arXiv:1910.11088v2 [cs.CV] 5 Mar 2020

DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel
Neural Network

Wei Wang, Muhamad Risqi U. Saputra, Peijun Zhao, Pedro Gusmao,
Bo Yang, Changhao Chen, Andrew Markham, and Niki Trigoni

Abstract— Odometry is of key importance for localization
in the absence of a map. There is considerable work in the
area of visual odometry (VO), and recent advances in deep
learning have brought novel approaches to VO, which directly
learn salient features from raw images. These learning-based
approaches have led to more accurate and robust VO systems.
However, they have not been well applied to point cloud
data yet. In this work, we investigate how to exploit deep
learning to estimate point cloud odometry (PCO), which may
serve as a critical component in point cloud-based downstream
tasks or learning-based systems. Specifically, we propose a
novel end-to-end deep parallel neural network called DeepPCO,
which can estimate the 6-DOF poses using consecutive point
clouds. It consists of two parallel sub-networks to estimate 3-
D translation and orientation respectively rather than a single
neural network. We validate our approach on KITTI Visual
Odometry/SLAM benchmark dataset with different baselines.
Experiments demonstrate that the proposed approach achieves
good performance in terms of pose accuracy.

I. INTRODUCTION

Visual odometry (VO) estimation is one of the most
fundamental research tasks in the field of computer vision
and robotics. It incrementally estimates an agent’s relative
pose by examining changes in projected geometrical features
captured from a monocular camera. Conventional visual
odometry relies on feature extraction and matching which
has been well studied for a number of decades. However,
recent advances in deep learning bring another paradigm to
VO by directly inferring the 6 Degree-of-Freedom (6-DoF)
camera poses through end-to-end learning [18]. This leads
to several advantages in terms of not requiring hand-crafted
features and being able to learn directly from large datasets.
Deep learning-based VO approaches achieve very impressive
results compared to conventional geometry-based approaches
in some benchmark datasets [20].

Point cloud data, such as that generated by a Lidar or
Depth Camera, can provide richer information about the 3-
D structure of the environment. This intuitively provides
a better perspective on how the sensor moves over time.
Conventional point-cloud based odometry relies on geomet-
ric approaches and has shown excellent performance [23].
However, these techniques suffer from issues of robustness
such as being sensitive to outliers and having low adaptability
to different environments [2]. Scan matching, which is a
fundamental task in point-cloud based odometry, is prone
to outliers introduced by hardware failure, agent vibration

*The authors are with the Department of Computer Science,
University of Oxford, Oxford OX1 3QD, United Kingdom.
{firstname.lastname } @cs.ox.ac.uk

Point Cloud Sequence Stacked Two

Encoding Data 6-DOF Pose

Point Cloud Data, ,

Data

Point Cloud Data, \ Encoding DeepPCO

|

Encoding Data, ,
Encoding Data, o

Point Cloud Data,, , /

Time Line

Fig. 1: System overview of the proposed DeepPCO frame-
work. A sequential point cloud data stream is sent to the
system. Two consecutive point cloud data are sent in parallel
to the data encoding module, which implements the 2-
D panoramic projection method. Projected depth images
are then stacked to feed to DeepPCO neural network for
predicting 6-DOF pose. These relative transformations are
further combined to form a moving trajectory.

when collecting data, or unexpected sensor movements.
Moreover, when the environment is featureless or objects
within the environment are deformable, scan matching may
also fail. These systems usually need other sensors such
as the Inertial Measurement Unit (IMU) to compensate for
these failures [24]. Another complexity is that operators need
to perform manual hand-engineering to fine-tune the large
number of model parameters.

Motivated by the success of deep learning as applied to
VO, we consider whether similar successes can be achieved
in estimating odometry from point cloud data, obviating the
need for manually engineering features and model parame-
ters, which we define as the Point Cloud Odometry (PCO)
task. In particular, deep learning may eliminate the problem
of noisy scan matching, potentially improving robustness.
Furthermore, solving point clouds 6-DOF pose is significant
for point cloud-related tasks in the realm of 3-D vision.
Additionally, it is a natural fit to integrate learning-based
odometry components into learning-based systems or SLAM.
Nevertheless, a challenging problem for using point clouds
is that it is unordered, which poses issues for convolutional
kernels which inherently assume a structured input.

In this paper, we investigate two key issues which impact
the performance of PCO using end-to-end deep learning. The
first is the representation (encoding) of the point cloud itself.
This ranges from the raw point cloud to various approaches
to projecting it to a 2-D scene. The second issue comes
from the choice of the model architecture itself. In particular,

we consider estimating the 6-DOF pose (translation and
orientation) in a single regression network, or splitting the
translation and orientation estimation tasks and regressing
them in two sub-networks.

Based on these investigations, we propose a novel ap-
proach, termed DeepPCO, which combines the use of 2-
D panoramic depth projections with two sub-networks to
achieve accurate odometry, as shown in Fig.1. DeepPCO
eliminates the intermediate modules (e.g. scan matching,
geometric estimation) of a classical pipeline. We compare
against various baselines using point cloud data from the
KITTI Vision Benchmark Suite [7] which were collected
using a 360° Velodyne laser scanner.

Our main contributions are as follows:

o We demonstrate that point cloud odometry problem
can be effectively solved in an end-to-end fashion, and
our proposed architecture outperforms existing learning-
based approaches by a significant margin, and received
comparable performance to conventional ones.

o We adopt a dual-branch architecture to infer 3-D trans-
lation and orientation separately instead of a single
network.

« Comprehensive experiments and ablation studies have
been done to evaluate our proposed method. Results
show that DeepPCO achieves good performance with
respect to different kinds of neural network architec-
tures.

II. RELATED WORK

In this section, we review deep learning for odometry
tasks, especially Visual Odometry (VO), followed by the
introduction of geometric and learning-based approaches for
point cloud odometry. Previous works mainly focus on point
cloud data generated by Lidar sensors, so we call this kind
of work as Lidar Odometry (LO).

A. Deep Learning for Visual Odometry

Instead of manually estimating the geometry of the scenes,
learning-based systems automatically learn the feature cor-
respondences and relationships between images. These types
of systems are usually trained in an end-to-end manner and
save great efforts in engineering compared to the classic
ones. Wang et al. [20] proposed an end-to-end framework
for monocular VO consisting of a CNN branch built upon
FlowNet [6], followed by a Recurrent Convolutional Neural
Network structure (RCNN). Features are first extracted for
two consecutive images through CNN and then forwarded
to LSTM. Clark et al. [4] treated visual-inertial odometry
as a sequence-to-sequence problem and made use of LSTM
to embed IMU information to predict pose. Chen et al. [3]
proposed an selective sensor fusion approach to solve visual-
inertial odometry task. Constante et al. [5] presented a novel
motion estimation network called LS-VO, which is based on
Auto-Encoder (AE) scheme to find a non-linear representa-
tion of the Optical Flow (OF) manifold. [15] used raw optical
flow images as inputs and proposed a VO system called
Flowdometry, whose architecture consists of CNN. Although

the translation and rotation error evaluation does not excel
the state-of-the-art approaches, due to careful engineering
design, it achieved 23.796x speedup over existing learning-
based VO. Gomez-Ojeda et al [8] developed a learning-based
image enhancement approach to solve the robustness prob-
lem in VO. The network architecture consists of CNN and
LSTM, and the LSTM was proved to help reduce noises by
incorporating the temporal information from past sequences.
Li et al. [14] presented UnDeepVO to estimate the 6-DOF
poses of a monocular camera and the depth of its view. Stereo
image pairs were harnessed for recovering absolute scale
and loss function was defined on spatial and temporal dense
information. Yang et al. [22] discussed a novel approach
called Deep Virtual Stereo Odometry (DVSO), which first
predicts depth using monocular images, and then incorporate
them into Direct Sparse Odometry (DSO) as direct virtual
stereo measurements. All the mentioned works take 2-D
inputs to their neural networks.

B. Geometry and Deep Learning for Lidar Odometry

Classical geometry-based LO usually employs variations
of Iterative Closest Point (ICP) [1] for scan matching. [19]
introduced a probabilistic framework combining ICP and
‘point-to-plane’ algorithms to model locally planar surface
structure from both scans, which can be applied to the
registration of frame-to-frame scans. The state-of-the-art
LO system, named LOAM, was proposed by [23], which
consists of feature point extraction, feature correspondence
calculation, motion estimation, and mapping components.
The key idea is to optimize a large number of variables
via two algorithms. One algorithm employs low fidelity
to estimate velocity and the other one performs very low
frequency for fine matching and point cloud registration.
These two stages can be concluded as fast scan-to-scan and
precise scan-to-map. Nicolai et al. [16] proposed a two-
stream CNN architecture for frame-to-frame point cloud
odometry estimation. They pre-processed point cloud data
into 2-D images as inputs for their neural network. They
collected point cloud data using the VLP-16 Lidar sensor
mounted on Turtlebot. Although their experimental results
are not superb, they demonstrate that it is possible to apply
deep learning to LO task.

III. APPROACHES FOR POINT CLOUD ENCODING

Convolutional neural networks require highly structured
data as inputs whereas point cloud data is unordered and
irregularly sampled. In this section, we will discuss different
point cloud encoding approaches and compare their relative
merits for the task of point cloud odometry. An example of
point-cloud data is shown in Fig 2, as obtained by a car-
mounted LIDAR. Note the irregular density and gaps due to
obstructions.

A. 2-D Encoding of Point Clouds

A straightforward approach to encode point clouds for
odometry is to transform into a 2-D depth image. The
projected depth image can be top-view, front-view, or

Fig. 2: A sample point cloud from KITTI dataset.

panoramic-view. Among all of our experiments, we find that
panoramic-view projection performs the best among all de-
veloped models with different parameter settings. Therefore,
here we discuss panoramic-view projection equations that
we have adopted in our work. Specifically, Li et al. [13]
proposed an approach to project point cloud into panoramic
depth image by the following equations:

6 = arctan 2(y,x) (D
¢ = arcsin(z/\/x2 +y2 +72) (2)
r=10/A8] 3)
c=9/A9] S

where (X,y,z) are 3-D point coordinates, 6 is azimuth angle,
¢ is elevation angle, (r, c¢) is the 2-D image position of 3-D
point projection, A@ is average horizontal angle resolution
and A¢ is vertical angle resolution. For a detailed explana-
tion, we refer readers to the original paper. In our work, we
used the same equations above, and then normalized depth
values to the range [0, 255]. Points closer to the sensor are
assigned higher values. Indeed, the inverse normalization has
been successfully applied to many 2-D vision tasks.

B. 3-D Encoding of Point Clouds

3-D point cloud data can also be discretized as a 3-D
voxel grid and has been employed in VoxNet. Nevertheless,
the voxelization of point clouds is impractical. For exam-
ple, each point cloud in KITTI [7] contains approximately
120,000 points, which would require large memory size
and computation resources to maintain the high resolution
of the 3-D grid. Even adopting a sampling strategy to
reduce the number of points, voxelization of point clouds
is challenging for volumetric CNNs. Sampling would also
affect the accuracy of our odometry task. Other than the vox-
elization approach, [17] proposed PointNet, a straightforward
approach that treats every single point as a 3-dimensional
vector (X, y, z) for 2-D CNN architecture. Thus, the input
points are encoded as n x 3, and this approach eliminates
the use of 3-D CNN architecture which greatly speeds up
the training process. However, their task and other following
works mainly deal with classification or segmentation [21].
Moreover, the introduced transformation sub-network in the

(a) Original Point Cloud

O (x1, v 22)
O (e, ¥, Z2)
O (6, Y, 25)
O (e, Yo, 20) oy (xelye)
O (xe, v, 25) O

(c) PointNet 3-D Encoding

O
(e, ¥z, 22 O (Xé)
O

(d) PointGrid 3-D Encoding

Fig. 3: Visualization of various point cloud encoding ap-
proaches for deep learning.

PointNet alters the translation that we need to accurately
predict in our PCO task. Therefore, we reuse the PointNet
architecture except we eliminate the T-Net in our experiment.
More recently, [12] proposed a 3-D CNN architecture named
PointGrid to integrate the benefits of point and grid for better
representation of the local geometry shape given the limits
of PointNet’s ability to capture contextual neighborhood
structure.

A graphical representation of all point cloud encoding
approaches for deep learning in this work have been sum-
marized in Fig.3. We used 2-D encoding for our proposed
neural network architecture, termed DeepPCO, in which the
point cloud data is projected to panoramic depth images. In
the experimental results, we compare its performance with
the PointNet and PointGrid 3-D encoding approaches.

IV. DEEPPCO ARCHITECTURE

Our DeepPCO is composed of two sub-networks, a Trans-
lation Sub-Network and FlowNet Orientation Sub-Network,
both of which form a deep parallel neural network architec-
ture. The entire DeepPCO architecture is illustrated in Fig.
4.

A. End-to-End Network Architecture

Our key idea is that instead of jointly learning and
predicting position and rotation vectors using a single neural
network as adopted by existing work, we design two separate
neural networks - one is adept at predicting translation while
the other specializes in inferring rotation. As will be shown
in the experimental results, this approach leads to superior
overall performance. The inputs of DeepPCO are two con-
secutive 2-D panoramic-view projection images which are
stacked together. The Translation Sub-Network is responsible
for the prediction of translation between two point clouds,
while the FlowNet Sub-Network infers the rotation between

Translation Sub-Network

Kernel 3 x 3
Stride 2
LeakyRelu 0.1

Kernel 3 x 3
Stride 2
LeakyRelu 0.1

Kernel 3 x 3
Stride 2
LeakyRelu 0.1

Kernel 3 x 3
Stride 2
LeakyRelu 0.1

Stride 1

64 channels

128 channels
l

256 channels
|

512 channels

Two Consecutive
Panoramic Depth Images

FlowNet Convolutional Layers

FlowNet Orientation Sub-Network

Kernel 1 x 1

LeakyRelu 0.1

128 channels

Convolution Ultimate Output

Fully Connected Training Phase

Inference

Ground Truth

LeakyRelu0.2 LeakyRelu0.2 LeakyRelu0.2 LeakyRelu0.2 LeakyRelu0.2

Dropout 0.1 Dropout 0.1

<
—_— 3 —

16
Training

Ground Truth

Translation

v
(x.v.2)

6-DOF
Pose

Orientation

(i,j k)

I
|

LeakyRelu0.2 LeakyRelu0.2 LeakyRelu0.2 LeakyRelu0.2 |eakyRelu0.2 '
'

Dropout 0.1 Dropout 0.1

—_— 3 — 2 —

(i,j, k)

Ground Truth

(x.Y.,2)
Training

Fig. 4: The architecture of DeepPCO. Two consecutive point clouds are encoded into panoramic depth images. These image
pairs are sent to two Sub-Networks simultaneously, both of which are trained using 6-DOF pose ground truth. The Translation
Sub-Network is used to predict translation vector (x, y, z) while the FlowNet Orientation Sub-Network infers the orientation
vector (i, j, k). The translation and orientation vector are concatenated to output the desired 3-D transformation. All the
initial configurations are listed, and we employ Dropout to prevent overfitting during training. Values shown in convolutional

layers represent the number of channels/depth.

them. We used FlowNet as it has been proved to effectively
extract geometrical features useful for odometry task. In
Translation Sub-Network, fully convolutional layers are uti-
lized to extract features from projected depth images, while
in FlowNet Sub-Network, we adopt the same configuration
of convolutional layers from FlowNet [6]. Our intuition to
take advantage of FlowNet is that it is constructed upon
optical flow, which is heavily used in VO tasks to attain good
rotation performance. Since the number of input channels of
FlowNet is six, we simply expand each depth image to three
channels by replicating it twice. Leaky Rectified Linear Units
(Leaky ReLU) are applied after every convolutional layer in
our architecture with the angle of negative slope set to 0.1
and using in-place operation. We employ transfer learning to
initialize the weights of convolutinal layers in our FlowNet
Sub-Network using pretrained FlowNet convolutional layers’
weights. Note that we do not use any max pooling layers
or batch normalization layers in our architecture since our
comprehensive experiments indicate that adding either of
these two layers significantly decreases the prediction ac-
curacy. Moreover, both of these two sub-networks have the
same fully connected layers settings as in the [16], which
consists of two branches jointly trained by 6-DOF ground
truth. Although their work used their own collected indoor

point cloud dataset to design the network, our experiment
empirically proves that such a setting of fully connected
layers has the best performance for PCO. Another important
design is that we jointly learn poses for each sub-network.
For example, for the Translation Sub-Network, although our
final goal of this sub-network is to output translation vector,
during the training phase, we jointly trained translation and
orientation together as illustrated in Fig. 4 (orange color
stands for 6-DOF pose). This is inspired by Grimes et al. [9],
which demonstrated that regressing position and orientation
separately performed worse compared to the full 6-DOF pose
for training. To summarize, our neural network architecture
is end-to-end, and easy to be trained since it only employs
a few 2-D CNN layers and a small fully connected layers,
eliminating the use of large RCNN architecture.

B. Output and Cost Function

Our network outputs a 6-DOF pose vector v:
(&)

where p is a 3-D position and q is an Euler angle. We express
orientation of pose as Euler angle rather than quaternion
based on the reason that quaternion is subject to an extra unit
constraint affecting the optimization of our network. Since
the two sub-networks are trained in a supervised manner

v=[p, q]

simultaneously, our final objective loss function L across two
sub-networks is defined as follows:

L=|lp—pl3+k+lla—al3 (6)

where P is ground truth of translation vector, § is ground
truth of orientation vector, || * ||% measures the mean squared
error (squared L2 norm) between each element in the es-
timation vector and ground truth vector, and k is a scale
factor to balance the errors of position and orientation to be
approximately equal.

V. EXPERIMENTAL EVALUATION

In this section, we introduce our experiment and training
details. We compare our network to 5 baseline approaches,
which are designed and tested on their best variations for
our task. The two-stream network [16] performs the same
task as ours and is set as the benchmark for the PCO
task. We modified their original network to infer 6-DoF
pose, and we retrain it from scratch on the same input data
as the DeepPCO. DeepVO and ResNetl8 [10] are deep-
learning approaches for visual odometry tasks and we use
2-D panoramic depth images as inputs. We select PointNet
and PointGrid as comparisons for the 3-D encoding of point
cloud due to their excellent performance in tasks such as
semantic segmentation. For the PointNet, we remove the
input transformation part.

A. Dataset

The KITTI VO/SLAM benchmark dataset is chosen for the
experiment. The dataset consists of 11 sequences (Sequences
00-10), which are associated with ground truth pose. Each
sequence contains consecutive point cloud data collected by
a laser sensor for trajectory estimation. Since the dataset
is relatively small compared to other benchmark datasets,
we selected Sequence 00-03, 05-09 as training datasets, and
Sequence 04 and 10 as test datasets which are chosen by
most VO work since they can represent the major scenarios
for agent or sensor movements in real world. Considering
our loss function adopts Euler angle while the orientation of
ground truth in KITTI is quaternion, we transformed orienta-
tion inside our experimental datasets to the Euler angle. All
poses in KITTTI are based on absolute transformation, so we
converted them to relative transformation for the purpose of
training the network.

B. Implementation and Settings

Our architecture is implemented with PyTorch framework.
For evaluating our results, we choose Root Mean Square
Error (RMSE) as our metric. Adam [11] optimizer was
employed to train our neural network with B; = 0.9 and
B> =0.999. We set the learning rate from 0.0001 and then we
applied 50% weight decay for every 10 epochs. Our network
was trained for 30 epochs according to different encoding
approaches and architectures. Batch size was set to 8. The
scale factor k of the objective function is 100. We use 8-
fold cross-validation for choosing hyperparameters. During
the training phase, we also used data shuffling to prevent
overfitting.

TABLE I: Test results on KITTI sequences: t,; is averaged
translation RMSE between prediction and ground truth, and r,; is
averaged orientation RMSE between prediction and ground truth.
The measurement units are m).

Sequence 04 Sequence 10

Model t_rel r_rel t_rel r_rel
Two-stream [16] 0.0554 | 0.0830 | 0.0870 | 0.1592
ResNet18 [10] 0.1094 | 0.0602 | 0.1443 | 0.1327
DeepVO [20] 0.2157 | 0.0709 | 0.2153 | 0.3311
PointNet [17] 0.0946 | 0.0442 | 0.1381 | 0.1360
PointGrid [12] 0.0550 | 0.0690 | 0.0842 | 0.1523
DeepPCO (Ours) | 0.0263 | 0.0305 | 0.0247 | 0.0659

- Two-strear —-- Two-stream
-~ DeeppCo --- Deeppco

1 | 300
—200 -15%0 100 -5 0 0 100 150 200 00 200 %0 40 00 600 700

(a) Sequence 04 (b) Sequence 10

Fig. 5: Trajectories of test results on Sequence 04 and 10.

C. Test Results

The test results are presented in Table I. Our experiment
indicates that the proposed architecture outperforms all the
baselines for both test sequences. A deeper convolutional
neural network architecture, like ResNetl8, is not neces-
sary for achieving excellent odometry results. Among 3-D
encoding approaches, PointGrid is more suitable for per-
forming 6-DOF tasks than PointNet. In particular, our fully
connected layers share very similar structure with the Two-
stream approach. We trained them using the same settings
on the same KITTI datasets, and the main difference is the
convolutional parts, which we utilize more filters for feature
extraction. Hence, it indicates that good feature extraction
plays a significant role for odometry.

D. Trajectory Evaluation

Qualitative results are shown in Fig. 5 where we plot pre-
dicted trajectories of DeepPCO compared with TwoStream,
as the most comparable baseline.

The proposed DeepPCO system can produce accurate
pose estimation with respect to ground truth. Compared
to the baseline approach, DeepPCO shows significant im-
provement. As seen in Fig. 5, during the first 200 metres
of Sequence 04, DeepPCO has very low drift. However,
after 200 meters, the drift gradually increases. In order to
investigate the reason, we plotted the projected depth images
as shown in Fig. 6. The plot suggests that large open areas
can degrade the accuracy of pose prediction to some degree.
Combining with inertial measurements could overcome some
of these issues.

Time Line [BSeg

Fig. 6: Sample projected depth images from sequence 04
in the latter timeline. Images are plotted using depth values
from the range [0, 255]. The surroundings are empty and
lack features.

E. Comparison to Conventional Approaches

In our experiments, we also compared our work to the
conventional approach. We run open-sourced LOAM using
point clouds. For a fair comparison, we did not use any
IMU data, and we employed the official evaluation tool
released for KITTI to examine these two approaches. We take
sequence 04 as an example. The percentage of translation
error and deg/m of rotation error of LOAM are 2.3245%
and 0.0108, while the results of DeepPCO are 3.1012%
and 0.0177 respectively. We notice that the conventional
approach outperforms the proposed technique, but DeepPCO
still achieves good performance. One reason may be that the
training datasets are limited, especially for rotation-related
data in the KITTI datasets. The other reason may be that
we did not utilize any geometric awareness in our network,
which could be further explored in the future.

F. Ablation Study

In order to explore the impact of various components of
our DeepPCO, we conduct the following ablation experi-
ments. First, we split each sub-network to individually infer
6-DOF poses and examine whether our parallel architecture
can outperform the individual ones. Second, for each sub-
network, we keep the convolutional layers the same but use
combined fully connected layers instead of two branches
of fully connected layers in DeepPCO. Our purpose is to
check whether the design of two branches for predicting
translation and orientation separately is better than a single
branch to jointly train and predict transformation. We note
that all variants of our ablation architectures are trained from
scratch.

a) Individual Sub-Network: Since we trained our sub-
networks using full 6-DOF ground truth, we want to
investigate whether any single sub-network was good
enough to predict pose. Hence, we segmented our par-
allel architecture to two individual networks but kept all
the parameters and hyperparameter settings unchanged.
In order to ensure the fairness of our experiments,
we randomly run 5 times for each sub-network to
evaluate translation and orientation on sequence 04 and
10 respectively. Meanwhile, we calculated the average
of RMSE for the 5 experiments. All the results are
shown in Table II. Results suggest that all translation

Convolution Ultimate Output

Fully Connected

Ground Truth

Convolutional Layers

of Translation

Sub-Network or —_—
FlowNet Orientation
Sub-Network

Training

512

128

64

16
Ground Truth

*y.2) (i k)

6-DOF Pose

Fig. 7: Ablation experiment of single branch fully connected
layers. All the parameter configurations of convolutional
layers and fully connected layers are the same as DeepPCO.
Different from DeepPCO in which transformation vector is
trained using two branches, 3-D translation (x, y, z) and
orientation (i, j, k) are jointly trained and inferred by just
one branch here.

predictions on Sequence 04 and 10 using Transla-
tion Sub-Network are better than FlowNet Orientation
Sub-Network, while all orientation predictions based
on FlowNet Orientation Sub-Network are better than
those generating from Translation Sub-Network. In
other words, this ablation experiment demonstrated that
Translation Sub-Network performs better for inferring
translation whereas achieving worse orientation predic-
tion than FlowNet Orientation Sub-Network. Exactly
the opposite, FlowNet Orientation Sub-Network out-
performs Translation Sub-Network for orientation infer-
ence. Therefore, it is a desirable choice for designing
dual sub-networks to predict translation and orientation
separately.

b) Single Branch Fully Connected Layers In our pro-
posed architecture, we utilized two branches for predict-
ing translation and orientation. However, we consider
whether only using a single branch of fully connected
layers if each sub-network can produce a better result.
Thus, we design the ablation study for this situation
as shown in Fig. 7. All the parameter configurations
of layers remain the same. The only difference is that
we use one branch to jointly learn transformation.
The results are presented in Table III. While single
branch FC layers are capable of attaining reasonable
estimations, they are less accurate than our parallel
architecture. Results indicate that adopting the design of
two branches of FC layers in DeepPCO tends to have
better transformation inference for the PCO task.

VI. CONCLUSION

In this paper, we have presented an end-to-end deep
parallel neural network named DeepPCO for the point cloud
odometry task. Two consecutive point clouds are processed
into panoramic depth images, which are stacked and sent
simultaneously to dual sub-networks for transformation es-
timation. Our approach shows good performance for the

TABLE II: Test results of individual sub-network on KITTI sequences: #,,; is averaged translation RMSE between prediction and ground
truth, and r,,; is averaged orientation RMSE between prediction and ground truth. The measurement unit is meter (m). Each sub-network
was trained using 6-DOF poses, and we conducted 5 times independently for each one.

Translation FlowNet Orientation
Sub-Network Only Sub-Network Only
Sequence 04 Sequence 10 Sequence 04 Sequence 10
Times t_rel r_rel t_rel rrel t_rel r_rel t_rel r_rel
1 0.0288 | 0.0421 | 0.0243 | 0.0735 | 0.0474 | 0.0315 | 0.0352 | 0.0648
2 0.0282 | 0.0392 | 0.0235 | 0.0731 | 0.0471 | 0.0312 | 0.0373 | 0.0675
3 0.0262 | 0.0429 | 0.0248 | 0.0737 | 0.0469 | 0.0297 | 0.0377 | 0.0682
4 0.0307 | 0.0417 | 0.0234 | 0.0755 | 0.0469 | 0.0302 | 0.0342 | 0.0676
5 0.0281 | 0.0426 | 0.0247 | 0.0740 | 0.0580 | 0.0309 | 0.0447 | 0.0669
Mean | 0.0284 | 0.0417 | 0.0241 | 0.0740 | 0.0493 | 0.0307 | 0.0378 | 0.0670

TABLE III: Test results of various branches of fully connected
(FC) layers on KITTI sequences: t,,; is averaged translation RMSE
between prediction and ground truth, and r,,; is averaged orientation
RMSE between prediction and ground truth. The measurement unit
is meter (m). For single branch FC layers, each sub-network was
trained using full 6-DOF pose while for DeepVO, each sub-network
was learned by two branches, one for translation and the other for
orientation.

Sequence 04 Sequence 10

Model trel r_rel t_rel r_rel
Single Branch FC | 0.0559 | 0.0843 | 0.0327 | 0.0729
Two Branches FC | 0.0284 | 0.0307 | 0.0241 | 0.0670

odometry task in the 3-D real-world environment. Several
interesting extensions could be considered from our work,
such as integrating our system to a full learning-based SLAM
system, evaluating our approach on more challenging envi-
ronments like severe weather, or developing learning-based
sensor fusion methods for odometry tasks. In the future,
we plan to add geometric optimization to our architecture,
which may further improve our performance. We hope our
design choices and experiments on 2-D and 3-D encod-
ing approaches and corresponded architectures can inspire
further research for point cloud-related tasks and system
developments. We believe that this work is an important step
towards developing robust point cloud-based odometry.

ACKNOWLEDGMENT

This work is funded by the NIST grant “Pervasive, Accu-
rate, and Reliable Location-Based Services for Emergency
Responders”. The authors would like to thank Linhai Xie,
Stefano Rosa, Sen Wang and Ronnie Clark for the fruitful
discussion and suggestions.

REFERENCES

[1] P.J. Besl and D. N. McKay. A Method for Registration of 3-D Shapes.
TPAMI, 1992.

[2] C. Cadena, L. Carlone, C. Henry, L. Yasir, S. Davide, N. Jose, R. Ian,
and J. L. John. Past, Present, and Future of Simultaneous Localization
and Mapping: Toward the Robust-Perception Age. IEEE Transactions
on Robotics, 2016.

[3] C. Chen, S. Rosa, Y. Miao, C. X. Lu, W. Wu, A. Markham, and
N. Trigoni. Selective Sensor Fusion for Neural Visual-Inertial Odom-
etry. CVPR, 2019.

[4] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni. VINet:
Visual-Inertial Odometry as a Sequence-to-Sequence Learning Prob-
lem. AAAI 2017.

[5] G. Costante and T. A. Ciarfuglia. LS-VO: Learning Dense Optical
Subspace for Robust Visual Odometry Estimation. /CRA, 2018.

[6]

[7]
[8]

[9]
[10]
(1]
[12]
[13]
[14]
[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

P. Fischer, E. Ilg, H. Philip, C. Hazrbas, P. V. D. Smagt, D. Cremers,
and T. Brox. FlowNet: Learning Optical Flow with Convolutional
Networks. ICCV, 2015.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. CVPR, 2012.

R. Gomez-Ojeda, Z. Zhang, J. Gonzalez-Jimenez, and D. Scaramuzza.
Learning-based Image Enhancement for Visual Odometry in Challeng-
ing HDR Environments. /CRA, 2018.

M. Grimes and R. Cipolla. PoseNet: A Convolutional Network for
Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for
Image Recognition. CVPR, 2016.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
ICLR, 2015.

T. Le and Y. Duan. PointGrid: A Deep Network for 3D Shape
Understanding. CVPR, 2018.

B. Li, T. Zhang, and T. Xia. Vehicle Detection from 3D Lidar Using
Fully Convolutional Network. RSS 2016.

R. Li, S. Wang, Z. Long, and D. Gu. UnDeepVO: Monocular Visual
Odometry through Unsupervised Deep Learning. ICRA, 2018.

P. Muller and A. Savakis. Flowdometry: An Optical Flow and Deep
Learning Based Approach to Visual Odometry. WACV, 2017.

A. Nicolai, R. Skeele, C. Eriksen, and G. A. Hollinger. Deep Learning
for Laser Based Odometry Estimation. RSS Workshop on Limits and
Potentials of Deep Learning in Robotics, 2016.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation. CVPR, 2017.

M. R. U. Saputra, A. Markham, and N. Trigoni. Visual SLAM and
Structure from Motion in Dynamic Environments: A Survey. ACM
Computing Surveys (CSUR), 2018.

A. V. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. RSS, 2009.
S. Wang, R. Clark, H. Wen, and N. Trigoni. DeepVO: Towards End-
to-End Visual Odometry with Deep Recurrent Convolutional Neural
Networks. ICRA, 2017.

B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham, and
N. Trigoni. Learning Object Bounding Boxes for 3D Instance
Segmentation on Point Clouds. arXiv, 1906.01140, 2019.

N. Yang, R. Wang, J. Stiickler, and D. Cremers. Deep Virtual Stereo
Odometry: Leveraging Deep Depth Prediction for Monocular Direct
Sparse Odometry. ECCV, 2018.

J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in
Real-time. RSS, 2014.

J. Zhang and S. Singh. Visual-lidar Odometry and Mapping: Low-rift,
Robust, and Fast Localization. ICRA, pages 393-398, 2015.

	I Introduction
	II Related Work
	II-A Deep Learning for Visual Odometry
	II-B Geometry and Deep Learning for Lidar Odometry

	III Approaches for Point Cloud Encoding
	III-A 2-D Encoding of Point Clouds
	III-B 3-D Encoding of Point Clouds

	IV DeepPCO Architecture
	IV-A End-to-End Network Architecture
	IV-B Output and Cost Function

	V Experimental Evaluation
	V-A Dataset
	V-B Implementation and Settings
	V-C Test Results
	V-D Trajectory Evaluation
	V-E Comparison to Conventional Approaches
	V-F Ablation Study

	VI Conclusion
	References

