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Lecture 3: Graph Neural Networks



Overview of the Lecture
• From shallow to deep embeddings


• Traditional approaches to graph machine learning


• Relational inductive bias


• Message passing neural networks


• Graph representation learning tasks


• Node-level property predictions


• Graph-level property prediction


• Edge-level property prediction


• Summary
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Lecture 1 - 2: Learning with knowledge graphs (no features) using shallow embedding models. 


Lecture 3 - 9: Learning with (mostly) undirected graphs + features using graph neural networks. 
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Shallow embeddings are transductive: they do not apply to novel entities and are limited to single-graph tasks.


Graph neural networks are inductive: sophisticated embedding models that can generalize to novel data points.



What Kind of Graphs?
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The landscape of graphs is rich: Directed, undirected? Weighted graphs? Labelled (multi-relational) 
graphs? Node/edge features?


We focus on simple, undirected, unweighted, and unlabelled graphs, and assume deterministic node features.
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What Kind of Graphs?
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Graphs  with a feature matrix , where  is the embedding dimensionality and  
denotes the set of vertices/nodes. 


For each node , we have a feature vector  which can be, e.g., domain-specific attributes, or node 
degrees, or simply one-hot encodings.


 is the adjacency matrix of a graph ;  the rows of ;  entries of .

G = (V, E) X ∈ ℝd×VG d VG

u xu

AG G = (V, E) AG
[i] ∈ ℝVG AG AG

[i,j] AG
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Traditional Approaches
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Learning over Graphs
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ML algorithms make assumptions about the data, e.g., the data points are independent and 
identically distributed (i.i.d.):


• independence: no need to model the dependencies,


• identical distribution: generalization guarantees possible to new/unseen data points.


These assumptions are unrealistic in the context of graphs.



Learning over Graphs
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Classify the nodes in the given graph with respect to a certain property (i.e., node classification).    


Properties depend on other nodes through edges, e.g., functions that rely on node statistics (e.g., 
#neighbors), or the overall graph structure (e.g., is the node part of a 5-cycle). 


When learning functions over nodes, we cannot treat the nodes independently.



Learning over Graphs
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Functions over graphs, or nodes, necessarily relate to graph properties, which carry valuable 
information: needs to be taken into account adequately.


Define similarity measures for nodes/graphs, and then use for the optimization task.

Node degrees?


Contains an odd-length cycle?


Minimum vertex cover size 1, 2?

BB



Learning over Graphs: Traditional Methods
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Traditional approaches to graph ML are based on:


• Extract node, edge, or graph-level statistics/features (indicating, e.g., node/edge/graph similarity),


• Using these features as input to standard machine learning classifiers. 

Node degrees?


Contains an odd-length cycle?


Minimum vertex cover size 1, 2?

BB



Learning over Graphs: Node-Level Statistics
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Simplest node-level statistics given by the node-degrees - nodes with similar degree may be similar.


Another node-level statistics is the local clustering coefficient: ratio of triangles to connected triples.

du = ∑
v∈VG

A[u, v]

Cu = 3 ×
∣ (v1,v2) ∈ E : v1, v2 ∈ N(u) ∣

d2
u



Learning over Graphs: Graph-Level Statistics
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Any node-level statistic can be used as a graph-level statistics, by aggregating the node-level statistics.

D = ∑
u,v∈VG

A[u, v]

C = 3 ×
#triangles in the network

#connected triples of vertices



Learning over Graphs: Graph Kernel Methods
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Popular graph similarity functions are studied under the name of graph kernel methods (Kriege et al., 2020):


• 1-dimensional Weisfeiler-Lehman (Weisfeiler and Leman, 1968)


• Shortest path (Borgwardt and Kriegel, 2005)


• Graphlet (Shervashidze et al., 2009)


• Weisfeiler-Lehman Subtree/Edge/Shortest Path (Shervashidze et al., 2011)

Kernel methods: Learning by comparing pairs of data points using similarity measures - kernels. 

Modern deep learning approaches do not explicitly extract such statistics, but there are strong connections 
between modern graph representation learning and graph kernel methods, such as 1-WL!
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Example: Consider multi-layer perceptrons and embedding of a graph  as:


 ,


where  is vector concatenation of the rows  of the adjacency matrix .

G

f(G) = MLP(AG
[1] ⊕ … ⊕ AG

[|VG|])

⊕ AG
[i] ∈ ℝVG AG



The Quest for a New Framework
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Example: Consider multi-layer perceptrons and embedding of a graph  as:


 ,


where  is vector concatenation of the rows  of the adjacency matrix .

G

f(G) = MLP(AG
[1] ⊕ … ⊕ AG

[|VG|])

⊕ AG
[i] ∈ ℝVG AG

Problem: This depends on the ordering of nodes that we used in the adjacency matrix!
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Invariance and Equivariance
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Invariance: A function  is permutation-invariant if for isomorphic graphs  it holds that 
, i.e., the function  does not depend on the ordering of the nodes in the graph.


Equivariance: A function  is permutation-equivariant if for every permutation  of , it holds that 
, i.e., the output of  is permuted in a consistent way when we permute the nodes in the graph.

f : 𝒢 → ℝ G, H ∈ 𝒢
f(G) = f(H) f

f : 𝒢 → ℝVG π VG
f(Gπ) = f(G)π f
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Invariance and Equivariance
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We can also speak of invariance or equivariance for other kinds of functions.


Argument: These properties entail strong relational inductive bias! The goal is to develop a deep learning 
framework enhanced with these properties.
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Invariance and Equivariance: Critical Perspective
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Question: Wouldn’t it be possible to learn properties such as invariance and equivariance from data? 


Discussion: Suppose we want to learn a rather simple permutation-invariant or equivariant function :


• It is non-trivial to ensure, e.g., invariance to orderings, or even approximate this well in practice.


• Learning  will likely require longer training time…


• Learning  will likely require more training data, as, e.g., it needs more examples (of orderings) so as to 
learn invariance to them…


• Inductive bias is proven to be crucial, e.g., the use of convolutions which are translation-invariant. 

f

f

f



Relational Inductive Bias: Pathfinding
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Relational Inductive Bias: Investigate on a simple function, i.e., on a concrete task of pathfinding. 


Background: Weston et al. (2015) proposed a collection of proxy tasks (bAbI) that are aimed at 
evaluating certain reasoning capabilities in the context of question answering. Li et al. (2016) 
transformed the “bAbI Task 19”, a kind of pathfinding, into a symbolic form, and conducted experiments. 


Pathfinding: We are given a set of connections: 


               E s A,  B n C,  E w F,  B w E, 

where “E s A” denotes A is reachable from E by going south. 


The task is simple pathfinding on graphs defined over edge types s, n, e, w. 
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Pathfinding: How well do earlier deep learning models, e.g., LSTMs, perform on this problem?
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Results: Li et al. (2016) reports the empirical results relative to LSTMs and gated graph sequence 
neural networks (GGSNNs), i.e., a graph neural network model proposed in the same paper: 
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Results: Li et al. (2016) reports the empirical results relative to LSTMs and gated graph sequence 
neural networks (GGSNNs), i.e., a graph neural network model proposed in the same paper: 

LSTM                                             28.2  1.3 with 950 training samples±

GGSNN                                           71.1  14.7 with 50 training samples


                             92.5  5.9 with 100 training samples 


                             99.0  1.1 with 250 training samples

±

±

±

Pathfinding: How well do earlier deep learning models, e.g., LSTMs, perform on this problem?

The relational inductive bias helps, both in terms of accuracy, and in the #samples needed.
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Message Passing Neural Networks

24

Message passing neural networks (MPNNs) capture popular GNNs (Gilmer et al., 2017).


Idea: Start with initial node features and update them with the information received from their respective 
neighborhoods (i.e., message passing) for  iterations, yielding final node representations.


Notation: Let the representation of a node  at iteration  be , i.e.,  is the initial representation.

k

u ∈ V t h(t)
u h(0)

u



Message Passing Neural Networks
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Initialization: A MPNN defines, for every node , an initial representation .


Message passing: The representation  for each node  is then iteratively updated as: 





where  and  are differentiable functions (i.e., neural networks), and  is a 
permutation-invariant function (e.g., mean, sum, or max).

u ∈ V h(0)
u = xu

hu u ∈ V

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)})),

aggregate(t) combine(t) aggregate(t)



Message Passing Neural Networks
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MPNN framework can yield homogeneous or non-homogenous models based on:


      


Non-homogeneous: Different functions at different layers, e.g.,  and  can differ. 


Homogeneous:  and  are the same across all layers, superscripts dropped.

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

aggregate(t) aggregate(t−1)

aggregate combine



Message Passing Neural Networks
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Node-level final representation: The final node representations are denoted as .


Graph-level final representation: Define a final graph embedding  for a graph  through a mapping 
from the set of all the node embeddings  to :


• Common choices are sum, or mean, which are then normalized with respect to, e.g., the size of the nodes. 


• There are various methods for relational pooling (Murphy et al., 2019).

zu = h(k)
u

zG = h(k)
G G

{zu1
…zun

} zG
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A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3 
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least  
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2
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The -th iteration is the -th layer of the MPNN, since each iteration can be seen as an “unrolling” of the 
network. The #layers defines the depth, and the embedding dimensionality the width of the network.
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h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

= combine(t)(h(t−1)
u , ∑
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h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

= combine(t)(h(t−1)
u , ∑

v∈N(u)

h(t−1)
v )

= σ(W(t)
self h

(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v ))



The Basic Graph Neural Network Model
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The basic graph neural network model updates the representations as: 





 :  trainable parameter matrices 


: an element-wise non-linear function (e.g., ReLU), 


: a bias term (which we will omit).

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v +b(t))

W(t)
self, W(t)

neigh ∈ ℝd(t)×d(t−1)

σ

b(t) ∈ ℝd(t)
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What if we unify combine and aggregate functions, by (implicitly) adding self-loops to the nodes?


We can define an aggregate function which also aggregates over the node itself:


       h(t)
u = aggregate(t)({h(t−1)

v ∣ v ∈ N(u)} ∪ {h(t−1)
u })
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What if we unify combine and aggregate functions, by (implicitly) adding self-loops to the nodes?


We can define an aggregate function which also aggregates over the node itself:


       h(t)
u = aggregate(t)({h(t−1)

v ∣ v ∈ N(u)} ∪ {h(t−1)
u })

This simplifies the base model:


                     


This limits the expressivity of the MPNN: the information coming from the node’s neighbor's cannot be 
differentiated from the information from the node itself.

h(t)
u = σ(W(t) ∑

v∈N(x)

h(t−1)
v + h(t−1)

u )
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A Limitation of Message Passing
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Problem: The presented message passing approach is local: no information flows across disjoint subgraphs. 


Remark: A graph embedding is global since it is composed of all nodes, but during message passing there are 
still no communication between disjoint subgraphs and the node embeddings are “blind” to other embeddings 
in disjoint subgraphs. 


Solution: Global feature computation, or global readout, on each layer of the MPNN (Battaglia et al., 2018).

B A C

D FE



Message Passing with Global Readout
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Message passing with global readout: The representation  for each node  is iteratively updated 
with the information received from its neighborhood as well as a global feature vector as: 


               




where  is a differentiable function. Similarly to ,  is permutation-invariant by 
construction, and all aggregate functions are typical candidates also for .

hu u ∈ V

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), read(t)({h(t−1)

w ∣ w ∈ G})),

read(t) aggregate(t) read(t)

read(t)
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Message passing with global readout: The representation  for each node  is iteratively updated 
with the information received from its neighborhood as well as a global feature vector as: 


               




where  is a differentiable function. Similarly to ,  is permutation-invariant by 
construction, and all aggregate functions are typical candidates also for .

hu u ∈ V

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), read(t)({h(t−1)

w ∣ w ∈ G})),

read(t) aggregate(t) read(t)

read(t)

Battaglia et al., (2018) defines a generalized message passing framework for relational reasoning over graph 
representations, and message passing with global readout can be seen as a special case of this framework.


This reformulation makes an important difference in the expressive power of MPNNs (Barcelo et al., 2020).
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Generalized message passing (Battaglia et al., 2018): A message passing protocol that takes into account 
the internal representations for edges, nodes, and the graph, respectively:











where, at each iteration, each update happens in the given equation order.

h(t)
(u,v) = combinee(h(t−1)

(u,v) , h(t−1)
u , h(t−1)

v , h(t−1)
G ),

h(t)
u = combinen(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), h(t−1)

G ),

h(t)
G = combineG(h(t−1)

G , {h(t)
u ∣ u ∈ VG}, {h(t)

(u,v) ∣ (u, v) ∈ E}),
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Generalized message passing (Battaglia et al., 2018): A message passing protocol that takes into account 
the internal representations for edges, nodes, and the graph, respectively:











where, at each iteration, each update happens in the given equation order.

h(t)
(u,v) = combinee(h(t−1)

(u,v) , h(t−1)
u , h(t−1)

v , h(t−1)
G ),

h(t)
u = combinen(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), h(t−1)

G ),

h(t)
G = combineG(h(t−1)

G , {h(t)
u ∣ u ∈ VG}, {h(t)

(u,v) ∣ (u, v) ∈ E}),

Generate embeddings  for each edge  as well as an embedding  for the entire graph: more 
easily integrate edge and graph-level features, especially in the multi-relational context.

h(u,v) (u, v) ∈ G hG
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The learned embeddings can be used for any standard machine learning task, e.g., classification, regression, 
clustering, and so they have natural counterparts both on node and graph-level tasks.



Node-Level Tasks

38



Node-Level Tasks

38

Node classification: Given a graph , where a subset of the nodes  are labeled 
with a class, predict the labels of the remaining nodes, i.e., test nodes in the graph, i.e.,  for all 

G = (V, E) {(u, yu) ∣ u ∈ Vtr ⊂ V}
yv v ∈ V∖Vtr .
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Node classification: Given a graph , where a subset of the nodes  are labeled 
with a class, predict the labels of the remaining nodes, i.e., test nodes in the graph, i.e.,  for all 

G = (V, E) {(u, yu) ∣ u ∈ Vtr ⊂ V}
yv v ∈ V∖Vtr .

Example (Kipf and Welling, 2017): Citeseer is a citation network, where nodes represent papers, and edges 
denote citation links, and a subset of the nodes are labelled with a paper category (e.g., AI, ML). The task is 
to predict the category (or, categories) of the remaining papers.
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Node classification: Given a graph , where a subset of the nodes  are labeled 
with a class, predict the labels of the remaining nodes, i.e., test nodes in the graph, i.e.,  for all 

G = (V, E) {(u, yu) ∣ u ∈ Vtr ⊂ V}
yv v ∈ V∖Vtr .

Example (Kipf and Welling, 2017): Citeseer is a citation network, where nodes represent papers, and edges 
denote citation links, and a subset of the nodes are labelled with a paper category (e.g., AI, ML). The task is 
to predict the category (or, categories) of the remaining papers.

Training: Based on an appropriate loss function, e.g., negative log-likelihood loss: 


                                            ,


where  is a one-hot vector indicating the class  of the training node , and the  
function denotes the predicted probability that the node  belongs to the class .

ℒ = ∑
u∈Vtr

− log(softmax(zu, yu))

yu yu u ∈ Vtr softmax(zu, yu)
u yu
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with a class, predict the labels of the remaining nodes, i.e., test nodes in the graph, i.e.,  for all 

G = (V, E) {(u, yu) ∣ u ∈ Vtr ⊂ V}
yv v ∈ V∖Vtr .

Example (Kipf and Welling, 2017): Citeseer is a citation network, where nodes represent papers, and edges 
denote citation links, and a subset of the nodes are labelled with a paper category (e.g., AI, ML). The task is 
to predict the category (or, categories) of the remaining papers.

Training: Based on an appropriate loss function, e.g., negative log-likelihood loss: 


                                            ,


where  is a one-hot vector indicating the class  of the training node , and the  
function denotes the predicted probability that the node  belongs to the class .

ℒ = ∑
u∈Vtr

− log(softmax(zu, yu))

yu yu u ∈ Vtr softmax(zu, yu)
u yu

Node regression, or clustering (i.e., community detection) are other node-level tasks.
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Test nodes: The given loss function uses only nodes from the training set  , but test nodes  
may still be observed during training, i.e., they can take part in the message passing.


This yields two regimes (Hamilton, 2020): 


• Transductive: All nodes, including test nodes, are observed during training, i.e., their representations are 
computed during message passing and they also affect the representation of other nodes.


• Inductive: Not all test nodes are observed during training. For some test nodes, neither the nodes 
themselves nor their edges (and hence their relation to other nodes) are known.

Vtr Vtest = V∖Vtr
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Test nodes: The given loss function uses only nodes from the training set  , but test nodes  
may still be observed during training, i.e., they can take part in the message passing.


This yields two regimes (Hamilton, 2020): 


• Transductive: All nodes, including test nodes, are observed during training, i.e., their representations are 
computed during message passing and they also affect the representation of other nodes.


• Inductive: Not all test nodes are observed during training. For some test nodes, neither the nodes 
themselves nor their edges (and hence their relation to other nodes) are known.

Vtr Vtest = V∖Vtr

Transductive classification example: Access to the full citation graph at training time and define a subset of 
the nodes as the test nodes. 


Inductive classification example: Access to only a subgraph of the citation graph at training time in and 
define a set of nodes from a disjoint subgraph as test nodes.
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Transductive node classification can be viewed as a semi-supervised learning task:


• We train using training labels: standard in supervised learning


• We additionally have access to the structural information of unlabelled test nodes 


We trained using both labelled and unlabelled data.
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Transductive node classification can be viewed as a semi-supervised learning task:


• We train using training labels: standard in supervised learning


• We additionally have access to the structural information of unlabelled test nodes 


We trained using both labelled and unlabelled data.

While semi-supervised is more appropriate for transductive node classification, the standard semi-supervised 
setting also requires i.i.d. assumption, which doesn’t hold for node classification.


Inductive node classification can be seen as supervised learning.


Machine learning on graphs tends to differ from standard practices and terminology in machine learning. 
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Link prediction and knowledge graph completion are the most fundamental edge-level tasks.


Remark: KG completion refers to relation prediction, whereas link prediction applies to single-relational graphs, 
though these terms are sometimes used interchangeable when the context is clear.


Example (Link Prediction): OGBL-DDI (Hu et al., 2020) is a drug-drug interaction network: node’s represent 
drugs and edges interactions between drugs. The task is to predict drug-drug interactions given information on 
already known drug-drug interactions, i.e., to rank true drug interactions higher than non-interacting drug pairs. 


Example (KG completion): OGBL-BIOKG and OGBL-WIKIKG2 (Hu et al., 2020) are KGs proposed as part 
of OGB. The evaluation protocol is similar to standard KG evaluation, but splits are fixed for OGBL-WIKIKG2.


Training: Pairwise node embedding loss function to decode edges, e.g., one of shallow embedding models.


KG completion requires dedicated GNN architectures with better relational inductive bias.
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Graph classification: Given a set of graphs  , where a subset of the graphs 
 are labeled with a class, predict the labels of the remaining (test) graphs.


Example (Graph classification): IMDB (Morris et al., 2020) consist of the so-called ego-networks for each 
movie, and contains information such as actor collaborations for each movie. The task is to predict the genre 
(e.g., action, horror) of the movie.


Example (Graph classification):  OGBG-MOLHIV (Hu et al., 2020) is a molecular property prediction 
dataset: each graph represents a molecule, where nodes are atoms, and edges are chemical bonds. The task is 
to predict the target molecular properties, e.g., whether a molecule inhibits HIV virus replication or not.


Training is similar to node classification, except that we use the final embedding of the graphs instead, e.g.:


                        

𝒢 = {G1, …Gn}
{(Gi, yGi

) ∣ Gi ∈ 𝒢tr ⊂ 𝒢}

ℒ = ∑
G∈𝒢tr

− log(softmax(zG, yG))
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Graph classification is a supervised learning task since each graph is an i.i.d. data point associated with a label, 
and the goal is to use a labeled set of graphs to learn a mapping from graphs to class labels.


Graph clustering and graph regression are other graph-level supervised learning tasks.


Example (Graph regression): QM9 is a molecular dataset, where each graph represents the structure of a 
molecule (Gilmer et al., 2017), and the task is to predict that molecule’s toxicity or solubility.


Training for graph regression can be done in various ways, e.g., by minimizing a squared-error loss between a  
target value  and the predicted value, e.g., , for each graph .                      


Graph generation is a different graph-level tasks which falls under “generative models”: 


Example (Graph generation): Generate novel molecules which could be candidates for novel drugs!


We will discuss graph generation in more detail later in the course.

yG ∈ ℝ MLP(zG) G



Summary

• Relational inductive bias is crucial 


• Message passing neural networks as a framework


• A basic message passing neural network model and its extensions


• Graph representation learning tasks


• We have not covered any concrete model beyond the very basic one: Lecture 4!


• Additional reading material: This lecture is partially based on Chapters 5 - 7 of (Hamilton, 2020)
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