
DESIGN AND ANALYSIS OF ALGORITHMS — HT 2022

Problem Sheet 1

Questions marked with ∗ are not intended to be discussed in tutorials, answers to these questions will
be posted on the course webpage.

Big-O and other asymptotic notations

Question 1

Let a(n) = 106n2 and b(n) = 10n. Computer A performs 106 operations per second; computer B
performs 1012 operations per second. In the worst case on an instance of size n, an implementation
of an algorithm α solves a problem P in a(n) operations on computer A, and an implementation of
an algorithm β solves P in b(n) operations on computer B.

(a) Which instances of P would you solve using the implementation of α on A, and which using
the implementation of β on B?

(b) Estimate how long it would take in the worst case to solve an instance of P of size 30 using α
on A and using β on B.

Question 2

∗ Suppose that k is a positive integer. Show that if f = O(nk) then there are constants a, b > 0 such
that f(n) ≤ ank + b for all n ≥ 0.

Question 3

Give yes/no answers to the following:

f(n) g(n) f = O(g)? f = Ω(g)? f = Θ(g)?

a. n− 100 n− 200

b. n1/2 n2/3

c. 100n+ log n n+ (log n)2

d. n log n 10n log 10n
e. log 2n log 3n
f. n0.1 (log n)10

g.
√
n (log n)3

h. n2n 3n

i. 2n 2n+1

j. (log n)logn 2(logn)
2

Question 4

Show that log(n!) = Θ(n log n).

1



Recurrences

Question 5

(a) ∗ Suppose that f0 = O(1) and that for k > 0 and n > 0

fk(n) ≤ fk(n− 1) + fk−1(n).

Show that fk = O(nk) for k ≥ 0.

(b) ∗ Suppose that g0 = Ω(1) and that for k > 0 and n > 0

gk(n) ≥ gk(n− 1) + gk−1(n).

Show that gk = Ω(nk) for k ≥ 0.

Question 6

Solve the following recurrences, given T (1) = 1, to obtain asymptotic upper bounds on T (n) :

(a) T (n) ≤ 2T (n− 1) + n

(b) T (n) ≤ T (n/2) + n log n

(c) T (n) ≤ T (n− 1) + 3n2

(d) T (n) ≤ 2T (n/2) + n2

Comparison problems: Searching, sorting, selection

Question 7

(a) Show how to find the largest and the smallest among four integers using four comparisons
between integers, that is, four comparisons each of which involves just two integers.

(b) Hence design a divide-and-conquer algorithm that finds the largest and the smallest among n
integers using at most 3n/2 − 2 comparisons between integers, where n ≥ 2 is a power of 2.
Justify your answer using induction on k ≥ 1 where n = 2k.

Question 8

A “ternary” search algorithm tests the element at position n/3 for equality with some value x and then
possibly checks the element at 2n/3 either discovering x or reducing the set size to one third of the
original. Compare this with binary search.

Question 9

Given two sorted lists (stored in arrays) of size n, find an O(log n) algorithm that computes the n-th
largest element in the union of the two lists.

2



Question 10

∗ Let X = 〈x0, x1, · · · , xn−1〉 be a cyclically sorted sequence of integers, i.e. one where

∃ 0 ≤ j < n . ∀ 0 ≤ i < n− 1 . x(j+i)modn < x(j+i+1)modn

Show that O(log n) binary comparisons are sufficient to determine whether the sequence X contains
the integer z.

Question 11

Describe a Θ(n log n)-time algorithm that, given n integers stored in an array A[1 . . n] and another
integer z, determines whether or not there exist 1 ≤ i, j ≤ n such that A[i] +A[j] = z.

Question 12

Let A[1 . . n] be an array of n distinct numbers. If i < j and A[i] > A[j] then the pair (i, j) is called
an inversion of A. Give an algorithm that determines the number of inversions in any permutation on
n elements in Θ(n log n) worst-case time. (Hint. Modify merge sort.)
What, if anything, needs to be changed if A may contain duplicates?

3


