly with random features, yielding more expressive
power without the need for higher-order tensors — Lecture 7.

37

38

References
• H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks. NeurIPS, 2019a.

• H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and equivariant graph networks. ICLR, 2019b.

• H. Maron, E. Fetaya, N. Segol, and Y. Lipman. On the universality of invariant networks. ICML, 2019c.

• N. Keriven and G. Peyré, (2019). Universal invariant and equivariant graph neural networks. NeurIPS, 2019.

• C. Morris, M. Ritzert, M. Fey, W. Hamilton,J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and Leman go
neural: Higher-order graph neural networks. AAAI, 2019.

• G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

• Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory. Cambridge University
Press, 2017.

• Mark E. J. Newman. The structure and function of complex networks. SIAM Review, 2003.

• Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, Thomas Lukasiewicz, The Surprising Power of Graph Neural
Networks with Random Node Initialization, arXiv:2010.01179, 2020

