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e Biomedical data is inherently — typically represented as a graph

e Molecular scale: Proteins and other biomolecules can be represented as graphs capturing spatial

and structural relationships between their amino acid residues. Small molecule drugs can similarly be
represented as graphs relating their constituent atoms and chemical bonding structure.

e Intermediary scale: An interactome is a set of molecular interactions in a particular cell — They

can be represented as graphs that capture specific types of interactions between biomolecular
species, e.g., protein—protein interaction graphs.

e Abstract scale: Knowledge graphs can represent the complex relationships between drugs, side
effects, diagnosis, associated treatments, and test results etc.

. is a long and expensive process — There is a greater interest in applying computational
methodologies to enhance the drug discovery process and make it more efficient.
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Figure from (Gadoulet et al, 2021) showing the timeline of drug development linked to potential areas of application of GRL.
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Drug Development Applications
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Table from (Gadoulet et al, 2021) listing exemplar applications of GNNs in drug discovery. The acronyms stand for
:Diseases, respectively.

. Drug combinations, - Protein,

. Protein interactions,
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In a very interesting work, (Stokes et al., 2020) use MPNNs for . Over the past few
decades, very few new antibiotics have been developed, and most of those newly approved antibiotics are

slightly different variants of existing drugs.

The overall approach:

e Develop a model by building a molecular representation based on a
specific property (e.g., the inhibition of the growth of E. coli), using a message passing approach.

e Train the model using a collection of for those that inhibited the growth of E.
coli, augmenting the model with a set of molecular features, hyperparameter optimization,etc.

e Apply the model to multiple chemical libraries, comprising molecules (e.g., ZINC15
database), to identify with activity against E. coli.

e After ranking the candidates according to the model's predicted score, select a list of
(only, 23 compounds) that can potentially inhibit the growth of E. coli.
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The results are impressive:

e A new compound, named (after HAL from “2001: A Space Odyssey"), is identified as a potent
inhibitor of E. coli growth. Halicin is structurally divergent from conventional antibiotics.

e Experimental investigations revealed that

. It has been tested against dozens of bacterial strains isolated from
patients and grown in lab dishes, revealing that it was able to kill many that are resistant to treatment

e |n addition to halicin, from a distinct set of 23 empirically tested predictions from >107 million molecules
found in the ZINC15 database, are discovered. These are also
structurally distant from known antibiotics.

e Remarkably, two of these molecules displayed and could overcome an
array of antibiotic-resistance determinants in E. coli.

“This work highlights the significant impact that machine learning can have on early antibiotic discovery

efforts by simultaneously increasing the accuracy rate of lead compound identification and decreasing the
cost of screening efforts.”
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“Indeed, modern neural molecular representations have the potential to: (1) decrease the cost of lead
molecule identification because screening is limited to gathering appropriate training data, (2) increase the
true positive rate of identifying structurally novel compounds with the desired bioactivity, and (3) decrease
the time and labor required to find these ideal compounds from months or years to weeks."

(Stokes et al., 2020)
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Particle Physics

The data in particle physics are often represented by sets and graphs and as such, graph neural networks offer
key advantages.

We follow the survey by (Shlomi et al., 2021), and briefly highlight some applications of graph representation
learning in particle physics.
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Particle Physics: Jet Classification

Jet classification. Jets are sprays of stable

particles that stem from multiple successive
interaction and decays of particles, originating
from a , i.e., quark, gluon,
W-boson, top-quark, or Higgs boson.

The task is then to identify the original object
that gave rise to the jet — a very important
task in particle physics.

One approach is to view a jet as a graph,
where nodes are particles (with features) and
edges represent interactions, and apply graph
classification.

Figure from (Shlomi et al., 2021), depicting jet classification
based on the particles associated to the jet.
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Particle Physics: Event Classification
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Figure from (Choma et al., 2018) depicting the IceCube Neutrino Observatory
with the in-ice array, its subarray DeepCore, and the cosmic-ray air shower
array IceTop.
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The lceCube detector array is modelled as a
graph, where vertices are sensors and edges are a
learned function of the sensors’ spatial 2450 m

2820 m
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coordinates.

The goal is the classification of the signal in the Bedrock
lceCube detector, to determine if a muon
originated from a cosmic neutrino, or from a
cosmic ray showering in the earth atmosphere.

Figure from (Choma et al., 2018) depicting the IceCube Neutrino Observatory
with the in-ice array, its subarray DeepCore, and the cosmic-ray air shower
array IceTop.
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NP-hard problems are of interest due to their combinatorial nature.
It is not really plausible to expect GNNs to solve NP-hard problems beyond small instances.
Example: Can GNNs learn to solve (small) instances with single-bit supervision (Selsam et al., 2018)7

e This is an interesting exercise to understand the reasoning capacity of graph neural networks:

e Represent each propositional formula as a graph.

e Produce labelled training data, based on existing SAT solvers, i.e., label graphs with 0/1 reflecting the
satisfiability of the formula the graph represents.

e Train the graph neural network, and predict satisfiability status of novel formulas, given as graphs.
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GNNs are obvious candidates for such tasks in the context of neural networks:

e Explicit of an input formula.

. g, XAYV(xAY)=(xAY)V(XAY).
. eg, AYV(xA YY) =("zAu)V(EZAW),

e Strong , given by formula distinguishability.

o for logical operators A,V .

Gated graph neural networks have shown promising generalisation performance on very small problem
instances. Clearly, this is approach is nowhere near actual SAT solvers, but it shows that GNNs can simulate
logical reasoning at a very small scale.

Many other problems, beyond SAT, such as TSP, #£SAT, etc. are investigated in this context.
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Graph Neural Networks and Combinatorial Problems

Encoder

4
‘ ' 1 B States/Rewards Actions

Bl )&

Graph neural networks alone are quite limited to attack such problems, and a line of work combines the
power of graph neural networks with reinforcement learning for solving combinatorial optimisation problems.
Figure is taken from a survey paper (Mazyavkina et al., 2020) and shows the pipeline.
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Idea: Model the problem as a , e.g., Markov Decision Process, where the

agent interacts with the environment by performing a sequence of actions in order to find a solution.

Goal: An agent acting in Markov Decision Process tries to find a policy function that maps states into
actions, while maximising the expected cumulative discounted sum of rewards, i.e.,

Encoder: States of a Markov Decision Process are mapped to the actions’ values, using an

A typical run is as follows:

e Formulate the combinatorial problem, e.g., Max-Cut problem, as a Markov Decision Process.

17



Graph Neural Networks and Combinatorial Problems

Idea: Model the problem as a , e.g., Markov Decision Process, where the

agent interacts with the environment by performing a sequence of actions in order to find a solution.

Goal: An agent acting in Markov Decision Process tries to find a policy function that maps states into
actions, while maximising the expected cumulative discounted sum of rewards, i.e.,

Encoder: States of a Markov Decision Process are mapped to the actions’ values, using an

A typical run is as follows:

e Formulate the combinatorial problem, e.g., Max-Cut problem, as a Markov Decision Process.

e Encode states with a GNN model, i.e., every node has a vector representation encoded by a GNN.

17



Graph Neural Networks and Combinatorial Problems

Idea: Model the problem as a , e.g., Markov Decision Process, where the

agent interacts with the environment by performing a sequence of actions in order to find a solution.

Goal: An agent acting in Markov Decision Process tries to find a policy function that maps states into

actions, while maximising the expected cumulative discounted sum of rewards, i.e.,
Encoder: States of a Markov Decision Process are mapped to the actions’ values, using an
A typical run is as follows:
e Formulate the combinatorial problem, e.g., Max-Cut problem, as a Markov Decision Process.
e Encode states with a GNN model, i.e., every node has a vector representation encoded by a GNN.

e The agent is driven by an reinforcement learning algorithm, e.g., Monte-Carlo Tree Search, and makes
decisions that move the environment to the next state, e.g., removing a vertex from a solution set.

17



Graph Neural Networks and Combinatorial Problems

Idea: Model the problem as a , e.g., Markov Decision Process, where the

agent interacts with the environment by performing a sequence of actions in order to find a solution.

Goal: An agent acting in Markov Decision Process tries to find a policy function that maps states into

actions, while maximising the expected cumulative discounted sum of rewards, i.e.,

Encoder: States of a Markov Decision Process are mapped to the actions’ values, using an

A typical run is as follows:
e Formulate the combinatorial problem, e.g., Max-Cut problem, as a Markov Decision Process.
e Encode states with a GNN model, i.e., every node has a vector representation encoded by a GNN.

e The agent is driven by an reinforcement learning algorithm, e.g., Monte-Carlo Tree Search, and makes
decisions that move the environment to the next state, e.g., removing a vertex from a solution set.

e Once the parameters of the model have been trained, the agent is capable of searching the solutions for
unseen instances of the problem.
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Computer Vision: Scene Graphs
and Question Answering




Scene Graphs
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Scene graph from (Johnson et al., 2015).
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Retrieving images/videos by describing their contents is an exciting application of computer vision.

Example: A system may allow people to search for images by specifying not only objects (“man”, “boat”) but
also structured relationships (“man on boat”) and attributes (“boat is white”) involving these objects.

These are queries! To solve this problem, a system must explicitly about the
objects, attributes, and relationships in images.

A is a data structure that describes the contents of a scene. A scene graph encodes object
instances, attributes of objects, and relationships between objects.

Scene graphs yield a rich representation of the given scene in an image.

Graph neural networks are used in both generating scene graphs and for high-level tasks that one would be
interested in performing on them, e.g.,
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Visual Question Answering
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Visual Question Answering

Neural
network

Encode the representing the objects and their spatial arrangement. Encode the
representing words and their syntactic dependencies. Train a neural network to reason
over these representations, and to produce a suitable answer as a prediction. (Tenet et al., 2016)
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Visual Question Answering
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Figure from (Tenet et al., 2016) illustrating a pipeline for visual question answering using gated GNNs.

22



Knowledge Graph Completion



Beyond Unlabelled Graphs



Beyond Unlabelled Graphs

Recall the base MPNN model:
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where all neighbours are aggregated using a weight matrix.
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Recall the base MPNN model:

h( = a<w<f> hi-0+wo Y hff‘”),

self U neigh
vEN(u)
where all neighbours are aggregated using a weight matrix.
This works if we focus on graphs without edge labels, but knowledge graphs are more general, as
contain a of relations between pairs of entities.
GNNSs are extended to the setting to deal with multi-relational graphs.

A natural way to encode multiple distinct relations in a graph is to transform neighbours based on
connects them to the original node.

This is the primary intuition behind (Schlichtkrull et al., 2018).
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Knowledge Graph Completion with GNNs

Specifically, rGCNs (Schlichtkrull et al., 2018) builds on GNNs and incorporate weight
matrices In aggregation:
(1) _ (t— Dy () =Dy (0
h( —a<z Y (— )W 4k Wself>

reR veN(u) Cu, r

where r € R is a relation, and ¢, , is a problem-specific normalisation constant that can either be learned or
chosen in advance.
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where r € R is a relation, and ¢, , is a problem-specific normalisation constant that can either be learned or
chosen in advance.

Note that rGCN applies to both for , as with standard GCNs, but also
. 1.e., KG completion.

To do this, the node representations following message passing in rGCN are used as the entity embeddings of
a , referred to as a "'decoder’'. In this paper, rGCN uses

Note that rGCNs combine many aspects of this course: shallow KGC models and GNNs!
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In practice, rGCNs performs usually worse than shallow tools. This is likely due to its embeddings
incorporating information from across the entire knowledge graph, whereas existing models have dedicated
embeddings for every entity.

26



Knowledge Graph Completion with GNNs

In practice, rGCNs performs usually worse than shallow tools. This is likely due to its embeddings
incorporating information from across the entire knowledge graph, whereas existing models have dedicated
embeddings for every entity.

KBGAT introduces attention on top of multi-relational aggregation to allow nodes to attend to more relevant
neighbours when making predictions, as opposed to aggregating from all neighbours, which is potentially
harmful.

26



Knowledge Graph Completion with GNNs

In practice, rGCNs performs usually worse than shallow tools. This is likely due to its embeddings
incorporating information from across the entire knowledge graph, whereas existing models have dedicated

embeddings for every entity.

KBGAT introduces attention on top of multi-relational aggregation to allow nodes to attend to more relevant
neighbours when making predictions, as opposed to aggregating from all neighbours, which is potentially
harmful.

GrAlL performs KGC by sampling a subgraph around the 2 nodes of the link being predicted, and labels
the nodes in the subgraphs based on their roles.

26



Knowledge Graph Completion with GNNs

In practice, rGCNs performs usually worse than shallow tools. This is likely due to its embeddings
incorporating information from across the entire knowledge graph, whereas existing models have dedicated

embeddings for every entity.

KBGAT introduces attention on top of multi-relational aggregation to allow nodes to attend to more relevant
neighbours when making predictions, as opposed to aggregating from all neighbours, which is potentially
harmful.

GrAlL performs KGC by sampling a subgraph around the 2 nodes of the link being predicted, and labels
the nodes in the subgraphs based on their roles.

GrAlL then performs message passing in this subgraph to make predictions. Since it relies on a local
subgraph, and introduces its own labels, it can be applied to new entities.
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Thanks!

Good luck with your projects...
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