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Historical Perspectives for Graph Neural Networks

From convolutions to graph convolutions:

Motivated by the success of . generalize Euclidean convolutions to the graph
domain (Bruna et al., 2014) - (Kipf and Welling, 2016).

From graph isomorphism testing to graph representation learning:

Learning over graphs requires to graphs: MPNNSs cannot distinguish all graphs, and so they have
limited expressive power. The connection to graph isomorphism testing offers many theoretical insights.

From belief propagation to MPNNs:

Message passing is used in the context of probabilistic graphical models (i.e., (Pearl, 82)).
Dai et al., (2016): Neural message passing algorithms are analogues of certain message passing algorithms
common in to infer distributions over latent variables.
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Node Embeddings as a Sequence

MPNNs employ an iterative algorithm to learn node embeddings:
h') = combine(t)(hg_l), aggregate(t)({hf,t_l) | v E N(u)}))

Message passing can be seen as a

e Every node has an characterized by the node features h{”) = x .
e Every node’s state is after each message passing iteration based on:
o of the node
. of the

e This process at the end of message passing, yielding
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Sequence Modeling: Refresher

. ldentify whether an email is spam or not.
e Sentences processed word by word by neural sequence models (e.g., GRU) and the state is updated based on
e the word,
° 3 which stores information about earlier words

e This process is repeated until we see each word, yields a final representation for the overall sentence.

Idea: Maintain a state in memory, and based on the new state and input, decide to retain or update your state:
R'=cX'W_+H'""VW, +b) Z'=oX'W_+H"YW, +b)
H' = tanhX'W, + (R 0 H"V)W,, + b)) H=ZoH'+(1-Z)oH

11



Gated Graph Neural Networks

Using the state abstraction for nodes in a graph, MPNNs can employ three separate computations:

1. Message computation: Based on a node's current state
2. Message aggregation: Node-level aggregation
3. State update: A recurrent unit takes the current state, the aggregation of messages, and updates.

(Li et al., 2016), update the representation h, for each node u € V as:

h() = GRU(hg—U, Y W<f>h$f—1>)
vEN(u)

Message computation via multiplication by a weight matrix, aggregate by sum, and combine with a GRU.

12
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Graph Convolutional Networks

The base GCN model is an instance of the MPNN framework and defined as:

h¢—D
hg) — G(W(t) Z —_-——_—_S—S—>?)dwcAL )

veNu)U{u} \/N(l/t) T N(V)

The base MPNN model is very similar to the base MPNN with self-loops (modulo normalization):

h( = a(w@ Y hff‘”)

veNu)U{u}

Question: Can we view this model as applying convolutions over graphs?

Idea: View each message and applying to the signals as

14



Revisiting the Basic Model

The base MPNN model is defined as a node-level equation:

(1) — (1) RpE—1) (7) (r—1)
hu—a(W WD+ WO % )

self U neig
VEN(1)

The base MPNN model can be written as a graph-level equation:

—1 —1
HO = o( HOOWY + A HOOW,, )

...where the matrix H” € R!Y6%? has the node representations at layer t.
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Revisiting the Basic Model

The base MPNN model is defined as a node-level equation:

h() = G(W(t) hi-Dewe h$f—1>)

self U neigh
vEN(u)

The base MPNN model can be written as a graph-level equation:

—1 —1
HO = o( HOOWY + A HOOW,, )

...where the matrix H” € R!Y6%? has the node representations at layer t.

MPNN layers apply a Q =1+ A combined with some weight matrices and a non-linearity.

Convolution based on properties of the graph, e.g., via the I Other matrices?

15



Graph Laplacian

3000 3 -1 -1 -1
0 2 0 O -1 2 -1 0
0 0 3 0 -1 -1 3 -1
0O 0 0 2 -1 0 -1 2

D A L=D-A

Property: of the filter with the adjacency matrix AQ = QA or Laplacian LQ = QL.

16



Symmetric Normalized Filters

Filters are typically to ensure that they have , and thus ensure
_1 _1
L,,, =D 7LD
_1 _1
A,,, =D 7AD"

sym sym
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Symmetric Normalized Filters

Filters are typically to ensure that they have , and thus ensure

L,,,=D"2LD:

A,,, =D 7AD"z

Y

L, =1-A

sym sym

These matrices share the set U of eigenvectors and are symmetrically diagonalizable:
— T _ T
L,,=UAUT A, =UlI-AU

...where A is the diagonal matrix containing the Laplacian eigenvalues.

Observation: Filters based on one of these matrices implies commutativity with the other.

17



Graph Convolutional Networks

Symmetric normalized adjacency matrix with (and variants) widely adopted as filters in practice
A _1 _1
A=(D+I) *(I+A)(D+1I) °

This is the convolutional filter underlying the basic model:

(1)
HO — 0( A H(z—nwm) h®) = (,(Wm Y n )
veNmutu) VIV + N)

Intuitively, in the base GCN model:

e A enables messaging between and with node’s representation through the identity.

e A is a well-defined convolution over graphs: commutativity with the adjacency matrix.

e Node's own embedding is treated to messages from other nodes: self-loops. Variations exist.

18



Graph Attention Networks



Learning Aggregation

Pre-defined, fixed aggregation schemes based on, e.g., graph structure:

(-—1)
O
Vv Vv
veENu)U{u} vEN(u) veNu)U{u! N(u) T N(V)

Some learnable approaches to aggregation exist but uniform nevertheless.

Question: Can we not necessarily uniformly across neighbors?
Idea: Use as a means to non-uniformly aggregate over the neighborhood.

Background: Attention models obtained strong results in, e.g., machine translation (Bahdanau et al., 2015).
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Attention: Allocate

Attention

to ~based on

their relevance to the learned task.

Transformer (Vaswani et a
for the word ‘making’ encoc

., 2017): Figure shows attention weights
ing "

Breaking uniformity: Attend to more relevant tokens, rather than

uniformly considering all possible tokens.

Graph attention: A node can benefit from weighing the relative

importance of its neighbors.
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Attention over Graphs

e

Example: Classify all nodes connected to a red node as true and every other node as false.

This task relies only to the fact that it is connected to a red node.

can produce a richer weighing of a node's neighbors, which results in
potentially more descriptive and

Idea: Learn an for each neighbor:

22



Graph Attention Networks

e

(Velickovic et al., 2018) apply weighted sum aggregation, and a
pairwise node attention mechanism during message passing (using a self-loop approach):

h() = a(w@ Y h<f—1>)
veENu)U{u}

where a,, , is the attention on a node v € N(u) U {u} when we aggregate information at node u.

23



What kind of Attention?

N

Y

[

The attention weights ¢, , between nodes u, v are normalized typically to yield final weights «,

exp(eu,v)
Zv’EN(u) CXP (e’/‘»"/)
GAT: e, , = a' [Wh @ Wh ] Bilinear: ¢, , = h'Wh,

au,v T

24



Multi-Head Attention?

e

Multi-head attention: Learn multiple, distinct, independently parametrized attention weights.

Multi-head attention over graphs: Learn k£ attention weights for the nodes u, v.

u,V,l’ OQ.,a

uv,k

Node representations: This yields k node representations h [1],...,h [k] for each node u.

h =h[1]®...®h [k

Multiple attention heads to compute attention weights between all pairs of positions in

the input. This coincides with on a fully connected graph as input.
25



Graph Isomorphism Networks



A Closer Look at Aggregation

T
/

e

Question: What is the impact of different choices of aggregation on the of GNNSs?

Task: Input graph with node types red, green and where the features are the RGB values. We consider a
red node, and want to analyze how different functions aggregate neighbor messages.

27



A Closer Look at Aggregation

DN
pd e

e Sum: Can discern between neighborhoods based on their sizes, but it can lead to false equality: In this

example, sum cannot distinguish between a 2- and a red-green neighborhood.

e Mean: Useful for bounding the range of aggregate messages, but cannot distinguish between neighbor sets
such as 2-red and 3-red, as the mean operation eliminates cardinality.

e Max: Highlights a relevant element, but limited in discriminative ability. Considering red < < green,
then green is returned for any neighborhood involving at least 1 green node.

28



Aggregation and Expressiveness

T
/

e

Observation: An aggregation function must distinguish between distinct neighborhoods, and return different
results given different neighborhood

Injective: The aggregation function must be

Expressive power: MPNNSs are at their with injective functions (Xu et al.,2019).

29



Aggregation and Expressiveness

W W
W W ® © -
e O *e o . o
v v U ¥ W
Input sum - multiset mean - distribution max - set

Figure 2: Ranking by expressive power for sum, mean and max aggregators over a multiset.
Left panel shows the input multiset, i.e., the network neighborhood to be aggregated. The next three
panels 1llustrate the aspects of the multiset a given aggregator 1s able to capture: sum captures the
full multiset, mean captures the proportion/distribution of elements of a given type, and the max
aggregator 1ignores multiplicities (reduces the multiset to a simple set). (Xu et al., 2019)
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Aggregation and Expressiveness

T @ T 9 T 1
* VS. ’\ ? VS. /*\ Y VS. ‘ .
v v 9 - - -

(a) Mean and Max both fail (b) Max fails (¢) Mean and Max both fail

Figure 3: Examples of graph structures that mean and max aggregators fail to distinguish.
Between the two graphs, nodes v and v’ get the same embedding even though their corresponding
graph structures differ. Figure 2 gives reasoning about how different aggregators “compress’ different
multisets and thus fail to distinguish them. (Xu et al., 2019)
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Graph Isomorphism Networks

NP
[

e

Idea: Let X be a bounded multi-set, ¢ and f some (expressive) non-linear functions, then the following

g=y( ) f)

xeX

...defines an injective mapping.

32



Graph Isomorphism Networks

NP
[

e

Example: Suppose we encode nodes states as (R, G, Y)!

+ f(R) = (1,0,0)7, f(G) = (0,107, A(¥) = (0,0,1)7 8 = '//( z S (X))

o g({{Y,Y}}) =(0,0,2)" and g({{R,G}}) = (1,1,0)" xeX

33



Graph Isomorphism Networks

[ILemma 5 & Corollary 6, (Xu et al., 2019)] For a countable set &, there exists a function f: & — R" such
that for any choice of €, the function

8. X) = y((1+e)-fic) + Y )

xeX

is unique for each pair (¢, X), where X C 2 is a multiset of bounded size and ¢ € X.

34



Graph Isomorphism Networks

NP
[

e

We can use MLPs to learn these functions, as MLPs are (Hornik et al., 1989):

(1) — (1—1) (1—1)
h() = MLPW((I +¢€)- MLP{(h{™"), »  MLP(h! ))
vEN(u)
...which yields another instance of MPNNs.
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Graph Isomorphism Networks

NP
[

e

(GINs) update the representation h, for each node u € V is iteratively as:

) —1 —1
h) = MLP((I +€)-h{™, » h >)
vEN(u)
..by setting MLP = "V o y/® and assuming the features are encoded as one-hot initially.
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Relational Message Passing




Relational Graphs

Somalia <«¢—— Ethiopia

neighborOf
locatedIn

Kenya —}Africa

capitalOf cityln

L locatedIn
Nairobi

Relational graphs: Relevant for a variety of tasks, e.g., entity/node classification, KG completion.

GNNSs are extended to the setting to deal with multi-relational graphs.

38



Relational Graphs

Somalia <«—— Ethiopia

neighborOf
locatedIn

Kenya —}Africa

capitalOf cityln
Nairobi locatedIn
The mode (Schlichtkrull et al., 2018) defines a relation-specific message passing:

h®) = 0( Y Y (—)WOhD 4 W h(z—l))
self U
reR veN'(u) Cur

where r € R is a relation, and ¢, , is a normalization constant.
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Relational Graphs

Somalia <«—— Ethiopia

neighborOf
locatedIn

Kenya —}Africa

capitalOf cityln

Do locatedIn
Nairobi

The rGCN model applies to both for but also
The learned embeddings are used as the entity embeddings and fed to a e.g., DistMult.
Note that rGCNs combine many aspects of this course: shallow KGC models and GNNs!

rGCN performs usually worse than shallow tools which motivated a line of work, e.g., GrAlL...
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Limitations of Message Passing
Neural Networks



Over-smoothing

e e

Over-smoothing: The representations of the nodes in the graph become after several
message passing iterations (Li et al., 2018).

Long-range dependencies: Hard to make meaningful predictions — especially for GNN models, where
the goal is to pass information across many layers so as to capture long-range dependencies.

42



e

Over-smoothing

e

Intuition: Messages aggregated from the neighbors become too prominent, rendering the effect of the

embeddings from the previous layers less and less important.

Practice: Significant performance ¢

egradation has been observed when

on GNNs (Kipf

& Welling, 2017); especially for GCNs (Li et al., 2018). Models such as GGNNs are somewhat better...
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Over-smoothing

e e

(Theorem 3, (Xu et al., 2018)) Informally, with a k-layer GCN, the influence of a node u on node v
IS node v on a k-step random walk starting from node u.

To partially alleviate over-smoothing: Concatenate each node’'s previous representation with the
output of the combine function to preserve information from previous rounds.
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Over-squashing

Bottleneck Bottleneck
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(a) The bottleneck of RNN seq2seq models (b) The bottleneck of graph neural networks

Figure 1: The bottleneck that existed in RNN seq2seq models (before attention) is strictly more
harmful in GNNs: information from a node’s exponentially-growing receptive field is compressed
into a fixed-size vector. Black arrows are graph edges; red curved arrows illustrate information flow.

Over-squashing (Alon and Yahav, 2021): The number of nodes in each grows

which is eventually compressed into fixed-length node state vectors, hence over-squashing information.

Long-range: Failure in propagating messages flowing from - learning only from short-range signals.

45



Over-squashing

Bottleneck Bottleneck
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(a) The bottleneck of RNN seq2seq models (b) The bottleneck of graph neural networks

Figure 1: The bottleneck that existed in RNN seq2seq models (before attention) is strictly more
harmful in GNNs: information from a node’s exponentially-growing receptive field is compressed
into a fixed-size vector. Black arrows are graph edges; red curved arrows illustrate information flow.

Practice: Poor performance when the task depends on long-range interactions, e.g., task on graphs

require as many iterations as the diameter of the graph, as otherwise it will suffer from

Global Information: Global feature computation can alleviate the issue to some extent. Alon and Yahav (2021)

report improvements by using an additional fully connected layer.
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Expressive Power

DA C )

Expressive power: MPNNs is limited by the 1-WL graph isomorphism test
Example: Any MPNN learns the same embeddings for the graphs shown

This is the topic of the next lecture.
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Summary

e An historical overview of graph neural networks:

e Gated graph neural networks: graphs as — gated units as the combine function.
e Graph convolutional networks: each iteration of message passing is a
e Graph attention networks: distinguish messages from neighbors via

e Graph isomorphism network: aggregation
e Each of these models fall into the MPNN framework of Gilmer et al, (2017).
* Additional reading material: This lecture is partially based on of Hamilton, (2020).
* WWe have not identified the expressive power of MPNNSs:

e There are a plethora of other GNN models, beyond MPNNSs:
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