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We focused on a specific family of graph neural networks — MPNNs.

Graph neural networks are neural architectures dedicated to learning functions over graph-structured data, and 
this does not need to be through a specific message passing framework, or even, message passing.

This leads us to a more general definition: In a GNN, nodes in the input graph are assigned vector 
representations, which are updated iteratively through series of invariant or equivariant computational layers — 
and their precise form is a design choice.

We have seen several limitations of MPNNs, including their limitations in expressive power.

The focus of this lecture is the so-called higher-order graph neural networks, which use higher-order 
representations of the graphs, e.g., higher-order tensors, to be able to approximate a larger class of functions.

One way of achieving more expressive models is through a richer message passing approach — and this is 
related to Weisfeiler-Lehman hierarchy.
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What if we extend the 1-WL algorithm to consider, e.g., pairs of nodes when colouring?
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This extended algorithm is called the 2-dimensional WL algorithm, and it can distinguish these two graphs!
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Given a graph , the -dimensional WL algorithm generalises colour refinement as follows:G = (V, E) k

• We consider -tuples  of nodes, where  is the WL-dimension.k (v1, …, vk) ∈ Vk
G k ∈ ℕ

• We consider a colouring function  that colours each -tuple of nodes of the graph with a 
colour from a set  of colours. This colour will depend on the isomorphism type of the tuple, e.g., a 
-cycle and a -tree will have different colours.

λ : Vk
G ↦ C k

C
k k

Partitions  of  into vertex colour classes, and the refinement relation  is defined as before.π(λ) VG ⪯

We denote a -tuple as , and define a substitution as .k t = (u1, …, uk) t[v/i] = (u1, …, ui−1, v, ui+1, …, uk)
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3. Stop: The algorithm terminates when a stable colouring is reached: That is, at iteration , where  is 
the minimal integer satisfying:

j j

    .∀t, t′ ∈ Vk
G : λ( j+1)(t) = λ( j+1)(t′ ) if and only if λ( j)(t) = λ( j)(t′ )
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• Both variants of the algorithm lead to the same expressive power modulo the shift in dimension counts: 
For any ,  folklore -WL is equivalent to -WL (Grohe, 2017).k ≥ 2 k (k + 1)

• The folklore WL hierarchy is proper: For each  there is a pair of non-isomorphic graphs 
distinguishable by folklore -WL but not by folklore -WL.

k ≥ 1
(k + 1) k

• -WL and -WL have the same expressive power — different from the folklore WL.1 2

We will always refer to the folklore version of this algorithm in the sequel, unless stated explicitly otherwise.
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Recall that for all  two graphs  and  satisfy the same -sentences if and only if -WL does 
not distinguish them (Cai et al., 1992).

k ≥ 2 G H 𝖢𝗄 (k − 1)

To see why separator and non-separator nodes can be distinguished for the given graphs with 2-WL, it is 
sufficient to formalise this as a logical node classifier in :𝖢𝟥

                    .Φ(x) = ∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z)

It is easy to see that the graph on the left hand side satisfies  for any node , and the graph on the 
right hand side does not. That is, there are -sentences, distinguishing these graphs, and so must 2-WL.

Φ(u) u
𝖢𝟥
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The -GNN model (Morris et al., 2019) is a generalisation of MPNNs based on the -dimensional WL 
algorithm.

k (k − 1)

The idea is still based on message passing, but a higher-order form, where we perform message passing directly 
between subgraph structures, rather than individual nodes.  

We can therefore view this model as a higher-order MPNN.

This form of message passing can capture structural information that is not visible at the node-level. 
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-GNNs of (Morris et al., 2019) have the same power as folklore -WL. For example, -GNNs can distinguish 
the two graphs shown above, by the #triangles they contain, given by the Boolean formula in :
3 2 3

𝖢𝟥

                                          Φ = ∃≥9x(∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z))
This formula states that there are at least three triangles, which is satisfied by the graph on the left hand side 
but not by the graph on the right hand side. -GNNs with  are strictly more powerful than MPNNs.k k ≥ 3
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In this hierarchical approach the initial messages in a -GNN are based on the output of lower-dimensional 
GNNs, which allows the model to effectively capture graph structures of varying granularity.  

Many real-world graphs inherit a hierarchical structure in this sense, and so a hierarchical message passing 
approach is potentially helpful — and this is empirically confirmed in the evaluation of (Morris et al., 2019).

k
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In fact, it is implemented only up to -GNNs (corresponding to -WL expressiveness), which already requires 
cubic memory allocations — already intractable on existing benchmarks.

3 2

Time complexity of the message passing also increases combinatorially in ! k

-GNNs are more expressive than MPNNs, but still limited in their expressive power, as -GNN is strictly 
more expressive than -GNN for any .
k (k + 1)

k k ≥ 2

Though being permutation-invariant, the non-hierarchical version of the algorithm is somewhat limited in that 
the explicit connection to node-level information is lost and only -tuples are considered. k

This can hurt the inductive bias, especially when node level features are very important for the task at hand!
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A linear invariant layer can be defined as  such that for all permutations :                

                                               .

ℒ : ℝ|V|k×d1 ↦ ℝd2 P

ℒ × (P ⋆ T) = (ℒ × T)

A linear equivariant layer can be defined as  such that for all permutations :  

                                              .

ℒ : ℝ|V|k1×d1 ↦ ℝ|V|k2×d2 P

ℒ × (P ⋆ T) = P ⋆ (ℒ × T)
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Based on this abstraction, invariant -order GNN model (Maron et al., 2019b), or -IGNs, is defined as:  

                                                   , 

where  are equivariant linear layers (with up to  different channels),  is an invariant layer, and  
denotes element-wise non-linearity.  Figure 1 of (Maron et al., 2019c) illustrates the model.

k k

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℒd ∘ σ ∘ ⋯ ∘ σ ∘ ℒ1

ℒ1, …, ℒd k ℋ σ



Invariant/Equivariant Graph Networks

22

Based on this abstraction, invariant -order GNN model (Maron et al., 2019b), or -IGNs, is defined as:  

                                                   , 

where  are equivariant linear layers (with up to  different channels),  is an invariant layer, and  
denotes element-wise non-linearity.  Figure 1 of (Maron et al., 2019c) illustrates the model.

k k

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℒd ∘ σ ∘ ⋯ ∘ σ ∘ ℒ1

ℒ1, …, ℒd k ℋ σ



Invariant/Equivariant Graph Networks

23

The input to the -order invariant GNN is a tensor , where the first two channels correspond to the 
adjacency matrix of the graph and the remaining channels encode the initial node features.  

The model is called -order, as it allows equivariant layers with  channels, and this directly correlates with the 
expressive power of the model.

k T ∈ ℝ|V|2×d

k k
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It has been shown that -IGNs are as powerful as -WL test.k k

Theorem 1 (Maron et al., 2019a). Given two graphs  that can be distinguished by the -WL graph 
isomorphism test, there exists a -order network  so that . On the other direction for every two 
isomorphic graphs  and -order network , .

G, G′ k
k F F(G) ≠ F(G′ )

G, G′ k F F(G) = F(G′ )

If we bound the size of the input graphs with , measured in the number of nodes, then -th order invariant 
networks can distinguish any pair of non-isomorphic graphs. Note that invariant networks with order-2 tensors 
could already be computationally challenging!

n n

Invariant networks are shown to be universal (Maron et al., 2019c), but with tensor orders of !O( |V |2 )

More specifically, invariant networks are universal with tensor order  . An alternative proof is given by 

(Keriven and Peyré, 2019), who also showed a universality result for the equivariant case.

n(n − 1)
2
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Similarly to -GNNs, -IGNs may lose the inductive bias of node information relative to standard MPNNs. k k

They also only use adjacency information implicitly, via features in the initial tensor, but do not limit 
interactions solely to edge-connected nodes. This may hurt inductive bias when the property being learned is 
local.

Indeed, -IGNs are inherently designed for graph-level computations: the correspondence with node tuples, is 
only implicit, unlike -GNNs, where tuples have representations that are explicitly maintained and updated.

k
k

Finally, these models are also prohibitive to run for large values of , due to their very large memory and 
computational requirements. 

k
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Provably powerful graph networks (PPGNs) are special 
type of invariant networks, motivated by the search for 
more expressive, yet still scalable, GNN models

PPGN works with 2 tensors, and is defined as follows: 

                 , 

where, as in -IGNs,  is an invariant layer, and 
 are blocks have the structure shown in Figure 2 

of (Maron et al., 2019a).

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℬd ∘ ⋯ ∘ ℬ1

k ℋ
ℬ1, …, ℬd

Briefly, given an input  the idea is to apply 
MLP to each feature of the input tensor independently 
(i.e., 3 MLPs), and then perform matrix multiplication 
between matching features.

T ∈ ℝ|V|×|V|×d
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Matrix multiplication is equivariant, and thus the PPGN 
building block is equivariant, which makes the overall 
PPGN, represented by function , invariant.F

Furthermore, PPGNs are strictly more powerful than 
MPNNs. In fact, PPGNs can distinguish any pair of graphs 
that can be distinguished by folklore 2-WL.

Intuitively, the matrix multiplication yields a richer 
aggregation, which corresponds to 2-WL aggregation.

PPGNs have therefore the same power as 3-GNNs, but the 
strong point is that they maintain only  embeddings, 
which makes them more memory-efficient than 3-GNNs.

O(n2)



Expressive Power in the  
Real World

29



Expressive Power in Real-World Data

30



Expressive Power in Real-World Data

30

MPNNs cannot distinguish very basic graph pairs, but we also observe that this limitation is not very 
pronounced empirically, as modern-day benchmarks are unlikely to include limiting cases.



Expressive Power in Real-World Data

30

MPNNs cannot distinguish very basic graph pairs, but we also observe that this limitation is not very 
pronounced empirically, as modern-day benchmarks are unlikely to include limiting cases.

This can intuitively be explained by the following factors: 



Expressive Power in Real-World Data

30

MPNNs cannot distinguish very basic graph pairs, but we also observe that this limitation is not very 
pronounced empirically, as modern-day benchmarks are unlikely to include limiting cases.

This can intuitively be explained by the following factors: 

1. 1-WL edge cases typically correspond to data that is highly regular, whereas real-world data is 
overwhelmingly uneven and variable, e.g., knowledge graphs, where some entities are connected to 
hundreds of other entities, and others connect to very few, if any. 



Expressive Power in Real-World Data

30

MPNNs cannot distinguish very basic graph pairs, but we also observe that this limitation is not very 
pronounced empirically, as modern-day benchmarks are unlikely to include limiting cases.

This can intuitively be explained by the following factors: 

1. 1-WL edge cases typically correspond to data that is highly regular, whereas real-world data is 
overwhelmingly uneven and variable, e.g., knowledge graphs, where some entities are connected to 
hundreds of other entities, and others connect to very few, if any. 

2. Real-world graphs are also typically large, and involve thousands, and potentially millions, of nodes. At this 
scale, the limitations of 1-WL are less likely to surface, as it is highly probable that some local substructure 
within the large graph can help distinguish it. In fact, 1-WL can distinguish almost all graphs as the 
number of graph nodes tends to infinity (Babai et al., 1980), i.e., it can distinguish these graphs with 
probability almost 1.
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Hence, it is hard to quantitatively evaluate the expressiveness of existing models using existing benchmarks — 
as it is not very likely to hit pairs of indistinguishable graphs. 

This does not suggest, however, that lack of expressiveness cannot be an issue in practice. 

This has been noted and new synthetic datasets dedicated to quantify the effect of expressive power are 
proposed (Abboud et al., 2020) with a detailed comparison against higher-order models, as we will see in more 
detail in Lecture 7. 

              Figure 5 of (Newman, 2013)
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There is an excellent survey covering types of graphs observed in real-world data (Newman, 2013):

“In many networks it is found that if vertex A is connected to vertex B and vertex B to vertex C, then there is a 
heightened probability that vertex A will also be connected to vertex C. In the language of social networks, the 
friend of your friend is likely also to be your friend.

In terms of network topology, transitivity means the presence of a heightened number of triangles in the 
network — sets of three vertices each of which is connected to each of the others. It can be quantified by 
defining a clustering coefficient  thus: C

                                          C = 3 ×
#triangles in the network

#connected triples of vertices
,

where a “connected triple” means a single vertex with edges running to an unordered pair of others.”
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              Figure 5 of (Newman, 2013)

“In simple terms,  is the mean probability that two vertices that are network neighbours of the same other 
vertex will themselves be neighbours.” (Newman, 2013)

C

The graph shown above has 1 triangle and 8 connected triples, and so has a clustering coefficient of 3/8 .

There are other ways of defining cluster coefficient but they rely on being able to detect triangles.
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Within a graph, homophily intuitively describes a strong positive correlation between nodes and their 
neighbours. 

More specifically, homophily implies that a node is highly likely to share features and attributes with its 
neighbours in the graph. 

For example, homophily is prominent in citation networks, where connected papers (i.e., papers citing one 
another) tend to tackle similar research areas. 

Conversely, heterophily describes negative correlations between nodes and their neighbours: A node tends to 
have contrasting features relative to its neighbours. 

For instance, protein graphs exhibit heterophily, as the proteins that interact with one another are usually 
different from a composition perspective.
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Both homophily and heterophily are data-driven inductive biases. That is, the inductive bias they provide, unlike 
permutation-invariance and local message passing, does not rely on structural properties of graphs, but on the 
application domain and the specific input instances. 

These biases are prominent in real-world applications, and are commonly exploited.

MPNNs, by virtue of their structure, are well-suited to model homophily and heterophily. 

Indeed, their computations are restricted to local operations, and neighbour aggregation. Thus, they can more 
easily capture correlations by simply adjusting combination and aggregation weights.

By contrast, higher-order models are more global, and so cannot naturally be restricted to this setting, unless 
empowered with some local variants. 

For example, -GNN, for larger , would require non-uniform handling of its connected tuples, based on local 
neighbourhoods, and -IGN processes all nodes simultaneously, and thus must learn to filter out non-local 
features!

k k
k
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• Invariant/Equivariant graph networks: universality, limitations

• Provably powerful graph neural networks: expressive power, scalability

• Expressive power may not surface in existing benchmarks, but it still is relevant!

• Homophily and heterophily: MPNNs vs higher-order models

• There are other extensions of MPNNs, particularly with random features, yielding more expressive 
power without the need for higher-order tensors — Lecture 7.
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