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A brief recap

1. We have seen that 1-WL is insufficient and 2-WL is needed to distinguish these graphs.

2. The embedding learned for the graph on the left-hand side will be exactly the same as the embedding of 
the graph on the right-hand side for MPNNs!

3. There is a pair of non-isomorphic graphs distinguishable by -WL but not by -WL for each .(k + 1) k k ≥ 1
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Example: 2WL cannot distinguish the shown graphs which differ only in the grey area (Grohe, 2017), i.e., 
even higher-order models such as 3-GNNs do not possess sufficient expressive power to distinguish these 
graphs.
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Some observations:

• The graphs we considered were not coloured, or equivalently, single-coloured.

• The WL algorithm is defined in a more general way — we can start with any initial colouring. 

• The same is true for MPNNs — we can start with any node features.
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What happens when we colour the graph pairs?

• After the first iteration of the 1-WL algorithm the graphs are distinguished via the initially yellow nodes.

• After the second iteration the graphs will differ with respect to any node.

• The same is true for MPNNs — if we set the node features accordingly.
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Wouldn’t initialising node features in an MPNN to different colours be ideal? 

This will yield an expressive model — 1-WL can distinguish any pair of ordered/coloured graphs.
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There are problems in initialising nodes with such features: 

• We assign colours to nodes from a fixed class of colours which do not necessarily have a meaning. 

• We change the meaning of the given node features — potentially losing valuable information. 

• These features are deterministic and it is hard to generalise over these structures.
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• In this example, we initialise an MPNN with, e.g., node degrees, which results in identical features for 
the nodes, and they cannot be distinguished.

• If we initialise an MPNN with different colours, this results in different features for the nodes, and they 
can be distinguished.

Question: What if we initialise an MPNN with random features instead? 

Intuition: Random features can implicitly induce a colouring, and yield a more expressive model.
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MPNNs are enhanced with random node initialisation (RNI) such that the model trains and runs with 
(partially) randomised initial node features (Sato et al., 2020).

The resulting model is called rGNNs, and more specifically, rGINs, as the base model which is extended with 
random features is GINs in this paper. 

We will write MPNN-RNI to denote MPNNs with random node initialisation, and e.g., -RNI to denote a 
specific MPNN model  extended with RNI.

M
M

Remark: When we speak of features, it can refer to both node and edge features — In fact, edge features 
are very commonly used in the context of graph neural networks. 

To make the distinction clear, we speak of node features, and hence of random node initialisations here. Note 
that one can also consider random edge initialisations.
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It has been shown that GIN-RNI models can detect characteristic sub-graphs in an input graph with high 
probability. 

Informally, for a given class of (degree-bounded) graphs , and every fixed structure  , where , 
Theorem 4.1 of (Sato et al., 2020) states that there exists a parametrisation   for an GIN-RNI such that the 
resulting model can detect the structure   in the class of graph node pairs with high probability.

𝒢 (G, v) v ∈ VG
θ

(G, v)

Example: If  characterises  being part of a triangle, then this theorem implies that GIN-RNI can 
classify the nodes w.r.t. the presence of the triangle structure.

(G, v) v

GIN-RNI models go beyond the capabilities of GINs which cannot determine the existence of a triangle.

Remark: This theorem does not imply universality, as it only asserts distinguishability w.r.t. a fixed structure. 
This is not the same as being able to approximate any function (which can depend on multiple, interacting 
structures) over this space.
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These findings are empirically evaluated on two synthetic datasets (Sato et al., 2020) and we will briefly 
discuss one of these.

Triangle: This dataset contains random 3-regular graphs for a binary node classification problem. Both 
training and test data contain 1000 graphs. The training graphs have 20 nodes, and test graphs have 20 
nodes for the normal dataset and 100 nodes for the extrapolation dataset. A node  is positive if  has two 
neighbouring nodes that are adjacent to each other.

v v

Summary of the results: The results are reported for GINs and GCNs and their respective RNI versions.

• Unsurprisingly, GINs as well as GCNs only achieve 50% accuracy on this dataset. 

• GIN-RNI achieves >90% accuracy and GCN-RNI >85% achieves accuracy on normal and extrapolation 
datasets. 

• Since the test graphs in the extrapolation dataset have more nodes than the training graphs, this shows 
that MPNN-RNI models can potentially extrapolate to variable size graphs.
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Real-world datasets: Other empirical results are conducted on real-world datasets which do not necessarily 
require more than 1-WL expressivity.

Briefly, results on real-world datasets confirm that MPNN-RNI models perform either similarly to MPNNs, or 
marginally improve on them using a partial randomisation. 

Inspired by distributed local algorithms (Sato et al., 2020) also give algorithmic alignment results for certain 
combinatorial problems that admit such local algorithms, yielding near-optimally approximate solutions with 
graph neural networks.

Overall, this means that the expressive power of MPNN-RNI models go beyond 1-WL, but it remains open to 
pinpoint the exact power gained by RNI.

Question: What is the expressive power of MPNN-RNI models, and can these be universal?
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To make this question more concrete, let us focus on graph classification. 

Formally, let  be the class of all -vertex graphs, i.e., graphs that consist of at most  vertices, and let us 
focus on the class of functions of the form .

𝒢n n n
f : 𝒢n ↦ ℝ

An MPNN-RNI can be viewed as computing random functions: We say that a randomised function  that 
associates with every graph  a random variable  is an -approximation of  if for all 

:  

                                              

If  is computed by an MPNN-RNI , we say that  -approximates .

ℱ
G ∈ 𝒢n ℱ(G) (ϵ, δ) f

G ∈ 𝒢n

P( ∣ f(G) − ℱ(G) ∣ ≤ ϵ) ≥ 1 − δ .

ℱ M M (ϵ, δ) f

Given these, we can pose the following concrete question. 

Question: Can MPNN-RNI models approximate all functions ?f : 𝒢n ↦ ℝ
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Lemma (Abboud et al., 2020). Let , and let  be an invariant Boolean function. Then, for all 
, there is an MPNN-RNI that -approximates .

n ≥ 1 f : 𝒢n ↦ 𝔹
δ > 0 (ϵ, δ) f

Once this result is obtained, it is not hard to lift this to the real domain and to conclude the theorem:

• Since  is finite, the range  of the invariant function  is finite.  𝒢n Y = {y1, …, ys} f : 𝒢n ↦ ℝ

• We know that we can approximate any Boolean function , by the lemma above.g : 𝒢n ↦ 𝔹

• To approximate , we can define a function  combining the Boolean functions  s.t.: 

               , if  , and , otherwise.

f : 𝒢n ↦ ℝ g g1, …, gs

gi(G) ↦ 1 f(G) ↦ yi gi(G) ↦ 0
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This result is stated for node classification and focuses on formulas with one free variable : A graph  
satisfies the property  for a node  if .  

Φ(x) G
Φ(v) v ∈ VG G ⊨ Φ(v)

This result also applies to graph classification, since we can simply pool the results of each  for all nodes 
, and use this to classify the graph.

Φ(v)
v ∈ VG

A sentence  in  expresses a graph property (i.e., there exists a triangle), and so it can be viewed as a 
Boolean function classifying the graphs with respect to this property. 

Φ 𝖢𝟤

That is, the graph  satisfies the property specified by  if , and we can simply denote this by , 
viewing .

G Φ G ⊨ Φ Φ(G)
Φ : VG ↦ 𝔹
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𝖢𝟤 Φ ϵ > 0 ϵ
Φ

Remark: This result is stated for deterministic MPNNs, so the confidence parameter  simply equal to 0 in this 
case and it is dropped.

δ

This is useful to show the following result:

Lemma (Abboud et al., 2020). Let , and let  be an invariant Boolean function. Then, for all 
, there is an MPNN-RNI that -approximates .

n ≥ 1 f : 𝒢n ↦ 𝔹
δ > 0 (ϵ, δ) f

It may appear somewhat surprising, and even counter-intuitive, that randomly initialising node features would 
deliver such a gain in expressiveness.

The main connection comes from the fact that 1-WL can distinguish all ordered structures/graphs and so there 
is a  sentence that can uniquely (up to isomorphism) identify an ordered graph.𝖢𝟤
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• If we have a sentence  that can identify a coloured graph uniquely up to isomorphism, then we have the 
power of distinguishing all such graphs.

ψ

• If, furthermore, all sentences that can identify the class of coloured graphs are in , then we can leverage 
the result of (Barcelo et al., 2020) to claim that MPNNs can identify the class of coloured graphs.

𝖢𝟤

Problem: The input to MPNNs is not individualised graphs!

Randomisation: RNI yields individualised graphs from input graphs with high probability!
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Given these, the roadmap of the proof is then as follows:

1. Establish that for every individualised coloured graph  there is a -sentence  that identifies , and let 
us call these graph sentences.

G 𝖢𝟤 ψ G

2. Extend this to Boolean functions over sets of individualised graphs, by showing that these functions can 
also be represented by a  sentence, namely the disjunction of all constituent graph sentences. 𝖢𝟤

3. Following this, provide a construction based on MPNN-RNI:

• Colours corresponds to node features vectors in MPNN-RNI, initialised randomly, and based on 
these, show that, with high probability, RNI makes the input graphs individualised. 

• Since all such functions can be captured by a sentence in , and an MPNN with a global readout 
can capture  (Barcelo et al., 2020), MPNN-RNI can capture arbitrary Boolean functions.

𝖢𝟤

𝖢𝟤

• Lift the result of Boolean functions to real functions as described earlier.

Remark: This result holds even with partial node initialisations — even with a single randomised dimension.
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Recall that we did not prefer embedding graphs to an MLP, due to the lack of right inductive bias, and 
properties such as permutation-invariance. The following question is then in place:

Question: Are MPNN-RNIs permutation-invariant, or, more generally, do MPNN-RNIs have the right inductive 
bias?

• On the surface, MPNN-RNI models no longer preserves the invariance of MPNNs, since the result of the 
computation of an MPNN-RNI not only depends on the structure (i.e., the isomorphism type) of the input 
graph, but also on RNI. 

• The broader picture is, however, rather subtle: We can view such a model as computing a random variable 
(or as generating an output distribution), and this random variable would still be invariant. 

• This means that the outcome of the computation of an MPNN-RNI does still not depend on the specific 
representation of the input graph, which fundamentally maintains invariance. 
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Observation: MPNN-RNIs are permutation-invariant in expectation!

• Indeed, random features vary around a mean which, in expectation, will inform model predictions, and is 
identical across all nodes. 

• However, the variability between different samples, and the variability of a random sample relative to this 
mean, enable graph discrimination and improve expressiveness. 

• Overall, in expectation, all samples over training and evaluation fluctuate around a unique value, preserving 
invariance, whereas single-sample variance achieves the improved expressiveness.

Observe also that MPNN-RNIs still have the structural encoding of the graph, and explicit message passing, 
and the structure-induced bias is preserved. 

Together with the arguments above, MPNN-RNI models, allowing variability, are universal models, and preserve 
the good inductive bias of MPNNs.



Benchmarking Expressiveness 
Evaluation

25



Datasets for Expressiveness Evaluation

26



Datasets for Expressiveness Evaluation

26

Recall that existing benchmarks are unlikely to include the cases MPNNs cannot distinguish, and so it is hard 
to evaluate the models against this criteria. 



Datasets for Expressiveness Evaluation

26

Recall that existing benchmarks are unlikely to include the cases MPNNs cannot distinguish, and so it is hard 
to evaluate the models against this criteria. 

We have seen experiments conducted on randomly generated graphs with, e.g., triangles as substructures. 
These datasets require more expressivity, but they are still dealing with an inherently local problem.



Datasets for Expressiveness Evaluation

26

Recall that existing benchmarks are unlikely to include the cases MPNNs cannot distinguish, and so it is hard 
to evaluate the models against this criteria. 

We have seen experiments conducted on randomly generated graphs with, e.g., triangles as substructures. 
These datasets require more expressivity, but they are still dealing with an inherently local problem.

To evaluate whether the universality result is viable practically, the dataset EXP is proposed (Abboud et al., 
2020) which aims to evaluate the expressiveness of GNN models and it is based on the well-known 
propositional satisfiability problem.



Datasets for Expressiveness Evaluation

26

Recall that existing benchmarks are unlikely to include the cases MPNNs cannot distinguish, and so it is hard 
to evaluate the models against this criteria. 

We have seen experiments conducted on randomly generated graphs with, e.g., triangles as substructures. 
These datasets require more expressivity, but they are still dealing with an inherently local problem.

To evaluate whether the universality result is viable practically, the dataset EXP is proposed (Abboud et al., 
2020) which aims to evaluate the expressiveness of GNN models and it is based on the well-known 
propositional satisfiability problem.

Briefly, given a propositional formula , the satisfiability problem (SAT) is to determine whether the formula 
has a satisfying assignment, and it is the most prototypical NP-complete problem. 

ϕ



Datasets for Expressiveness Evaluation

26

Recall that existing benchmarks are unlikely to include the cases MPNNs cannot distinguish, and so it is hard 
to evaluate the models against this criteria. 

We have seen experiments conducted on randomly generated graphs with, e.g., triangles as substructures. 
These datasets require more expressivity, but they are still dealing with an inherently local problem.

To evaluate whether the universality result is viable practically, the dataset EXP is proposed (Abboud et al., 
2020) which aims to evaluate the expressiveness of GNN models and it is based on the well-known 
propositional satisfiability problem.

Briefly, given a propositional formula , the satisfiability problem (SAT) is to determine whether the formula 
has a satisfying assignment, and it is the most prototypical NP-complete problem. 

ϕ

SAT is combinatorial by its nature and is not local, i.e., the satisfiability of a formula cannot be determined 
by local properties alone.
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Idea: Encode each SAT instance as a graph 
(using well-known transformations) and 
formulate the satisfiability problem as a 
Boolean graph classification problem. 

The model then needs to classify graphs that 
represent satisfiable instances as true and 
graphs that represent unsatisfiable instances as 
false. 

A simple graph encoding of a propositional 
formula is shown on the right hand side.
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The precise details are cumbersome, since it is not sufficient to come up with satisfiable/unsatisfiable 
instances, but these should also be indistinguishable using 1-WL, once mapped to graph representation.

Briefly, EXP consists of a set of graph instances , such that each instance is a graph 
encoding of a propositional formula, and each pair  respects the following properties:

{G1, …, Gn, H1, …, Hn}
(Gi, Hi)

•  and  are non-isomorphic, Gi Hi

•  and  have different SAT outcomes:  encodes a satisfiable formula, while  encodes an 
unsatisfiable formula, 
Gi Hi Gi Hi

•  and  are 1-WL indistinguishable, so are guaranteed to be classified in the same way by standard 
MPNNs, and 
Gi Hi

•  and  are 2-WL distinguishable, so can be classified differently by higher-order GNNs that have 2-WL 
expressive power. 
Gi Hi
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GCN model achieves exactly  (omitted in the figure), and 
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All other GCN- RNI models achieve also near-perfect 
accuracy!

x %
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Space-efficiency: This suggest that RNI can practically 
improve the expressiveness of MPNNs, and make them 
competitive with higher-order models, despite being 
significantly less demanding computationally. 

MPNNs with RNI are space efficient, unlike higher-order 
GNNs, and combine expressiveness with efficiency in practice.

Indeed, for a typical EXP instance with 50 nodes, with an 
embedding dimensionality of 64, GCN-RNI only requires 3200 
parameters, whereas 3-GCN requires 1,254,400 parameters!                       

Somewhat surprisingly, GCN-RNI closely matches the 
performance of 3-GCN, and can easily scale to larger instances 
that are not within reach for 3-GCN.
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Convergence: Model convergence is slower for GCN-RNI and 
this is the price to pay, quoting (Abboud et al., 2020): 

“3-GCN only requires about 10 epochs to achieve its optimal 
performance, whereas GCN-RNI models all require in excess of 
100 epochs. Intuitively, the slower convergence of GCN-RNI 
can be attributed to a significantly harder learning task 
compared to 3-GCN: Whereas 3-GCN must learn from a 
deterministic set of node embeddings, and is naturally capable 
of discerning between dataset cores, GCN-RNI relies on RNI to 
discern between data points in EXP, via an artificial node 
ordering. This in turn implies that GCN-RNI must first 
leverage RNI to detect structure, then subsequently learn 
robustness against the variability of RNI, which makes the 
learning task for GCN-RNI especially challenging.”
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impact learning when data contains instances with varying expressiveness requirements, and how does RNI affect 
model generalisation on more variable datasets?

CEXP dataset is proposed to address these questions, and it can be seen as a combination of two datasets: EXP 
dataset and CORRUPT dataset, which a minimally corrupted version of EXP. 

While EXP graphs are not 1-WL distinguishable, CORRUPT graphs are 1-WL distinguishable. Importantly, 
CORRUPT graphs are still very similar to their uncorrupted variants, making the overall learning task harder.

CEXP is thus well-suited for evaluating the efficacy of RNI more holistically, as it allows the evaluation of the 
contribution of RNI jointly on EXP and CORRUPT:

• EXP requires 2-WL expressiveness, and any model without this power will get  accuracy on this subset.50 %

• CORRUPT does not require expressiveness, but makes the overall learning task harder due to the structural 
similarities to EXP instances —  Hence, an expressive model that generalises poorly can be identified by 
poor performance on this dataset.
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Fully randomised GCN-RNI model achieves  accuracy on the EXP subset (dotted-purple line on the RHS), 
but struggles on CORRUPT subset (purple line on the RHS), slightly below .

91 %
60 %



A More Variable Dataset

34



A More Variable Dataset

34

Observation: Fully randomised GCN-RNI loses all node type information, which is valuable for making robust 
predictions, and therefore struggles on CORRUPT, and converges much slower.
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Observation: Partially randomised models achieve the best of both worlds on CEXP, leveraging inductive bias 
from deterministic node embeddings, while harnessing the power of random embeddings to gain expressiveness.
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The overall behaviour of MPNN-RNI models can be intuitively described as follows:

• MPNN-RNI models theoretically extend MPNN capabilities with RNI and enable individualisation of graphs 
with high probability.

• Since at every epoch (a subset of) node features are re-initialised randomly, and intuitively, each sample 
yields a different order (i.e., coloured graph), and after “sufficiently many” iterations, the model will become 
robust to different orderings — yielding strong generalisation empirically!

• For an MPNN-RNI model to converge, it needs to see different orderings — and so it is solving a harder 
task than MPNNs and converges slower. 

• Partially randomised MPNN-RNI models both perform better and converge faster than fully random MPNN-
RNI models — attributed to the fact that they combine the best of both worlds.

• Partial RNI is sufficient, and this is more so for real-world datasets that do not require to handle so many 
edge cases jointly.
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• The given construction of (Abboud et al., 2020) implies an exponential blow-up in the size of the MPNN. 
This is unsurprising, since there are no restrictions on the target function  that is being learned — It can be 
a function that requires exponential time/space etc.

f

• Interestingly, however, when we focus on Boolean functions, the size of the MPNN entirely correlates with 
the descriptive complexity of the logical representation of the target representation:

• If the target function can be represented with a formula  in  then the depth of the resulting 
MPNN will be bounded with the quantifier depth of .

Φ 𝖢𝟤

Φ

• The width of the resulting MPNN depends polynomially on the confidence parameter , as this 
directly determines the dimensions of the state vectors to reach the desired accuracy

δ

• This gives rise to direct bounds on the size of MPNN-RNI models for special classes of functions, and paves 
the way for a principled and formal analysis of MPNN-RNI models.
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MPNN-RNI models exhibit an interesting trade-off between expressive power and inductive capacity. 

Flexibility: MPNN-RNI models are universal, but they are not designed to target a specific level of 
expressiveness (unlike, e.g., -GNNs), so their precise expressive power is governed by the particular dataset.k

For example, the discernment power may not be used if the dataset does not require higher expressiveness, in 
which case, the model can even degenerate into an MPNN. Taking this perspective, MPNN-RNI models can be 
seen as faithful extensions of MPNNs.

Local vs global: While MPNN-RNI models have the capacity to learn global properties using randomisation, 
they can behave similar to MPNNs w.r.t other properties we discussed. For example, homophily is likely captured 
by MPNN-RNI models similarly to MPNNs, as they are still based on local neighbourhood aggregation — and 
they can flexibly adapt to focus on local properties.

Full vs partial RNI: Empirical evidence suggests that full randomisation can hurt inductive bias — as the 
randomness increases, the overall learning task becomes harder, and the presence of deterministic features prove 
helpful to preserve inductive bias, while gaining expressiveness.
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• The size of the MPNN-RNI model is correlated with the descriptive complexity of the target function 

• Empirical evaluation suggests partial MPNN-RNI models as a strong alternative 

• There are more questions than answers in this context — more research needed!

• With this, we have covered all theoretical and foundational aspects, for practical aspects: Lecture 8.
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