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Advanced Topics in Machine Learning: Research-oriented & less conventional course 

• Relational Learning: 9 lectures by İsmail İlkan Ceylan 

• Bayesian Machine Learning: 9 lectures by Jiarui Gan and Yarin Gal

Location and Time: Lecture Theatre A 

• Week 1- 8: Monday’s 14:00 - 16:00 

• Week 1 & 2: Wednesday’s 14:00 - 15:00 

Course webpage: https://www.cs.ox.ac.uk/teaching/courses/2021-2022/advml/ 

Administrative inquiries: academic.administrator@cs.ox.ac.uk 

Content inquiries: @ the respective lecturer

https://www.cs.ox.ac.uk/teaching/courses/2021-2022/advml/
mailto:academic.administrator@cs.ox.ac.uk
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Advanced Topics in Machine Learning: Research-oriented & less conventional course 

• Relational Learning: 9 lectures by İsmail İlkan Ceylan 

• Bayesian Machine Learning: 9 lectures by Jiarui Gan and Yarin Gal

Assessment: Through a paper reproducibility challenge, as detailed in the assessment form:  

• Students form groups of 3 - 4 

• Each group bids on at least two assessment papers 

• Each group delivers a report and a poster 

• Marking: group report (25%), group poster (25%), individual viva (50%) 

• Viva’s at the beginning of Trinity and approximately 15 min’s for each student



Course Organization

4

Advanced Topics in Machine Learning: Research-oriented & less conventional course 

• Relational Learning: 9 lectures by İsmail İlkan Ceylan 

• Bayesian Machine Learning: 9 lectures by Jiarui Gan and Yarin Gal

Practicals:  

Practical 1: Building a graph neural network  

Practical 2: Developing a Bayesian model 

Practical 3 & 4: Discussing the assessment papers and group-formation 

Practical 5 & 6: Kick-off projects  

Demonstrators: Ralph Abboud (RL), Vit Ruzicka (RL), Ben Moseley (BML), Matthew Wicker (BML)
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Relational learning: Very broad area covering machine learning over relational data!

Relational data and node embedding models (2 lectures) 

• Relational data, graphs, shallow node embeddings

Graph neural networks (7 lectures) 

• Fundamentals (graph neural networks, relational inductive bias, node-level tasks, graph-
level tasks, edge-level tasks, message passing neural network architectures)   

• Foundations (expressive power of message passing neural networks, higher-order models, 
unique features, random features) 

• Applications (drug discovery, recommender systems, combinatorial optimization, …)

Reference book: William L. Hamilton. (2020). Graph Representation Learning. Synthesis Lectures 
on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers.



Overview of the Lecture

• Relational data 

• Graph representation learning 

• Machine learning with knowledge graphs 

• Knowledge graph embedding models 

• Model expressiveness 

• Model inductive capacity and inference patterns 

• Empirical evaluation: Datasets and metrics 

• Summary
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Protein networks: Figure illustrates schizophrenia interactome from (Ganapathiraju et al, 2016).
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Excerpt from Schizophrenia interactome (Ganapathiraju et al, 2016): Genes are shown as nodes and PPIs as edges 
connecting the nodes. Schizophrenia-associated genes are shown as dark blue nodes, novel interactors as red color nodes and 
known interactors as blue color nodes. Red edges are the novel interactions, whereas blue edges are known interactions.
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Excerpt from gene–drug interactome (Ganapathiraju et al, 2016): The network shows the drugs that target genes from 
the schizophrenia interactome. Drugs are shown as round nodes colored in green and genes as square nodes colored in 
dark blue (schizophrenia genes), light blue (known interactors), and red (novel interactors).
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Molecule Networks (Rao et al, 2013): Figure shows the molecule structure of 
NSAID drugs. “Me" is an abbreviation for "methyl" (CH3).
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Social networks: Entities (e.g., individuals, groups, organizations) interacting with other 
entities on social platforms.



Relational Data

13

Citation networks: Each paper cites other papers, forming a 
citation graph across papers.
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Scene graphs (Johnson et al., 2015): A scene as a graph.
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Traffic networks: An excerpt of the London Tube of Zone 1, showing different lines.
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Program dependency graphs (Allamanis, 2021): Figure shows a Python 
program and its dependencies represented as a graph.



Relational Data
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Knowledge graphs: Graph-structured data models, storing relations (e.g., isFriendOf) between 
entities (e.g., Alice, Bob) and thereby capture structured knowledge. 
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Graph representation learning is an important branch of geometric deep learning which is an umbrella term 
for deep learning over (non)-Euclidian spaces (Bronstein et al.).
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Goal: Embedding nodes, edges, graphs, along with their features, and use these embeddings for predicting 
node-level, edge-level, or graph-level properties.  

Intuition: Nodes/edges/graphs with “similar properties” should have representations closer to each other 
than nodes/edges/graphs with “dissimilar properties”.
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Training: Let  be a similarity measure between the nodes  and suppose: 

                                                   

Optimization: , i.e., minimize the reconstruction loss.

S[u, v] u, v

𝙴𝚗𝚌 : V → ℝd 𝙳𝚎𝚌 : ℝd × ℝd → ℝ+

∀u, v ∈ V : 𝙳𝚎𝚌(𝙴𝚗𝚌(u), 𝙴𝚗𝚌(v)) = 𝙳𝚎𝚌(zu, zv) ∼ S[u, v]
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An Encoder-Decoder Perspective
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Graph representation learning tasks: Various node/edge/graph level tasks are of interest.  

Node-level: Node classification/clustering/regression 

Edge-level: Link prediction, knowledge graph completion 

Graph-level: Graph classification/clustering/regression/generation
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What Kind of Graphs?

23

Lecture 1 - 2: Learning with knowledge graphs (no features) using shallow embedding models. 

Lecture 3 - 9: Learning with (mostly) undirected graphs + features using graph neural networks.
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• We consider a relational vocabulary that consists of a finite set 
 of entities, and a finite set  of relations. 

• A fact is of the form , where and .  

• We refer to  as the head and  as the tail entity in a fact . 
Such facts are sometimes denoted as triples of the form , 
i.e., as “subject, predicate, object” triples. 

• A knowledge graph (KG)  is a set of facts over  and ; 
equivalently, a directed, labelled multigraph .  

•  is the set of all possible facts over  and .

E R

r(h, t) r ∈ R, h, t ∈ E

h t r(h, t)
(h, r, t)

G E R
G = (E, R)

U E R
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Why Knowledge Graphs?

26

• KGs provide means for storing, processing, and managing structured data, and are part of 
modern information technologies. 

• KGs can be used for reasoning (in conjunction with ontologies), and for query answering, i.e., 
“Who has co-authored a paper with Marie Curie and Pierre Curie?”

• KGs pose (or, relate to) various challenges in AI & machine learning:  

• How to automatically construct KGs (e.g., relation extraction, open information extraction)?  

• How to populate an existing KG with new facts (e.g., KG completion)?  

• How to improve/personalize information systems using KGs (e.g., recommender systems)? 

• How to learn on top of KGs, while complying with the existing knowledge?  

• Can KGs be mediators for developing more reliable and interpretable models for ML? 
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Problem: KGs are typically highly incomplete, which makes 
their downstream use more challenging. For example, 71% of 
individuals in Freebase lack a connection to a place of birth. 

Question: Can we automatically find new facts for our KG, 
solely based on the existing information in the KG? 

Task: Given a KG , the task of knowledge graph 
completion is to predict facts that are missing from . 

G
G



Inspiration from Word Vector Representations
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“The word representations computed 
using NNs are very interesting because 
the learned vectors explicitly encode 
many linguistic regularities and patterns.  

Somewhat surprisingly, many of these 
patterns can be represented as linear 
translations… 

vec(“Madrid”) - vec(“Spain”) + vec(“France”) is 
closer to vec(“Paris”) than to any other 
word vector.”  

(Mikolov et. al, 2013) Figure 2 (Mikolov et. al, 2013): 2-dimensional PCA projection of the 1000-dimensional Skip-
gram vectors of countries and their capital cities. The figure illustrates ability of the model to 
automatically organize concepts and learn implicitly the relationships between them, as 
during the training no supervised information about what a capital city means is given.
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Task: Predict new facts for our KG, solely based on the 
existing information in the KG? 

Intuition: Real-world data lies in low dimensional manifolds, 
so if existing facts exhibit patterns then one can embed them 
into low-dimensional spaces and use to predict new facts. 

Encoder: Represent entities and relations as embeddings, 
while capturing latent properties of the KG: similar entities 
and relationships represented with similar embeddings.   

Decoder: Score the facts using the learned similarities and 
rank the predictions.
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Most of the existing approaches can be described in term of the following criteria: 

(i) Model representation (Encoder): How are the entities and relations represented?  

(ii) Scoring function (Decoder): How is the likelihood of a fact to be true defined? 

…and an appropriate loss function to minimize the objective function.
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Most of the existing approaches can be described in term of the following criteria: 

(i) Model representation (Encoder): How are the entities and relations represented?  

(ii) Scoring function (Decoder): How is the likelihood of a fact to be true defined? 

…and an appropriate loss function to minimize the objective function.

Well-known families of models classified in terms of model representation: 

• Translational: Entities as points in the space, relations as translations operating on entity embeddings.  

• Bilinear: Entities as points in the vector space, and relations as a bilinear map between entity embeddings.  

• Neural: Entities and relations embedded using a neural network (e.g., convolutional neural network).
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Train a KG Embedding 
Model M

G

Score all facts
 M𝗌𝖼𝗈𝗋𝖾 :: U ↦ ℝ

True facts

Problem: KGs typically store only positive information, and so encode only the facts that are true. There are 
no real negative examples to train with!

Negative 
Facts?

N =
Negat

ive 
fact

s

Optimization goal: Find a representation that scores/ranks “true facts” higher than “false facts” in accordance 
to a dissimilarity measure.
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Idea: Corrupt true facts (i.e., facts from the KG) and use some of these as negative examples and a corrupted 
fact is obtained by replacing only the head (resp., only the tail) entity in a true fact in .G

For a true fact , we define the set of all corrupted facts as:  

            

A negative fact for a given true fact , is a fact randomly sampled from .   

The set of negative facts sampled for a given true fact  is . 

Various negative sampling techniques are used, e.g., uniform sampling,  adversarial sampling, etc. 

r(h, t) ∈ G

Cr(h,t) = {r(e, t) ∣ e ≠ h ∈ E, r(e, t) ∉ G} ∪ {r(h, e) ∣ e ≠ t ∈ E, r(h, e) ∉ G} .

r(h, t) Cr(h,t)

r(h, t) Nr(h,t)
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Idea: Corrupt true facts (i.e., facts from the KG) and use some of these as negative examples and a corrupted 
fact is obtained by replacing only the head (resp., only the tail) entity in a true fact in .G

Remark: Negative sampling is not ideal, as random sampling can give a potentially correct fact as a negative 
fact, and require it to be ranked lower, misleadingly. 

For a true fact , we define the set of all corrupted facts as:  

            

A negative fact for a given true fact , is a fact randomly sampled from .   

The set of negative facts sampled for a given true fact  is . 

Various negative sampling techniques are used, e.g., uniform sampling,  adversarial sampling, etc. 

r(h, t) ∈ G

Cr(h,t) = {r(e, t) ∣ e ≠ h ∈ E, r(e, t) ∉ G} ∪ {r(h, e) ∣ e ≠ t ∈ E, r(h, e) ∉ G} .

r(h, t) Cr(h,t)

r(h, t) Nr(h,t)
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A KGC model  is fully expressive if, for any given disjoint 
sets of true and false  facts over a vocabulary (i.e., the ground 
truth of a set of facts), there exists a parameter configuration 
for  such that  accurately classifies all the given facts. 

M

M M
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Fully expressive models can capture any ground truth of a set of 
facts whereas inexpressive models can underfit. 

Theoretical inexpressivity of a model may not surface empirically, 
especially if the benchmark datasets are not very complex.  

Knowing the expressive limitations of a model, however, it is easy 
to design datasets to empirically observe its limitations.
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Model inductive capacity is the generalization capacity of a model, i.e., the quality of the predictions of the 
model over incomplete datasets. 

Full expressiveness  does not necessarily correlate with inductive capacity: Fully expressive models can merely 
memorize  training data and generalize poorly.
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How can model inductive capacity be studied? 

Inference patterns are specifications of logical properties that may exist in a KG, which, if learned, enable 
further principled inferences from existing KG facts.
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Example: A relation  is symmetric if, for any choice of entities , whenever a fact   

holds, then so does .  

If a model learns a symmetry pattern for a relation , then it can infer facts in the symmetric closure of , thus 
providing a strong inductive bias.

r ∈ R e1, e2 ∈ E r(e1, e2)
r(e2, e1)

r r
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An inference pattern specifies a logical property over a KG 

Consider an extended relational vocabulary over  and  with a set  of variables.  

A first-order atom is an expression of the form , where , and . 

E R V

r(xi, xj) r ∈ R xi, xj ∈ V

We are interested in universally quantified first-order rules of the form: 

, 

with . The semantics of such rules is that of first-order logic, restricted to a finite domain. 

∀x1…xk ϕ(x1…xk) ⇒ ψ(x1…xl)

k ≥ l

A Boolean combination of first-order atoms is defined inductively using logical constructors : 

                                       

¬, ∧ , ∨

ϕ1(x1, x3) = r1(x1, x2) ∧ r2(x2, x2) ϕ2(x3, x4) = r2(x3, x4) ∨ ¬r3(x4, x3)
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Inference Patterns
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We can express the symmetry inference pattern for a relation : 

, 

which holds if and only if the relation  is symmetric, e.g., neighborOf relation should be symmetric.

r ∈ R

∀x, y r(x, y) ⇒ r(y, x)

r
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Similarly, we can express that the relations  are the inverse of each other in terms of two rules: 

 and . 

…and abbreviate as .

r1, r2 ∈ R

∀x, y r1(x, y) ⇒ r2(y, x) ∀x, y r2(x, y) ⇒ r1(y, x)

∀x, y r1(x, y) ⇔ r2(y, x)
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Inference pattern Inference rule

Symmetry   
Anti-symmetry
Inversion
Composition
Hierarchy
Intersection
Mutual exclusion

∀x, y r(x, y) ⇒ r(y, x)
∀x, y r(x, y) ⇒ ¬r(y, x)
∀x, y r1(x, y) ⇔ r2(y, x)
∀x, y, z r1(x, y) ∧ r2(y, z) ⇒ r3(x, z)
∀x, y r1(x, y) ⇒ r2(x, y)
∀x, y r1(x, y) ∧ r2(x, y) ⇒ r3(x, y)
∀x, y r1(x, y) ⇒ ¬r2(x, y)

List of inference patterns commonly used in the literature and the 
corresponding logical rules. It is assumed that .r1 ≠ r2 ≠ r3

These patterns are prominent in datasets. While these patterns and the corresponding rules are not very expressive, 
they already are a challenge for KGE models, as it is already hard for existing systems to capture these patterns.
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The most common empirical evaluation task for KGE methods is based on entity ranking.  

The KG  is partitioned into a set of training ( ), validation ( ), and test facts ( ).  

For a test fact , we define: 

                  

G Gtr Gv Gtest

r(h, t) ∈ Gtest

r(_, t) = {r(e, t) ∣ e ∈ E, r(e, t) ∉ Gtr ∪ Gv ∪ Gtest} ∪ {r(h, t)},
r(h, _) = {r(h, e) ∣ e ∈ E, r(h, e) ∉ Gtr ∪ Gv ∪ Gtest} ∪ {r(h, t)} .
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r(h, _) = {r(h, e) ∣ e ∈ E, r(h, e) ∉ Gtr ∪ Gv ∪ Gtest} ∪ {r(h, t)} .

Remark: All facts from the training, validation, or test data are filtered out from these sets (except the 
test fact itself) to ensure that facts known to be true do not affect the ranking (Bordes et al., 2013).
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The most common empirical evaluation task for KGE methods is based on entity ranking.  

The KG  is partitioned into a set of training ( ), validation ( ), and test facts ( ).  

For a test fact , we define: 

                  

G Gtr Gv Gtest

r(h, t) ∈ Gtest

r(_, t) = {r(e, t) ∣ e ∈ E, r(e, t) ∉ Gtr ∪ Gv ∪ Gtest} ∪ {r(h, t)},
r(h, _) = {r(h, e) ∣ e ∈ E, r(h, e) ∉ Gtr ∪ Gv ∪ Gtest} ∪ {r(h, t)} .

Remark: All facts from the training, validation, or test data are filtered out from these sets (except the 
test fact itself) to ensure that facts known to be true do not affect the ranking (Bordes et al., 2013).

Every fact in these sets is ranked in accordance to a scoring function of the model in descending order.   

The rank of  relative to the facts in , denoted , is the rank of  in .  

The rank of  relative to the facts in , denoted , is the rank of  in .

e r(_, t) rank(e ∣ r(_, t)) r(e, t) r(_, t)

e r(h, _) rank(e ∣ r(h, _)) r(h, e) r(h, _)
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Mean rank (MR) is the average rank of true facts against their corrupted counterparts: 

 
1

2 ∣ Gtest ∣ ∑
r(h,t)∈Gtest

(rank(h ∣ r(_, t)) + rank(t ∣ r(h, _)))
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Mean rank (MR) is the average rank of true facts against their corrupted counterparts: 

 
1

2 ∣ Gtest ∣ ∑
r(h,t)∈Gtest

(rank(h ∣ r(_, t)) + rank(t ∣ r(h, _)))

Mean reciprocal rank (MRR) is the inverse average rank of true facts against their corrupted counterparts: 

 
1

2 ∣ Gtest ∣ ∑
r(h,t)∈Gtest

( 1
rank(h ∣ r(_, t))

+
1

rank(t ∣ r(h, _)) )
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Hits@  is the proportion of true facts with rank at most : 

, 

where  is the indicator function that returns , if   is true, and , otherwise. 

k k

1
2 ∣ Gtest ∣ ∑

r(h,t)∈Gtest
(1(rank(h ∣ r(_, t)) ≤ k) + 1(rank(t ∣ r(h, _)) ≤ k))

1(c) 1 c 0

Mean rank (MR) is the average rank of true facts against their corrupted counterparts: 

 
1

2 ∣ Gtest ∣ ∑
r(h,t)∈Gtest

(rank(h ∣ r(_, t)) + rank(t ∣ r(h, _)))

Mean reciprocal rank (MRR) is the inverse average rank of true facts against their corrupted counterparts: 

 
1

2 ∣ Gtest ∣ ∑
r(h,t)∈Gtest

( 1
rank(h ∣ r(_, t))

+
1

rank(t ∣ r(h, _)) )
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FB15k (Bordes et al., 2013): A subset of Freebase (Bollacker et al., 2008), where a large part of the test 
facts  can be directly inferred via an inverse relation , which makes the inversion very prominent 
(Toutanova & Chen, 2015). Other patterns on FB15k are symmetry/antisymmetry and composition patterns. 

FB15K-237 (Toutanova & Chen, 2015): A subset of FB15k , where inverse relations are deleted. The 
prominent patterns are composition and symmetry/antisymmetry patterns. 

WN18 (Bordes et al., 2013): A subset of WordNet (Miller, 1995), featuring lexical relations between words. It 
contains many inverse relations, and the main inference patterns are symmetry/antisymmetry and inversion. 

WN18RR (Dettmers et al., 2017): A subset of WN18, where inverse relations are deleted. The prominent 
inference patterns are symmetry/antisymmetry and composition. 

YAGO3-10: A subset of the YAGO3 (Mahdisoltani et al., 2015), where all entities appear in at least 10 facts.

r(x, y) r′ (y, x)
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Dataset |E| |R| Training facts Validation facts Test facts

FB15K-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,034

YAGO3-10 123,182 37 1,079,040 5,000 5,000
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Dataset |E| |R| Training facts Validation facts Test facts

FB15K-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,034

YAGO3-10 123,182 37 1,079,040 5,000 5,000

Datasets with their respective #entities (| |), #relations (| |), and #facts.E R



Summary
• Relational data is prominent in real-world applications! 

• Machine learning on graph: encoder-decoder framework 

• Shallow KG embedding models through the lens of the KG completion task 

• The families of translational, bilinear, and neural models 

• Established evaluation criteria for different models:  

• Model expressiveness  

• Model inductive capacity and inference patterns 

• Empirical evaluation: Datasets and metrics 

• We have not introduced or discussed any specific model: Lecture 2!
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