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Lecture 2: Knowledge Graph Embedding Models



Overview

• A glimpse at embedding models 

• Translational models: TransE and RotatE 

• Bilinear models: RESCAL, DistMult, and ComplEx 

• Box embedding models 

• Overview of the embedding models 

• Temporal knowledge graph completion 

• Outlook and discussions 

• Summary
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• Decoder: Scores a fact  depending how similar  and  are, i.e.,  .r(h, t) h + r t h + r ≈ t
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TransE: Optimization, Loss, Training
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Decoder: Consider a distance measure , e.g.,  or  norm, where  represents how 
dissimilar , and  are. Hence,  defines a similarity measure. 

Loss: TransE defines the loss function: 

 , 

where  is a margin hyper-parameter,  is a set of negative samples for , and  denotes the positive 
part of . 

Favors higher values of similarity for true facts than for negative ones: implementation of the intended criterion.  

Optimization: By stochastic gradient descent, where all embeddings are initialized randomly; at each iteration, 
the parameters are updated by taking a gradient step with constant learning rate. The algorithm is stopped 
based on its performance on a validation set. 

d L1 L2 d(h + r, t) = ∥h + r − t∥
h + r t −∥h + r − t∥

ℒ = ∑
r(h,t)∈G

∑
r(h′ ,t′ )∈Nr(h,t)

[d(h + r, t) − d(h′ + r, t′ ) + γ]+

γ Nr(h,t) r(h, t) [x]+
x
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The relation  can be made symmetric only by additionally forcing  
to be reflexive, hence leading to loss of generality. 

TransE is not fully expressive: it cannot encode the set of true facts 
 and the set of false facts .  

Consider a relation such as  with entities  to see a 
problematic example. 

r r

{r(a, b), r(b, a)} {r(a, a), r(b, b)}

𝖼𝗈𝗎𝗌𝗂𝗇𝖮𝖿 𝖺𝗅𝗂𝖼𝖾, 𝖻𝗈𝖻
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Only by setting , and, this would imply relation equivalence: TransE cannot capture hierarchy either. 

The lack of ability to capture the hierarchy pattern is also a serious limitation, as it is also prevalent in 
datasets (e.g., the relation  implies the relation ).

r ≈ s

𝖼𝖺𝗉𝗂𝗍𝖺𝗅𝖮𝖿 𝖼𝗂𝗍𝗒𝖨𝗇

b
a

s

r

TransE cannot capture symmetry: a relation can be symmetric only by forcing it to be reflexive. 

What about the hierarchy pattern: ?∀x, y r(x, y) ⇒ s(x, y)
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1-to-n, n-to-1, n-to-n, relations refer to the cardinality of the relation in terms of the head and tail entities. 

TransE does not efficiently learn the representations for n-to-n relations in a KG: 

              locatedIn(Oxford, Oxfordshire)  

              locatedIn(Oxford, UK) 

We need Oxfordshire  UK to realize these, since the elements locatedIn, Oxford are shared in the scoring. 

Similarly for 1-to-n relations, i.e., Bob  Chris in: 

              motherOf(Anne, Bob)  

              motherOf(Anne, Chris) 

Other translational models are proposed to reduce the effect of this problem; see, e.g., TransH and TransR.

≈

≈
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RotatE defines each relation  as a rotation from an entity  to an entity  in the complex vector space.  

Euler’s formula: , i.e., a unitary complex number tracing the unit circle in the complex plane as 
 ranges through reals.

r h t

eiθ = cosθ + i sinθ
θ

Loss: For every fact , RotatE minimizes the following loss function: 

, 

where  is a fixed margin,  is the sigmoid function, and  is a set of  negative samples for .

r(h, t)

ℒ = − log σ(γ − d(h ⊙ r, t)) − ∑
r(h′ ,t′ )∈Nr(h,t)

1
k

log σ(d(h′ ⊙ r, t′ ) − γ)

γ σ Nr(h,t) k r(h, t)

Encoder: Entities  and relations , through -dimensional complex vectors , where each 
element   of  is of the form  (with modulus ). 

Decoder: Consider a dissimilarity measure , where  denotes element-wise product, 
corresponding to a counterclockwise rotation in every dimension  by  radians about the origin of the complex 
plane. Hence,  defines a similarity measure.

h, t ∈ E r ∈ R d h, t, r ∈ ℂd
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RotatE vs TransE
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Figure (Sun et al): Comparing 1-dimensional embeddings of the models TransE and RotatE. Rotations in each 
individual dimension enable RotatE to capture symmetry.

RotatE can emulate TransE as a special case, see Theorem 4 of (Sun et al).
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To additionally realize , we need  which 
implies, e.g.,  as the rotation  from  results in .  

RotatE sets  and  symmetric to capture the initial two 
facts, though the relations need not be symmetric.  

RotatE cannot fit the sets facts: 

 and .

s(b, c) a ≈ c
r(c, b) r c b

r s

T = {r(a, b), s(b, c), s(b, a)} F = {r(c, b)}
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All patterns captured by TransE can be captured by RotatE. 

RotatE can also capture symmetry. 

RotatE cannot capture the hierarchy pattern:
. 

To capture facts of the form the rotations 
from  to  need to be similar, i.e., , effectively enforcing 
relation equivalence.

∀x, y r(x, y) ⇒ s(x, y)
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G r ∈ R Mr ∈ ℝ∣E∣×∣E∣

Mr[i,j] = {1  if r(ei, ej) ∈ G,
0  otherwise.

Bilinear models use a bilinear product, to represent the relationships, hence the name “bilinear”. 

Bilinear models use tensor/matrix representation for relations and fall under tensor factorization methods.

Similarly, we can represent  in terms of a tensor : 

                    

G T ∈ ℝ∣E∣×∣E∣×∣R∣

Ti,j,k = {1  if rk(ei, ej) ∈ G,
0  otherwise.
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RESCAL is the first bilinear model and has inspired a line of research. 

Encoder: Entities  through vectors , and relations , as a matrix .  

Decoder: Scores a fact  as , which captures all interactions between the  components of  and  
and defines a similarity measure.  

Loss: Exact formulation can vary, depending on regularization terms etc.

h, t ∈ E h, t ∈ ℝd r ∈ R Mr ∈ ℝd × ℝd

r(h, t) h⊤Mrt h t

h⊤
0.5 1 0.2
1 0.2 0

0.3 0.5 0.8 r

t
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Expressiveness: RESCAL is fully expressive, as it is possible to fit arbitrary set of true and false facts using the 
power of full rank matrix. This requires  parameters per relation, and is impractical for large-scale KGs. 

Problem: Using a full rank matrix is prone to overfitting, and this has motivated a line of research, where 
several restrictions are imposed on the representation.

O(d2)

h⊤
0.5 1 0.2
1 0.2 0

0.3 0.5 0.8 r

t
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DistMult is a bilinear model that restricts RESCAL to a diagonal matrix. 

Encoder: DistMult does not allow an arbitrary matrix  for a relation  and restricts this to 
be the diagonal matrix .  

Decoder: DistMult scores a fact  similar to RESCAL, with the restriction to the diagonal matrix: .

Mr ∈ ℝd × ℝd r ∈ R
Dr

r(h, t) h⊤Drt

h⊤
0.5 0 0
0 0.2 0
0 0 0.8 r

t
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Expressiveness: DistMult is not fully expressive since . 

DistMult cannot differentiate between head entity and tail entity: all relations are modeled as symmetric 
regardless, i.e., even anti-symmetric relations. 

Scalability: While very inexpressive, DistMult is scalable, i.e., linear in .

h⊤Drt = t⊤Drh

d

h⊤
0.5 0 0
0 0.2 0
0 0 0.8 r

t
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ComplEx is another bilinear model which extends DistMult to the complex domain.  

Encoder: Entities  through -dimensional vectors  in complex space, and relations , as 
a diagonal matrix  in this space. 

Decoder: Scores a fact  as , where  defines the complex conjugate of , and  denotes the 
real part of a complex vector. 

h, t ∈ E d h, t ∈ ℂd r ∈ R
Dr ∈ ℂd × ℂd

r(h, t) Re(h⊤Drt) t t Re

h⊤
1 + i 0 0

0 2 + i 0
0 0 3 + 2i r

t
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Expressiveness: By the use of complex conjugates, ComplEx introduces asymmetry and thus can also model 
asymmetric relations. ComplEx is fully expressive for KGs. 

ComplEx is an interesting trade-off, as it generalizes DistMult to a fully expressive model, while still using 
diagonal matrices, which are less prone to overfitting.

h⊤
1 + i 0 0

0 2 + i 0
0 0 3 + 2i r

t
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DistMult is inherently symmetric, no support for anti-symmetry.

ComplEx can capture symmetry, anti-symmetry and inversion with the help of complex conjugates.

Neither can capture composition (or intersection): The scoring functions of ComplEx or DistMult are not 
bijective, which is a necessary condition for capturing composition (Sun et al, 2019). 

Both ComplEx and DistMult can capture the hierarchy pattern: For DistMult, set , for a scalar : 
Then   , and and hence . The argument for ComplEx is analogous. 

s = λr λ > 1
h⊤Drt < h⊤Dst ∀x, y r(x, y) ⇒ s(x, y)

This does not mean that bilinear models can capture relational hierarchies: Hierarchies captured in bilinear 
models are inherently linear, and this is an important limitation.

Models such as RESCAL and TuckER are same as ComplEx in terms of inference patterns.
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Box embedding models are translation-based approaches that make use of spatial features.

Entity classification: First used for entity classification, i.e., inferring the class of a given entity. 

A probabilistic embedding model is proposed based on Box Lattice Measures (Vilnis et al.): every class (i.e., 
unary relation) and entity in a KG are represented by a box. Entity-class membership, as well as relation 
similarity, is captured by means of box intersection in the lattice representation space.  

Oxford being a City is captured by two boxes, one for the Oxford entity and another for the city class, such 
that the Oxford box fits entirely into the City box.

Query answering: Box embeddings are also used for query answering, i.e., answering queries over incomplete 
KGs: In Query2Box (Ren et al.), every query is represented in the embedding space, and operations, such as 
projection and intersection, are defined with the help of box embeddings. 

Neither of these approaches facilitate means for using box embeddings for KG completion.
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Idea: The embedding  (resp., ) defines the base position of an entity  (resp., ), and the embedding  
(resp., ) defines its translational bump, which translates other entities from their base positions to their 
final embeddings by “bumping” them. 

h t h t bh
bt

The final embedding of a head entity  relative to a fact  is given by: . h r(h, t) hr(h,t) = h + bt

The final embedding of a tail entity  relative to a fact  is given by: .t r(h, t) tr(h,t) = t + bh
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Decoder: Consider a distance measure  which defines how close an entity embedding  is to the 
center of a box . BoxE scores a fact  as the sum of the L-  norms of such function:  
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Decoder: Consider a distance measure  which defines how close an entity embedding  is to the 
center of a box . BoxE scores a fact  as the sum of the L-  norms of such function:  

              

As in other translational models, we can negate the term to frame it as a similarity measure.

dist(e, B) e
B r(h, t) x

dist(hr(h,t), rh)
x

+ dist(tr(h,t), rt)
x

Box sizes are dynamic and their position matters: Every relation may be represented with boxes of different 
size and their relative position in relation to entities are part of scoring.  

The final entity representation is dynamic: Every entity can have a potentially different final embedding 
relative to a different fact, since the bump vector depends on the other entity occurring in the fact.
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How Expressive is BoxE?

28

A fact citizenOf(Hitchcock, UK) holds when the final embedding of the entity Hitchcock appears in the box 
citizenOf(h)  and the the final embedding of the entity UK appears in the box citizenOf(t).

Hitchcock

UK

citizenOf(h) citizenOf(t)residentOf(h)

residentOf(t)

citizenOf(Hitchcock, UK)

residentOf(Hitchcock, UK)

Expressiveness: BoxE is fully expressive. Any fact  can be made false in the model, by defining a bump 
vector for, e.g., the head entity  such that the tail entity  is pushed outside of the tail box of  in a single 
dimension. This operation can be done for all false facts without “harming” true facts, using  dimensions.

r(h, t)
h t r

E × R
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Other inference patterns, e.g., inverse, mutual exclusion, intersection can be captured by configuring boxes.

This approach does not work for the composition pattern: ! BoxE cannot 
capture composition as an inference pattern.

∀x, y, z r(x, y) ∧ s(y, z) ⇒ t(x, z)
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 and . 

Jointly capturing these imposes either  or  (Gutiérrez-Basulto et al.). 
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A simple relational hierarchy cannot be captured by any of these systems. BoxE can capture these inference 
patterns also in this general sense, and can capture, e.g., relational hierarchies.
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Even generalized inference patterns are limited:  composes to , and  are symmetric (Abboud et al., 2020). 

Question: Can a model capture different inference patterns jointly?  

Rule languages: a simple rule language is a union of inference rules: symmetry, anti-symmetry, hierarchy, etc…

r1, r2 r3 r1, r3

Example: RotatE can separately capture each of the rules:  

  , 

                   , 

                        , 

but jointly capturing these incorrectly forces !

∀x, y, z cousins(x, y) ∧ hasChild(y, z) → relatives(x, z)

∀x, y cousins(x, y) → cousins(y, x)

∀x, y relatives(x, y) → relatives(y, x)

∀x, y hasChild(x, y) → hasChild(y, x)

To better assess the inductive capacity of a model, show the rule language it can capture.
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h, t ∈ ℝd r ∈ ℝd

h, t ∈ ℂd r ∈ ℂd

h, t ∈ ℝd Mr ∈ ℝd × ℝd h⊤Mrt

h, t ∈ ℝd Dr ∈ ℝd × ℝd h⊤Drt

h, t ∈ ℂd Dr ∈ ℂd × ℂd Re(h⊤Drt)

h, t, bh, bt ∈ ℝd

Model Entity representation Relation representation Scoring function

TransE

RotatE

RESCAL

DistMult

ComplEx

BoxE rh, rt ∈ ℝdHyper-rect’s

−∥h + r − t∥

−∥h ⊙ r − t∥

−( dist(hr(h,t), rh)
x

+ dist(tr(h,t), rt)
x)
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h, t ∈ ℝd r ∈ ℝd

h, t ∈ ℂd r ∈ ℂd

h, t ∈ ℝd Mr ∈ ℝd × ℝd h⊤Mrt

h, t ∈ ℝd Dr ∈ ℝd × ℝd h⊤Drt
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Model Entity representation Relation representation Scoring function

TransE

RotatE

RESCAL

DistMult

ComplEx

BoxE

Summary of the models covered in the lecture: Entity representations  and relation representations  are 
given, along with the scoring function for an arbitrary fact . Please refer to the original works for the details.

h, t ∈ E r ∈ R
r(h, t)

rh, rt ∈ ℝdHyper-rect’s

−∥h + r − t∥

−∥h ⊙ r − t∥

−( dist(hr(h,t), rh)
x

+ dist(tr(h,t), rt)
x)
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Inference pattern TransE RotatE BoxE DistMult ComplEx

Symmetry N/N Y/Y Y/Y Y/Y Y/Y
Anti-symmetry Y/Y Y/Y Y/Y N/N Y/Y
Inversion Y/N Y/Y Y/Y N/N Y/Y
Composition Y/N Y/N N/N N/N N/N
Hierarchy N/N N/N Y/Y Y/N Y/N
Intersection Y/N Y/N Y/Y N/N N/N
Mutual exclusion Y/Y Y/Y Y/Y Y/N Y/N
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Intersection Y/N Y/N Y/Y N/N N/N
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A summary of the inference patterns / generalized inference patterns that can be captured by selected models.

Another bilinear model TuckER, coincides with ComplEX in terms of the listed inference patterns.
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We have not discussed neural models and focused on so-called shallow embedding models so far. 

General approach: Neural models either use a neural network as a scoring function (e.g., ConvE), or use 
existing embedding models for scoring, but learn the embeddings with a neural network (e.g., r-GCN). 

Expressiveness vs Interpretability: Neural models are typically expressive, but they are hard to interpret and 
evaluate, since they are mostly black-box.

Practical: Shallow embedding models are state-of-the-art on many benchmark datasets.

Conceptual: Shallow approaches are inherently transductive (i.e., limited to the entities they are trained on; 
see, e.g., (Hamilton et al., 2017)), while some neural models learn inductive representations (i.e., once 
learned, they can be applied to unseen entities).

We will revisit knowledge graph completion in the context of graph neural networks.
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Temporal knowledge: Knowledge changes over time and we can capture this with timestamps . 

Temporal facts: A temporal fact is of the form , where  and , and , indicating 
the timestamp where the fact holds.  

Temporal KGs: A temporal KG is a finite set of temporal facts, or equivalently a sequence of KGs. 

T

r(h, t ∣ τ) r ∈ R, h, t ∈ E τ ∈ T

t1 t2 t3
t4
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Temporal KG completion: Given a temporal KG , temporal KG completion is to predict (temporal) facts 
that are missing from . There are two regimes: 

Interpolation: Observations over timestamps  and predictions/completion over timestamps . 

Extrapolation: Observations over timestamps  and predictions/completions over unseen timestamps. 

Extrapolation is very hard, but already interpolation is hard: facts must be predicted in the right timestamps.

G
G

τ1…τn τ1…τn

τ1…τn

t1 t2 t3
t4
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Dataset |E| |R| |T| Training Validation Test Timespan Granularity

ICEWS14 7,128 230 365 72,826 8,963 8,941 1 year Daily

ICEWS05-15 10,488 251 4017 386,962 46,092 46,275 11 years Daily

GDELT 500 20 366 2,735,685 341,961 341,961 1 year Daily
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Sampling and evaluation: Sample corrupted facts for each timestamp and evaluate/rank accordingly.

Datasets: ICEWS14 and ICEWS5-15 (Garcia-Duran et al, 2018): subsets of the Integrated Crisis Early Warning 
System (ICEWS) dataset, which stores temporal socio-political facts starting from the year 1995. GDELT: a 
subset of Global Database of Events, Language, and Tone temporal KG (Leetaru and Schrodt 2013). 

Dataset |E| |R| |T| Training Validation Test Timespan Granularity

ICEWS14 7,128 230 365 72,826 8,963 8,941 1 year Daily

ICEWS05-15 10,488 251 4017 386,962 46,092 46,275 11 years Daily

GDELT 500 20 366 2,735,685 341,961 341,961 1 year Daily
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Encoder: TTransE (Leblay and Chekol,  2018) extends TransE by additionally encoding each timestamp  
into the space . 

Decoder: Score a temporal fact  based on how similar  and  are:  

Remark: Any translational model can be extended in this simple way and more sophisticated proposals exist.

τ ∈ T
τ ∈ ℝd

r(h, t ∣ τ) h + r + τ t −∥h + r + τ − t∥

t1 t2 t3
t4



Outlook and Discussions

41



Beyond This Lecture

42



Beyond This Lecture

42

• Models: We focused on representative models, but there are many more…



Beyond This Lecture

42

• Models: We focused on representative models, but there are many more…

• Beyond Euclidian spaces, e.g., Poincare embeddings.



Beyond This Lecture

42

• Models: We focused on representative models, but there are many more…

• Beyond Euclidian spaces, e.g., Poincare embeddings.

• Other geometrical abstractions, e.g., TorusE.



Beyond This Lecture

42

• Models: We focused on representative models, but there are many more…

• Beyond Euclidian spaces, e.g., Poincare embeddings.

• Other geometrical abstractions, e.g., TorusE.

• Practical: Many regularization/optimization techniques are omitted, see e.g., Rufinelli et al. (2020).



Beyond This Lecture

42

• Models: We focused on representative models, but there are many more…

• Beyond Euclidian spaces, e.g., Poincare embeddings.

• Other geometrical abstractions, e.g., TorusE.

• Practical: Many regularization/optimization techniques are omitted, see e.g., Rufinelli et al. (2020).

• Higher-arity knowledge bases: Real-world data is not necessarily in the form of binary atoms: facts can be of 
higher arity, e.g., hasDegreeFrom(Hawking,Cambridge,DPhil), and very few models can handle such data.



Beyond This Lecture

42

• Models: We focused on representative models, but there are many more…

• Beyond Euclidian spaces, e.g., Poincare embeddings.

• Other geometrical abstractions, e.g., TorusE.

• Practical: Many regularization/optimization techniques are omitted, see e.g., Rufinelli et al. (2020).

• Higher-arity knowledge bases: Real-world data is not necessarily in the form of binary atoms: facts can be of 
higher arity, e.g., hasDegreeFrom(Hawking,Cambridge,DPhil), and very few models can handle such data.

• Rule injection: KGs usually have an accompanying schema, or an ontology, encoding the general domain 
knowledge in the form of first-order rules. Ideally, all predictions in the KG completion task should comply with 
such knowledge. Is it possible to inject such knowledge into the embedding models and to what extent?



Beyond This Lecture

42

• Models: We focused on representative models, but there are many more…

• Beyond Euclidian spaces, e.g., Poincare embeddings.

• Other geometrical abstractions, e.g., TorusE.

• Practical: Many regularization/optimization techniques are omitted, see e.g., Rufinelli et al. (2020).

• Higher-arity knowledge bases: Real-world data is not necessarily in the form of binary atoms: facts can be of 
higher arity, e.g., hasDegreeFrom(Hawking,Cambridge,DPhil), and very few models can handle such data.

• Rule injection: KGs usually have an accompanying schema, or an ontology, encoding the general domain 
knowledge in the form of first-order rules. Ideally, all predictions in the KG completion task should comply with 
such knowledge. Is it possible to inject such knowledge into the embedding models and to what extent?

• Other tasks: Tasks beyond KG completion, e.g., entity classification, query answering with embedding models.



Summary
• KG completion with shallow embedding models:  

• Translational models, e.g., TransE, RotatE. 

• Bilinear models, e.g., RESCAL, DistMULT, ComplEx. 

• Box embeddings, e.g., BoxE. 

• Many other embedding models build on similar, or analogous ideas. 

• Temporal KG completion 

• We evaluated the respective models in terms of:  

• Model expressiveness  

• Model inductive capacity and inference patterns
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