Lecture 1: Relational Data & Node Embeddings

Relational Learning

Ismail Ilkan Ceylan Advanced Topics in Machine Learning, University of Oxford 17.01.2022

T



Course Organization



Course Organization

Advanced Topics in Machine Learning: Research-oriented & less conventional course
e Relational Learning: 9 lectures by Ismail llkan Ceylan

e Bayesian Machine Learning: 9 lectures by Jiarui Gan and Yarin Gal



Course Organization

Advanced Topics in Machine Learning: Research-oriented & less conventional course
e Relational Learning: 9 lectures by Ismail llkan Ceylan

e Bayesian Machine Learning: 9 lectures by Jiarui Gan and Yarin Gal

Location and Time: Lecture Theatre A
e Week 1- 8: Monday's 14:00 - 16:00

e Week 1 & 2: Wednesday's 14:00 - 15:00

Course webpage: https://www.cs.ox.ac.uk/teaching/courses/2021-2022 /advml/

Administrative inquiries: academic.administrator@cs.ox.ac.uk

Content inquiries: © the respective lecturer
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Course Organization

Advanced Topics in Machine Learning: Research-oriented & less conventional course
e Relational Learning: 9 lectures by Ismail llkan Ceylan

e Bayesian Machine Learning: 9 lectures by Jiarui Gan and Yarin Gal

Assessment: Through a paper reproducibility challenge, as detailed in the assessment form:

e Students form of 3-4

e Each group bids on at least two

e Each group delivers a and a

e Marking: group report (25%), group poster (25%), individual viva (50%)

e Viva's at the beginning of Trinity and approximately 15 min's for each student



Course Organization

Advanced Topics in Machine Learning: Research-oriented & less conventional course
e Relational Learning: 9 lectures by Ismail llkan Ceylan

e Bayesian Machine Learning: 9 lectures by Jiarui Gan and Yarin Gal

Practicals:

Practical 1: Building a graph neural network

Practical 2: Developing a Bayesian model

Practical 3 & 4: Discussing the assessment papers and group-formation
Practical 5 & 6: Kick-off projects

Demonstrators: Ralph Abboud (RL), Vit Ruzicka (RL), Ben Moseley (BML), Matthew Wicker (BML)
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Relational data and node embedding models (2 lectures)

e Relational data, graphs, shallow node embeddings
Graph neural networks (7 lectures)

 Fundamentals (graph neural networks, relational inductive bias, node-level tasks, graph-
level tasks, edge-level tasks, message passing neural network architectures)

e Foundations (expressive power of message passing neural networks, higher-order models,
unique features, random features)

e Applications (drug discovery, recommender systems, combinatorial optimization, ...)



Course Structure: Relational Learning

Relational learning: Very broad area covering machine learning over relational datal
Relational data and node embedding models (2 lectures)

e Relational data, graphs, shallow node embeddings
Graph neural networks (7 lectures)

 Fundamentals (graph neural networks, relational inductive bias, node-level tasks, graph-
level tasks, edge-level tasks, message passing neural network architectures)

e Foundations (expressive power of message passing neural networks, higher-order models,
unique features, random features)

e Applications (drug discovery, recommender systems, combinatorial optimization, ...)

Reference book: William L. Hamilton. (2020). Graph Representation Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers.



Overview of the Lecture

Relational data

Graph representation learning

Machine learning with knowledge graphs
Knowledge graph embedding models

e Model expressiveness

e Model inductive capacity and inference patterns
e Empirical evaluation: Datasets and metrics

Summary
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Protein networks: Figure illustrates schizophrenia interactome from (Ganapathiraju et al, 2016).

8



Relational Data
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Excerpt from Schizophrenia interactome (Ganapathiraju et al, 2016): are shown as nodes and as edges

connecting the nodes. Schizophrenia-associated genes are shown as dark blue nodes, novel interactors as red color nodes and
known interactors as blue color nodes. Red edges are the novel interactions, whereas blue edges are known interactions.
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Relational Data
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Relational Data
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Molecule Networks (Rao et al, 2013): Figure shows the of

NSAID drugs. “Me" is an abbreviation for "methyl" (CH3).
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Relational Data
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Social networks: Entities (e.g., individuals, groups, organizations) with other
entities on social platforms.
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Relational Data
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Citation networks: Each paper other papers, forming a
citation graph across papers.
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Relational Data
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Scene graphs (Johnson et al.,
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2015): A scene as a graph.



Relational Data
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Relational Data

1 def normalize_and_encode ( content , max_len
2 “nmTruncate content.-dand encode.”””
v o o
3 if len ( content ) > max_len
- i F—.
Y content = content [: min_len ] . ™,
...::..:.‘: ..... t
% y T,
5 elif len ( content ) < min_len
........ ‘;.:
6 raise  Exception ( ) ™
| 4 ""”
7 return bytes_encode ( content )

Token Node Symbol Node Child Occurrence Of | =xeessess » | May Next Use

Program dependency graphs (Allamanis, 2021): Figure shows a Python
program and its represented as a graph.
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Relational Data
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Knowledge graphs: Graph-structured data models, storing relations (e.g., isFriendOf) between
entities (e.g., Alice, Bob) and thereby capture structured knowledge.
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Graph Representation Learning
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Beyond Euclidian Spaces
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Beyond Euclidian Spaces
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for deep learning over (non)-Euclidian spaces (Bronstein et al.).

which is an umbrella term
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An Encoder-Decoder Perspective
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An Encoder-Decoder Perspective
E ............ -G = (V,E) nd G’

Lo i 0 o et
N B BN =
’“‘2\ /u5 ”é\ /ug

/

I/t4 l/l4

~~

Goal: nodes, edges, graphs, along with their features, and use these embeddings for

Intuition: Nodes/edges/graphs with “similar properties” should have representations closer to each other

than nodes/edges/graphs with “dissimilar properties”.
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An Encoder-Decoder Perspective
E ............ -G = (V,E) nd G’

U Z
/ Uy 43 ué/
Enc E .. H Dec ~
/ — — ./
Z, Z,
Ug \ /
Us
;s

Us Ug
/
u
Uy

u v v

p

Training: Let S[u, v] be a similarity measure between the nodes u, v and suppose:
Fnc:V — R Dec : RYX R - R™
Optimization: Vu,v € V: Dec(Enc(u), Enc(v)) = Dec(z,,z,) ~ S[u,v], i.e.,
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An Encoder-Decoder Perspective
E ............ -G = (V,E) nd G’

/

U U7

P N e
NN — L NN
’“‘2\ /u5 ”é\ /ug

/

I/t4 l/l4
Graph representation learning tasks: Various node/edge/graph level tasks are of interest.
. Node classification/clustering/regression

. Link prediction, knowledge graph completion

. Graph classification/clustering /regression /generation
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What Kind of Graphs?



Lecture 1 - 2: Learning with knowledge graphs (no features) using

Lecture 3 - 9: Learning with (mostly) undirected graphs + features using
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Knowledge Graphs
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Nairobi
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Knowledge Graphs

Kenya — A friCa
locatedIn

capitalOf cityln

Nairobi
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Knowledge Graphs

Kenya 3 Africa

locatedIn
capital Of CV
Nairobi locatedIn
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Knowledge Graphs

Somalia € Ethiopia

\neAigh borOf/

Kenya ——— A\ | C 3
locatedIn

capitalOf cityln

C locatedIn
Nairobi
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Knowledge Graphs

Somalia ¢——— Ethiopia

\niigh borOf/ locatedIn

Henya -_———p Africa
locatedIn

capitalOf cityln

Nairobi locatedIn
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Knowledge Graphs

We consider a relational vocabulary that consists of a finite set o
Somalia <= Ethiopia

E of . and a finite set R of .

. hborOf locatedIn
A is of the form r(h,t), where r € R,and h,t € E. Nelghbor
We refer to h as the and ¢ as the entity in a fact r(h, ). Kenya Afvics
Such facts are sometimes denoted as of the form (A, r, 1), locatedIn

l.e., as ‘subject, predicate, object’ triples. |
capitalOf cityln

A (KG) G is a set of facts over E and R;
equivalently, a directed, labelled multigraph G = (E, R). Nairobi

locatedIn

U is the set of over E and R.

25
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Why Knowledge Graphs?

e KGs provide means for storing, processing, and managing , and are part of
modern information technologies.
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e KGs provide means for storing, processing, and managing , and are part of
modern information technologies.

e KGs can be used for (in conjunction with ontologies), and for query answering, i.e.,
“Who has co-authored a paper with Marie Curie and Pierre Curie?”
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Why Knowledge Graphs?

e KGs provide means for storing, processing, and managing , and are part of
modern information technologies.

e KGs can be used for (in conjunction with ontologies), and for query answering, i.e.,
“Who has co-authored a paper with Marie Curie and Pierre Curie?”

e KGs pose (or, relate to) various challenges in Al & machine learning:

e How to automatically KGs (e.g., relation extraction, open information extraction)? ‘ .
 How to an existing KG with new facts (e.g., KG completion)? ®
e How to information systems using KGs (e.g., recommender systen‘

e How to on top of KGs, while complying with the existing knowledge? ‘

e Can KGs be mediators for developing more reliable and models for ML?

26 o ‘




Knowledge Graph Completion

Problem: KGs are typically highly ~which makes Somalia #———— Ethiopia
their downstream use more challenging. For example, 71% of \ne;ghbor()f/
individuals in Freebase lack a connection to a place of birth.
locatedIn
Question: Can we automatically find new facts for our KG, Kenya Afrcs
solely based on the existing information in the KG?
Task: Given a KG G, the task of capital Of cityln
is to predict facts that are missing from G.
locatedIn

Nairobi
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Inspiration from Word Vector Representations

“The word representations computed
using NNs are very interesting because
the learned vectors explicitly encode
many linguistic regularities and patterns.

Somewhat surprisingly, many of these
patterns can be represented as linear
translations...

IS
closer to than to any other
word vector.”

(Mikolov et. al, 2013)

Country and Capital Vectors Projected by PCA
2 | | | 1 | |

|

Chinas
Beijing
1.5 Russia¢ 7
Japan«
1k Moscow |
Turkey Ankara ~Jokyo
05 | _
Poland«
0 Germ><any< -
France Warsaw
x —>Berlin
-0.5 | ltaly< Paris .
Greece: - —>Athens
1 Spain Rome 1
i X Madrid |
-1.5 - Portugal Lisbon
_2 | | | | | | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2 (Mikolov et. al, 2013): 2-dimensional PCA projection of the 1000-dimensional Skip-
gram vectors of countries and their capital cities. The figure illustrates ability of the model to
automatically organize concepts and learn implicitly the relationships between them, as
during the training no supervised information about what a capital city means is given.
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Knowledge Graph Completion

Task: Predict new facts for our KG, solely based on the
existing information in the KG? .,
Somalia <« Ethiopia KS
Intuition: Real-world data lies in manifolds,
so if existing facts exhibit patterns then one can embed them neighborOf
into low-dimensional spaces and use to predict new facts. \ ‘/ locatedIn
o _ Kenya
Encoder: entities and relations as ,
while capturing latent properties of the KG: similar entities
and relationships represented with similar embeddings. capitalOf cityln
Decoder: the facts using the learned similarities and N ocatedln
rank the predictions. Nairobi
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KG Embedding Models

Most of the existing approaches can be described in term of the following criteria:

(i) Model representation (Encoder): How are the and represented?
(ii)) Scoring function (Decoder): How is the of a fact to be true defined?

...and an appropriate loss function to minimize the function.
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KG Embedding Models

Most of the existing approaches can be described in term of the following criteria:

(i) Model representation (Encoder): How are the and represented?
(ii)) Scoring function (Decoder): How is the of a fact to be true defined?
...and an appropriate loss function to minimize the function.

Well-known families of models classified in terms of model representation:

e Translational: Entities as points in the space, relations as operating on entity embeddings.
e Bilinear: Entities as points in the vector space, and relations as a between entity embeddings.

e Neural: Entities and relations embedded using a network (e.g., convolutional neural network).
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KG Embedding Models: Basic ldea

/'Ue @Ct
s
Train a KG Embedding [TNGSEL facts

Model M
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KG Embedding Models: Basic ldea

G Trye -
aCZ‘s
Train a KG Embedding [RRSSEIRERE
Model M
Optimization goal: Find a representation that scores/ranks higher than in accordance

to a dissimilarity measure.
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Train a KG Embedding [RRSSEIRERE
Model M

Optimization goal: Find a representation that scores/ranks higher than in accordance
to a dissimilarity measure.
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KG Embedding Models: Basic ldea

Train a KG Embedding [RRSSEIRERE
Model M

Optimization goal: Find a representation that scores/ranks higher than in accordance
to a dissimilarity measure.

Problem: KGs typically store only positive information, and so encode only the facts that are true. There are
no real to train with!
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Negative Sampling

ldea: true facts (i.e., facts from t

ne KG) anc

is obtained by replacing only the heaa

(resp., on

use some of these as negative examples and a
y the tail) entity in a true fact in G.

33



Negative Sampling

ldea: true facts (i.e., facts from the KG) anc

is obtained by replacing only the heac

For a true fact r(h,t) € G, we define the

(resp., on

use some of these as negative examples and a
y the tail) entity in a true fact in G.

dsS.

C') = (e, t)|e#heEE,re,t) € GlU {r(h,e) |e#t € E,r(h,e) & G}.

A for a given true fact r(h, 1), is a fact randomly sampled from C"%).

The sampled for a given true fact r(h, 1) is N""D.

Various negative sampling techniques are used, e.g., uniform sampling, adversarial sampling, etc.
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Negative Sampling

ldea: true facts (i.e., facts from the KG) and use some of these as negative examples and a

is obtained by replacing only the head (resp., only the tail) entity in a true fact in G.

For a true fact r(h,t) € G, we define the as:

C') = (e, t)|e#heEE,re,t) € GlU {r(h,e) |e#t € E,r(h,e) & G}.
A for a given true fact r(h, 1), is a fact randomly sampled from C"%).
The sampled for a given true fact r(h, 1) is N""D.

Various negative sampling techniques are used, e.g., uniform sampling, adversarial sampling, etc.

Remark: Negative sampling is ideal, as random sampling can give a as a
, and require it to be ranked lower, misleadingly.
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Model Expressiveness
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Somalia 4—> Ethiopia S

neighborOf
locatedIn

Kenya oy Africa

capitalOf cityln

Nairobi locatedIn
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Model Expressiveness

A KGC model M is if, for any given disjoint
sets of and facts over a vocabulary (i.e., the ground
truth of a set of facts), there exists a parameter configuration

for M such that M accurately classifies all the given facts.
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Model Expressiveness

Fully expressive models can capture ground truth of a set of
facts whereas inexpressive models can

Theoretical inexpressivity of a model may not surface empirically,

especially it the benchmark are not very complex.

Knowing the expressive limitations of a model, however, it is easy
to design datasets to empirically observe its limitations.
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Model Inductive Capacity




Model Inductive Capacity

Somalia <« Ethiopia Somalia € Ethiopia
neighborOf neighborOf
locatedIn locatedIn
Kenya ooy Africa Kenya oy Africa
cityln cityln
Nairobi Nairobi
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Model Inductive Capacity

Somalia <« Ethiopia Somalia <€ Ethiopia
neighborOf neighborOf
locatedlIn locatedIn
Kenya ooy Africa Kenya oy Africa
cityln cityln
Nairobi Nairobi
is the capacity of a model, i.e., the quality of the predictions of the

model over incomplete datasets.

Full expressiveness does necessarily correlate with inductive capacity: Fully expressive models can merely
memorize training data and generalize poorly.
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Model Inductive Capacity

Somalia <«¢—— Ethiopia Somalia <«¢—— Ethiopia
neighborOf neighborOf
locatedIn locatedlIn
Kenya — A fr1C3 Kenya — A\ f | C 3
cityln cityln
Nairobi Nairobi

How can model inductive capacity be studied?

are specifications of logical properties that may exist in a KG, which, if learned, enable
further principled inferences from existing KG facts.
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Model Inductive Capacity

Somalia <« Ethiopia Somalia <€ Ethiopia
neighborOf neighborOf
locatedIn locatedIn
Kenya ooy Africa Kenya oy Africa
cityln cityln
Nairobi Nairobi
Example: A relation r € R is if, for any choice of entities e, e, € E, whenever a fact r(e;, e,)

holds, then so does r(e,, €;).

If a model learns a symmetry pattern for a relation r, then it can infer facts in the symmetric closure of r, thus
providing a strong
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Inference Patterns

An specifies a logical property over a KG
Consider an extended relational vocabulary over £ and R with a set V of

A first-order is an expression of the form r(x;, xj), where r € R, and X X; € V.
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Inference Patterns

An specifies a logical property over a KG
Consider an extended relational vocabulary over £ and R with a set V of

A first-order is an expression of the form r(x;, xj), where r € R, and X X; € V.

A of first-order atoms is defined inductively using logical constructors =, A, V :

¢1(X19X3) — 7’1(x1,X2) A 7”2()62, xz) ¢2(x3,x4) — 72(X39X4) \ _"”3(X4a xg)
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Inference Patterns

An specifies a logical property over a KG

Consider an extended relational vocabulary over £ and R with a set V of

A first-order is an expression of the form r(x;, X;), where r € R, and x;,x; € V.

A of first-order atoms is defined inductively using logical constructors =, A, V :
¢1(X19X3) — 7’1(x1,X2) A 7”2()62, xz) ¢2(X3ax4) — Vz(x3ax4) \ _"”3(X4a xg)

We are interested in first-order rules of the form:

V... x, ¢(x1...x) = w(x;...x),

with kK > [. The of such rules is that of first-order logic, restricted to a finite domain.
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Inference Patterns

Somalia <« Ethiopia Somalia € Ethiopia
neighborOf neighborOf
locatedIn locatedIn
Kenya ooy Africa Kenya oy Africa
cityln cityln
Nairobi Nairobi
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Inference Patterns

Somalia <«—— Ethiopia Somalia <«——— Ethiopia
neighborOf neighborOf
locatedIn locatedlIn
Kenya ooy Africa Kenya oy Africa
cityln cityln
Nairobi Nairobi
We can express the inference pattern for a relation r € R:

Vx,y r(x,y) = r(y,x),

which holds if and only if the relation r is symmetric, e.g., relation should be symmetric.
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Inference Patterns

Somalia <« Ethiopia Somalia € Ethiopia
neighborOf neighborOf
locatedIn locatedIn
Kenya —}Africa Kenya —}Africa
cityln cityln
Nairobi Nairobi
Similarly, we can express that the relations r,7, € R are the of each other in terms of two rules:

Vx,y ri(x,y) = r(y,x) and Vx,y r(x,y) = r;(y, x).

...and abbreviate as Vx,y ri(x,y) < r(y, x).
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Inference Patterns

Inference pattern Inference rule

Symmetry Vx,y r(x,y) = r(y, x)
Anti-symmetry Vx,y r(x,y) = —r(y, x)

Inversion Vx,y ri(x,y) © r(y,x)
Composition Vx, v,z 11(x,¥) A 15(y,2) = 13(x, 2)
Hierarchy Vx,y rix,y) = rx,y)
Intersection VX, y ri(x,y) A ry(x,y) = r3(x, y)
Mutual exclusion Vx,y ri(x,y) = r(x,y)

List of inference patterns commonly used in the literature and the
corresponding logical rules. It is assumed that r; # r, # 3.

These patterns are in datasets. While these patterns and the corresponding rules are not very expressive,
they already are a for KGE models, as it is already hard for existing systems to capture these patterns.
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Empirical Evaluation: Ranking

The most common empirical evaluation task for KGE methods is based on entity ranking.

The KG G is partitioned into a set of (G,,.), (G,), and facts (G,,,,)-

For a test fact r(h,t) € G,,,,, we define:

es

r(_,n)= {r(e,t) |e€ E,r(e,t) € G,,UG, UG, .} U{rh,1)},
rth,_)= {r(h,e)|e€ E,r(h,e) € G,,UG,UG,,,} U{r(ht)}.
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Empirical Evaluation: Ranking

The most common empirical evaluation task for KGE methods is based on entity ranking.

The KG G is partitioned into a set of (G,,.), (G,), and facts (G,,,,)-

For a test fact r(h,t) € G,,,,, we define:

r(_,n)= {r(e,t) |e€ E,r(e,t) € G,,UG, UG, .} U{rh,1)},
rth,_)= {r(h,e)|e€ E,r(h,e) € G,,UG,UG,,,} U{r(ht)}.

Remark: All facts from the training, validation, or test data are from these sets (except the
test fact itself) to ensure that facts known to be true do not affect the ranking (Bordes et al., 2013).
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Empirical Evaluation: Ranking

The most common empirical evaluation task for KGE methods is based on entity ranking.

The KG G is partitioned into a set of (G,,.), (G,), and facts (G,,,,)-

For a test fact r(h,t) € G,,,,, we define:

r(_,n)= {r(e,t) |e€ E,r(e,t) € G,,UG, UG, .} U{rh,1)},
rth,_)= {r(h,e)|e€ E,r(h,e) € G,,UG,UG,,,} U{r(ht)}.

Remark: All facts from the training, validation, or test data are from these sets (except the
test fact itself) to ensure that facts known to be true do not affect the ranking (Bordes et al., 2013).

Every fact in these sets is ranked in accordance to a of the model in descending order.
The of e relative to the facts in r(_, 1), denoted rank(e | r(_, 1)), is the rank of r(e,t) in r(_, ).

The of e relative to the facts in r(h, ), denoted rank(e | r(h, _)), is the rank of r(h,e) in r(h, ).
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Empirical Evaluation: Metrics
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Empirical Evaluation: Metrics

is the average rank of true facts against their corrupted counterparts:

1
2| Greqt |

Z (mnk(h | r(_, 1)) + rank(t | l”(h,_))>

r(h,)EG,,,
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Empirical Evaluation: Metrics

is the average rank of true facts against their corrupted counterparts:

1
2| Greqt |

Z (mnk(h | r(_, 1)) + rank(t | l”(h,_))>

r(h,)EG,,,

is the inverse average rank of true facts against their corrupted counterparts:

1 < 1 1 >
> +
2 | Giegt | rank(h | r(_,t) rank(t| r(h,_))

r(h,H)eq,,,
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Empirical Evaluation: Metrics

is the average rank of true facts against their corrupted counterparts:

1
Y. (rank(h | r(_, 1)) + rank(t | r(h,_)))
2| Gy | HhD)eG,
is the inverse average rank of true facts against their corrupted counterparts:
1 | 1
2 | : )
2| Greg | rank(h | r(_,1)  rank(t | r(h, _))

r(h,t)eG

test

is the proportion of true facts with rank at most k:

: Y <l(mnk(h [ (D) < k) + 1(rank(t | r(h, ) < "))'
2 | Greg | r(h,)eG

test

where 1(c¢) is the indicator function that returns 1, if ¢ is true, and O, otherwise.
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Empirical Evaluation: Datasets

FB15k (Bordes et a
facts r(x,y) can be c

., 2013): A subset of (Bollacker et al., 2008), where a large part of the test

irectly inferrec

via an inverse relation r'(y, x), which makes the inversion very prominent

(Toutanova & Chen, 2015). Other patterns on FB15k are symmetry/antisymmetry and composition patterns.

FB15K-237 (Toutanova & Chen, 2015): A subset of FB15k , where inverse relations are deleted. The
prominent patterns are composition and symmetry/antisymmetry patterns.

WN18 (Bordes et al., 2013): A subset of (Miller, 1995), featuring lexical relations between words. It
contains many inverse relations, and the main inference patterns are symmetry/antisymmetry and inversion.

WN18RR (Dettmers et al., 2017): A subset of WN18, where inverse relations are deleted. The prominent
inference patterns are symmetry/antisymmetry and composition.

YAGO3-10: A subset of the YAGO3 (Mahdisoltani et al., 2015), where all entities appear in at least 10 facts.
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Empirical Evaluation:

Datasets

Dataset |E| IR| Training facts Validation facts Test facts
FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,034
YAGO3-10 123,182 37 1,079,040 5,000 5,000
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Empirical Evaluation: Datasets

Dataset |E| IR| Training facts Validation facts Test facts
FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,034
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Datasets with their respective # (|E|), # (|IR|), and #
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Summary

is prominent in real-world applications!

Machine learning on graph: encoder-decoder framework

Shallow KG embedding models through the lens of the task
The families of , , and

Established for different models:

e Model

e Model and

e Empirical evaluation:

We have introduced or discussed any specific model: Lecture 2!
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