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• Biomedical data is inherently relational — typically represented as a graph

• Molecular scale: Proteins and other biomolecules can be represented as graphs capturing spatial 
and structural relationships between their amino acid residues. Small molecule drugs can similarly be 
represented as graphs relating their constituent atoms and chemical bonding structure. 

• Intermediary scale: An interactome is a set of molecular interactions in a particular cell — They 
can be represented as graphs that capture specific types of interactions between biomolecular 
species, e.g., protein–protein interaction graphs. 

• Abstract scale: Knowledge graphs can represent the complex relationships between drugs, side 
effects, diagnosis, associated treatments, and test results etc.

• Drug discovery is a long and expensive process  —  There is a greater interest in applying computational 
methodologies to enhance the drug discovery process and make it more efficient. 
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Figure from (Gadoulet et al, 2021) showing the timeline of drug development linked to potential areas of application of GRL.
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Table from (Gadoulet et al, 2021) listing exemplar applications of GNNs in drug discovery. The acronyms stand for Dr: Drugs, 
DC: Drug combinations, PS: Protein, PI: Protein interactions, GA: Gene annotations, Di:Diseases, respectively.
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• After ranking the candidates according to the model’s predicted score, select a list of promising 
candidates (only, 23 compounds) that can potentially inhibit the growth of E. coli.
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The results are impressive:

• A new compound, named halicin (after HAL from “2001: A Space Odyssey”), is identified as a potent 
inhibitor of E. coli growth. Halicin is structurally divergent from conventional antibiotics.

• Experimental investigations revealed that halicin displays growth inhibitory properties against a wide 
phylogenetic spectrum of pathogens. It has been tested against dozens of bacterial strains isolated from 
patients and grown in lab dishes, revealing that it was able to kill many that are resistant to treatment

• In addition to halicin, from a distinct set of 23 empirically tested predictions from >107 million molecules 
found in the ZINC15 database, eight additional antibacterial compounds are discovered. These are also 
structurally distant from known antibiotics.

• Remarkably, two of these molecules displayed potent broad-spectrum activity and could overcome an 
array of antibiotic-resistance determinants in E. coli.

“This work highlights the significant impact that machine learning can have on early antibiotic discovery 
efforts by simultaneously increasing the accuracy rate of lead compound identification and decreasing the 
cost of screening efforts.”
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“Indeed, modern neural molecular representations have the potential to: (1) decrease the cost of lead 
molecule identification because screening is limited to gathering appropriate training data, (2) increase the 
true positive rate of identifying structurally novel compounds with the desired bioactivity, and (3) decrease 
the time and labor required to find these ideal compounds from months or years to weeks.”  

                                                                                      (Stokes et al., 2020)
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The data in particle physics are often represented by sets and graphs and as such, graph neural networks offer 
key advantages. 

We follow the survey by (Shlomi et al., 2021), and briefly highlight some applications of graph representation 
learning in particle physics.
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from a single initial object, i.e., quark, gluon, 
W-boson, top-quark, or Higgs boson. 

The task is then to identify the original object 
that gave rise to the jet — a very important 
task in particle physics. 

One approach is to view a jet as a graph, 
where nodes are particles (with features) and 
edges represent interactions, and apply graph 
classification.

Figure from (Shlomi et al., 2021), depicting jet classification 
based on the particles associated to the jet.
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Event Classification. The task of predicting the 
physics process at the origin of the recorded data. 

Example: Graph neural networks are leveraged to 
improve signal detection in the IceCube neutrino 
observatory (Choma et al., 2018). 

The IceCube detector array is modelled as a 
graph, where vertices are sensors and edges are a 
learned function of the sensors’ spatial 
coordinates.

The goal is the classification of the signal in the 
IceCube detector, to determine if a muon 
originated from a cosmic neutrino, or from a 
cosmic ray showering in the earth atmosphere.

Figure from (Choma et al., 2018) depicting the IceCube Neutrino Observatory 
with the in-ice array, its subarray DeepCore, and the cosmic-ray air shower 
array IceTop.
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There is a series of work trying to identify the reasoning capacity of GNNs.

NP-hard problems are of interest due to their combinatorial nature.

It is not really plausible to expect GNNs to solve NP-hard problems beyond small instances.

Example: Can GNNs learn to solve (small) SAT instances with single-bit supervision (Selsam et al., 2018)?

• This is an interesting exercise to understand the reasoning capacity of graph neural networks: 

• Represent each propositional formula as a graph.

• Produce labelled training data, based on existing SAT solvers, i.e., label graphs with 0/1 reflecting the 
satisfiability of the formula the graph represents.

• Train the graph neural network, and predict satisfiability status of novel formulas, given as graphs.
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• Naming-invariance, e.g., ,(x ∧ y) ∨ (¬x ∧ ¬y) ≡ (¬z ∧ ¬u) ∨ (z ∧ u)

• Strong inductive bias, given by formula distinguishability.

• Separate representations for logical operators .∧ , ∨

Gated graph neural networks have shown promising generalisation performance on very small problem 
instances. Clearly, this is approach is nowhere near actual SAT solvers, but it shows that GNNs can simulate 
logical reasoning at a very small scale.

Many other problems, beyond SAT, such as TSP, #SAT, etc. are investigated in this context.
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Graph neural networks alone are quite limited to attack such problems, and a line of work combines the 
power of graph neural networks with reinforcement learning for solving combinatorial optimisation problems. 
Figure is taken from a survey paper (Mazyavkina et al., 2020) and shows the pipeline.
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Goal: An agent acting in Markov Decision Process tries to find a policy function that maps states into 
actions, while maximising the expected cumulative discounted sum of rewards, i.e., finding an optimal policy.

Encoder: States of a Markov Decision Process are mapped to the actions’ values, using an encoder.

A typical run is as follows:

• Formulate the combinatorial problem, e.g., Max-Cut problem, as a Markov Decision Process. 

• Encode states with a GNN model, i.e., every node has a vector representation encoded by a GNN.

• The agent is driven by an reinforcement learning algorithm, e.g., Monte-Carlo Tree Search, and makes 
decisions that move the environment to the next state, e.g., removing a vertex from a solution set.

• Once the parameters of the model have been trained, the agent is capable of searching the solutions for 
unseen instances of the problem.
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Retrieving images/videos by describing their contents is an exciting application of computer vision. 

Example: A system may allow people to search for images by specifying not only objects (“man”, “boat”) but 
also structured relationships (“man on boat”) and attributes (“boat is white”) involving these objects. 

These are structured queries! To solve this problem, a system must explicitly represent and reason about the 
objects, attributes, and relationships in images.

A scene graph is a data structure that describes the contents of a scene. A scene graph encodes object 
instances, attributes of objects, and relationships between objects.

Scene graphs yield a rich representation of the given scene in an image.

Graph neural networks are used in both generating scene graphs and for high-level tasks that one would be 
interested in performing on them, e.g., visual question answering.
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Encode the input scene as a graph representing the objects and their spatial arrangement. Encode the input 
question as a graph representing words and their syntactic dependencies. Train a neural network to reason 
over these representations, and to produce a suitable answer as a prediction. (Tenet et al., 2016)
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       Figure from (Tenet et al., 2016) illustrating a pipeline for visual question answering using gated GNNs.
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This works if we focus on undirected graphs without edge labels, but knowledge graphs are more general, as 
contain a multiple types of relations between pairs of entities.

GNNs are extended to the multi-relational setting to deal with multi-relational graphs.

A natural way to encode multiple distinct relations in a graph is to transform neighbours based on which 
relation connects them to the original node. 

This is the primary intuition behind rGCNs (Schlichtkrull et al., 2018).

Recall the base MPNN model: 
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Specifically, rGCNs (Schlichtkrull et al., 2018) builds on GNNs and incorporate relation-specific weight 
matrices in aggregation: 
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To do this, the node representations following message passing in rGCN are used as the entity embeddings of 
a KGC model, referred to as a ‘’decoder’’. In this paper, rGCN uses DistMult.
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where  is a relation, and  is a problem-specific normalisation constant that can either be learned or 
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Note that rGCN applies to both for node/graph classification, as with standard GCNs, but also link 
prediction, i.e., KG completion. 

To do this, the node representations following message passing in rGCN are used as the entity embeddings of 
a KGC model, referred to as a ‘’decoder’’. In this paper, rGCN uses DistMult.

Note that rGCNs combine many aspects of this course: shallow KGC models and GNNs!



Knowledge Graph Completion with GNNs

26



Knowledge Graph Completion with GNNs

26

In practice, rGCNs performs usually worse than shallow tools. This is likely due to its embeddings 
incorporating information from across the entire knowledge graph, whereas existing models have dedicated 
embeddings for every entity. 



Knowledge Graph Completion with GNNs

26

In practice, rGCNs performs usually worse than shallow tools. This is likely due to its embeddings 
incorporating information from across the entire knowledge graph, whereas existing models have dedicated 
embeddings for every entity. 

KBGAT introduces attention on top of multi-relational aggregation to allow nodes to attend to more relevant 
neighbours when making predictions, as opposed to aggregating from all neighbours, which is potentially 
harmful.



Knowledge Graph Completion with GNNs

26

In practice, rGCNs performs usually worse than shallow tools. This is likely due to its embeddings 
incorporating information from across the entire knowledge graph, whereas existing models have dedicated 
embeddings for every entity. 

KBGAT introduces attention on top of multi-relational aggregation to allow nodes to attend to more relevant 
neighbours when making predictions, as opposed to aggregating from all neighbours, which is potentially 
harmful.

GrAIL performs KGC by sampling a local subgraph around the 2 nodes of the link being predicted, and labels 
the nodes in the subgraphs based on their roles. 



Knowledge Graph Completion with GNNs

26

In practice, rGCNs performs usually worse than shallow tools. This is likely due to its embeddings 
incorporating information from across the entire knowledge graph, whereas existing models have dedicated 
embeddings for every entity. 

KBGAT introduces attention on top of multi-relational aggregation to allow nodes to attend to more relevant 
neighbours when making predictions, as opposed to aggregating from all neighbours, which is potentially 
harmful.

GrAIL performs KGC by sampling a local subgraph around the 2 nodes of the link being predicted, and labels 
the nodes in the subgraphs based on their roles. 

GrAIL then performs message passing in this subgraph to make predictions. Since it relies on a local 
subgraph, and introduces its own labels, it can be applied to new unseen entities.
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• Particle physics: jet classification, event classification

• Combinatorial optimisation & reasoning: 

• Reasoning capacity of GNNs

• Reinforcement learning and GNNs

• Computer vision: Scene graphs and visual question answering

• Knowledge graphs: relation-specific message passing
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Thanks!  

Good luck with your projects…
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