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Relational Learning  
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Lecture 4: Message Passing Neural Network 
Architectures
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Knowledge Graph Embeddings 
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MPNNs (Lecture 3) 
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u = combine(t)(h(t−1)
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Base GNN Model (Lecture 3) 

         h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)
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Today’s Lecture 

Popular GNN models 



Overview

• Historical perspectives for graph neural network models 

• Gated graph neural networks 

• Graph convolutional networks 

• Graph attention networks 

• Graph isomorphism networks 

• Relational message passing architectures 

• Limitations of MPNNs: over-smoothing, over-squashing, inexpressiveness  

• Summary
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Historical Perspectives for Graph Neural Networks
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From convolutions to graph convolutions: 

Motivated by the success of convolutional neural networks: generalize Euclidean convolutions to the graph 
domain (Bruna et al., 2014) - Graph convolutional networks (Kipf and Welling, 2016). 

From graph isomorphism testing to graph representation learning: 

Learning over graphs requires to distinguish graphs: MPNNs cannot distinguish all graphs, and so they have 
limited expressive power. The connection to graph isomorphism testing offers many theoretical insights.  

From belief propagation to MPNNs: 

Message passing is used in the context of probabilistic graphical models (i.e., belief propagation (Pearl, 82)). 
Dai et al., (2016): Neural message passing algorithms are analogues of certain message passing algorithms 
common in variational inference to infer distributions over latent variables.
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Node Embeddings as a Sequence
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MPNNs employ an iterative algorithm to learn node embeddings: 

 

Message passing can be seen as a sequential process: 

• Every node has an initial state characterized by the node features . 

• Every node’s state is updated after each message passing iteration based on:  

• Previous state of the node  

• States of the neighboring nodes  

• This process terminates at the end of message passing, yielding final states.

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

h(0)
u = xu



Sequence Modeling: Refresher
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Spam detection: Identify whether an email is spam or not.   

• Sentences processed word by word by neural sequence models (e.g., GRU) and the state is updated based on 

• the most recent word,  

• a state which stores information about earlier words 

• This process is repeated until we see each word, yields a final representation for the overall sentence. 

Idea: Maintain a state in memory, and based on the new state and input, decide to retain or update your state: 

Rt = σ(XtWxr + H(t−1)Whr + br) Zt = σ(XtWxz + H(t−1)Whz + bz)

H̃t = tanh(XtWxh + (Rt ⊙ H(t−1)) Whh + bh) Ht = Zt ⊙ Ht−1 + (1 − Zt) ⊙ H̃t



Gated Graph Neural Networks
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Using the state abstraction for nodes in a graph, MPNNs can employ three separate computations:  

1. Message computation: Based on a node’s current state  

2. Message aggregation: Node-level aggregation  

3. State update: A recurrent unit takes the current state, the aggregation of messages, and updates. 

Gated graph neural networks (Li et al., 2016), update the representation  for each node  as: 

 

Message computation via multiplication by a weight matrix, aggregate by sum, and combine with a GRU.

hu u ∈ V

h(t)
u = GRU(h(t−1)

u , ∑
v∈N(u)

W(t)h(t−1)
v )



Graph Convolutional Networks
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Graph Convolutional Networks 
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The base GCN model is an instance of the MPNN framework and defined as:          

      

The base MPNN model is very similar to the base MPNN with self-loops (modulo normalization): 

          

Question: Can we view this model as applying convolutions over graphs? 

Idea: View each message as a signal and matrix transformations applying to the signals as convolutions.

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v

N(u) + N(v) )

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v )



Revisiting the Basic Model
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The base MPNN model is defined as a node-level equation: 

       

The base MPNN model can be written as a graph-level equation:                                   

      , 

…where the matrix  has the node representations at layer .

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )

H(t) = σ(H(t−1)W(t)
self + A H(t−1)Wneigh)

H(t) ∈ ℝ|VG|×d t



Revisiting the Basic Model
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MPNN layers apply a filter , combined with some weight matrices and a non-linearity.   

Convolution based on spectral properties of the graph, e.g., via the adjacency matrix!  Other matrices?

Q = I + A

The base MPNN model is defined as a node-level equation: 

       

The base MPNN model can be written as a graph-level equation:                                   

      , 

…where the matrix  has the node representations at layer .

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )

H(t) = σ(H(t−1)W(t)
self + A H(t−1)Wneigh)

H(t) ∈ ℝ|VG|×d t



Graph Laplacian
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A

x1 x2

x4x3

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

D L = D − A
Property: Commutativity of the filter with the adjacency matrix  or Laplacian .AQ = QA LQ = QL



Symmetric Normalized Filters
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Filters are typically normalized to ensure that they have bounded spectra, and thus ensure numerical stability. 

Symmetric normalized Laplacian                                         

Symmetric normalized adjacency matrix                             

Lsym = D− 1
2 LD− 1

2

Asym = D− 1
2 AD− 1

2

Lsym = I − Asym



Symmetric Normalized Filters
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These matrices share the set  of eigenvectors and are symmetrically diagonalizable: 

         

…where  is the diagonal matrix containing the Laplacian eigenvalues.            

Observation: Filters based on one of these matrices implies commutativity with the other.

U

Lsym = UΛU⊤ Asym = U(I − Λ)U⊤

Λ

Filters are typically normalized to ensure that they have bounded spectra, and thus ensure numerical stability. 

Symmetric normalized Laplacian                                         

Symmetric normalized adjacency matrix                             

Lsym = D− 1
2 LD− 1

2

Asym = D− 1
2 AD− 1

2

Lsym = I − Asym



Graph Convolutional Networks 
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Symmetric normalized adjacency matrix with self-loop (and variants) widely adopted as filters in practice: 

                

This is the convolutional filter underlying the basic graph convolutional network (GCN) model:                  

                

Intuitively, in the base GCN model: 

•  enables messaging between neighbors and with node’s self representation through the identity. 

•  is a well-defined convolution over graphs: commutativity with the adjacency matrix. 

• Node’s own embedding is treated identically to messages from other nodes: self-loops. Variations exist.

Â = (D + I)− 1
2 (I + A)(D + I)− 1

2

H(t) = σ(Â H(t−1)W(t)) h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v

N(u) + N(v) )

Â

Â



Graph Attention Networks
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Learning Aggregation
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Pre-defined, fixed aggregation schemes based on, e.g., graph structure:  

                        

        
Some learnable approaches to aggregation exist but uniform nevertheless. 

Question: Can we learn to aggregate not necessarily uniformly across neighbors? 

Idea: Use attention as a means to non-uniformly aggregate over the neighborhood.  

Background: Attention models obtained strong results in, e.g., machine translation (Bahdanau et al., 2015).

∑
v∈N(u)∪{u}

h(t−1)
v ∑

v∈N(u)

Wh(t−1)
v ∑

v∈N(u)∪{u}

h(t−1)
v

N(u) + N(v)



Attention
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Attention: Allocate different weights to distinct inputs, based on 
their relevance to the learned task. 

Transformer (Vaswani et al., 2017): Figure shows attention weights 
for the word ‘making’ encoding “making more difficult”. 

Breaking uniformity: Attend to more relevant tokens, rather than 
uniformly considering all possible tokens.  

Graph attention: A node can benefit from weighing the relative 
importance of its neighbors.



Attention over Graphs
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Example: Classify all nodes connected to a red node as true and every other node as false.  

This task relies only to the fact that it is connected to a red node. 

Neighborhood attention can produce a richer weighing of a node’s neighbors, which results in 
potentially more descriptive and task-specific aggregation schemes.  

Idea: Learn an attention weight for each neighbor: weighted aggregation functions.

R

Y



Graph Attention Networks
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Graph attention networks (GAT) (Velickovic et al., 2018) apply weighted sum aggregation, and a 
pairwise node attention mechanism during message passing (using a self-loop approach): 

      , 

where   is the attention on a node  when we aggregate information at node . 

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

α(u,v) h(t−1)
v )

αu,v v ∈ N(u) ∪ {u} u

R

Y



What kind of Attention?
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The attention weights   between nodes  are normalized typically to yield final weights :   

                                  

GAT:                   Bilinear:                        

eu,v u, v αu,v

αu,v =
exp(eu,v)

∑v′ ∈N(u) exp(eu,v′ 
)

eu,v = a⊤[Whu ⊕ Whv] eu,v = h⊤
u Whv

R

Y



Multi-Head Attention?

25

Multi-head attention: Learn multiple, distinct, independently parametrized attention weights. 

Multi-head attention over graphs: Learn  attention weights  for the nodes . 

Node representations: This yields  node representations  for each node . 

                         

Transformer: Multiple attention heads to compute attention weights between all pairs of positions in 
the input. This coincides with GAT with multi-head attention on a fully connected graph as input. 

k αu,v,1, …, αu,v,k u, v

k hu[1], …, hu[k] u

hu = hu[1] ⊕ … ⊕ hu[k]

R

Y



Graph Isomorphism Networks
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A Closer Look at Aggregation

27

Question: What is the impact of different choices of aggregation on the discrimination ability of GNNs? 

Task: Input graph with node types red, green and yellow, where the features are the RGB values. We consider a 
red node, and want to analyze how different functions aggregate neighbor messages.

T S



A Closer Look at Aggregation
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• Sum: Can discern between neighborhoods based on their sizes, but it can lead to false equality: In this 
example, sum cannot distinguish between a 2-yellow and a red-green neighborhood. 

• Mean: Useful for bounding the range of aggregate messages, but cannot distinguish between neighbor sets 
such as 2-red and 3-red, as the mean operation eliminates cardinality. 

• Max: Highlights a relevant element, but limited in discriminative ability. Considering red < yellow < green, 
then green is returned for any neighborhood involving at least 1 green node.

T S



Aggregation and Expressiveness
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Observation: An aggregation function must distinguish between distinct neighborhoods, and return different 
results given different neighborhood multisets. 

Injective: The aggregation function must be injective relative to the neighborhood.  

Expressive power: MPNNs are at their maximal expressiveness with injective functions (Xu et al.,2019).

T S



Aggregation and Expressiveness
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(Xu et al., 2019)



Aggregation and Expressiveness
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(Xu et al., 2019)



Graph Isomorphism Networks
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Idea: Let  be a bounded multi-set,  and  some (expressive) non-linear functions, then the following                               

                                      

…defines an injective mapping.

X ϕ f

g = ψ(∑
x∈X

f(x))

T S



Graph Isomorphism Networks
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Example: Suppose we encode nodes states as  

• , ,   

•  and 

(R, G, Y )T

f(R) = (1,0,0)T f(G) = (0,1,0)T f(Y ) = (0,0,1)T

g({{Y, Y}}) = (0,0,2)T g({{R, G}}) = (1,1,0)T

T S

g = ψ(∑
x∈X

f(x))



Graph Isomorphism Networks
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T S

[Lemma 5 & Corollary 6, (Xu et al., 2019)] For a  countable set , there exists a function  such 
that for any choice of , the function 

  

is unique for each pair , where  is a multiset of bounded size and . 

𝒳 f : 𝒳 → ℝn

ϵ

g(c, X) = ψ((1 + ϵ) ⋅ f(c) + ∑
x∈X

f(x))
(c, X) X ⊂ 𝒳 c ∈ X



Graph Isomorphism Networks
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T S

We can use MLPs to learn these functions, as MLPs are universal approximators (Hornik et al., 1989): 

  

…which yields another instance of MPNNs.

h(t)
u = MLPψ((1 + ϵ) ⋅ MLPf(h(t−1)

u ), ∑
v∈N(u)

MLPf(h(t−1)
v ))



Graph Isomorphism Networks
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T S

Graph isomorphism networks (GINs) update the representation  for each node  is iteratively as:  

  

…by setting  and assuming the features are encoded as one-hot initially.

hu u ∈ V

h(t)
u = MLP((1 + ϵ) ⋅ h(t−1)

u , ∑
v∈N(u)

h(t−1)
v )

MLP = f (t+1) ∘ ψ(t)



Relational Message Passing
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Relational Graphs
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Relational graphs: Relevant for a variety  of tasks, e.g., entity/node classification, KG completion. 

GNNs are extended to the multi-relational setting to deal with multi-relational graphs. 
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Relational Graphs
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The model rGCNs (Schlichtkrull et al., 2018) defines a relation-specific message passing: 

 

where  is a relation, and  is a normalization constant.

h(t)
u = σ(∑

r∈R
∑

v∈Nr(u)
( 1

cu,r
)W(t)

r h(t−1)
v + W(t)

self h
(t−1)
u )

r ∈ R cu,r
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Relational Graphs
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The rGCN model applies to both for node/graph classification but also KG completion.  

The learned embeddings are used as the entity embeddings and fed to a decoder, e.g., DistMult. 

Note that rGCNs combine many aspects of this course: shallow KGC models and GNNs! 

rGCN performs usually worse than shallow tools which motivated a line of work, e.g., GrAIL…
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Over-smoothing
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Over-smoothing: The representations of the nodes in the graph become indistinguishable after several 
message passing iterations (Li et al., 2018).  

Long-range dependencies: Hard to make meaningful predictions — especially for deep GNN models, where 
the goal is to pass information across many layers so as to capture long-range dependencies.



Over-smoothing
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Intuition: Messages aggregated from the neighbors become too prominent, rendering the effect of the 
embeddings from the previous layers less and less important. 

Practice: Significant performance degradation has been observed when stacking many layers on GNNs (Kipf 
& Welling, 2017); especially for GCNs (Li et al., 2018). Models such as GGNNs are somewhat better…



Over-smoothing
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(Theorem 3, (Xu et al., 2018)) Informally, with a -layer GCN, the influence of a node  on node  
is proportional the probability of reaching node  on a -step random walk starting from node . 

To partially alleviate over-smoothing: Concatenate each node’s previous representation with the 
output of the combine function to preserve information from previous rounds.

k u v
v k u



Over-squashing
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Over-squashing (Alon and Yahav, 2021): The number of nodes in each node’s receptive field grows exponentially, 
which is eventually compressed into fixed-length node state vectors, hence over-squashing information. 

Long-range: Failure in propagating messages flowing from distant nodes - learning only from short-range signals.



Over-squashing
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Practice: Poor performance when the task depends on long-range interactions, e.g., reachability task on graphs 
require as many iterations as the diameter of the graph, as otherwise it will suffer from under-reaching.  

Global Information: Global feature computation can alleviate the issue to some extent. Alon and Yahav (2021)  
report improvements by using an additional fully connected layer.



Expressive Power
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Expressive power: MPNNs is limited by the 1-WL graph isomorphism test  

Example: Any MPNN learns the same embeddings for the graphs shown 

This is the topic of the next lecture.



Summary
• An historical overview of graph neural networks: 

• Gated graph neural networks: graphs as sequences — gated units as the combine function. 

• Graph convolutional networks: each iteration of message passing is a convolution. 

• Graph attention networks: distinguish messages from neighbors via attention 

• Graph isomorphism network: injective aggregation 

• Each of these models fall into the MPNN framework of Gilmer et al, (2017). 

• Additional reading material: This lecture is partially based on Chapters 5 - 7 of Hamilton, (2020). 

• We have not identified the expressive power of MPNNs: Lecture 5. 

• There are a plethora of other GNN models, beyond MPNNs: Lecture 6.

48



49

References
• T.  Kipf  and  M.  Welling. Semi-supervised  classification with graph convolutional networks. ICLR, 2017. 

• M. D. Zeiler, R. Fergus. Visualizing and Understanding Convolutional Networks, ECCV, 2014. 

• Y. Li, D. Tarlow, M. Brockschmidt, and R.S. Zemel. Gated graph sequence neural networks. ICLR, 2016. 

• P. Velickovic, G. Cucurull, A. Casanova, A. Romero,P. Lio, and Y. Bengio. Graph attention networks. ICLR 2018. 

• Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 
Attention is all you need. NIPS, 2017. 

• K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? ICLR, 2019. 

• W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. NIPS, 2017. 

• J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry. ICML, 2017. 

• M.Defferrard, X. Bresson, P. Vandergheynst, Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS, 
2016. 

• J. Bruna, W. Zaremba, A. Szlam, Y. LeCun. Spectral Networks and Locally Connected Networks on Graphs. ICLR, 2014.



50

References
• K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from tree-structured long short-term memory networks. 

IJCNLP, 2015. 

• H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models for structured data. ICML, 2016. 

• A. Santoro, D. Raposo, D.G.T.Barrett, M. Malinowski, R. Pascanu, P.W. Battaglia, and T. Lillicrap. A simple neural network 
module for relational reasoning. NIPS, 2017.  

• R.L. Murphy, B. Srinivasan, V.A. Rao, and B. Ribeiro. Relational Pooling for Graph Representations. ICML, 2019.  

• H. Maron,  H.  Ben-Hamu,  H.  Serviansky,  and  Y.  Lipman. Provably powerful graph networks. NeurIPS, 2019. 

• C. Morris,  M. Ritzert,  M. Fey,  W. Hamilton,J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and Leman go neural: Higher-order 
graph neural networks. AAAI, 2019. 

• W. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and applications. IEEE Data Eng. Bull., 2017. 

• R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks. SDM, 2021. 

• R. Abboud, İ. İ. Ceylan, M. Grohe, T. Lukasiewicz, The Surprising Power of Graph Neural Networks with Random Node 
Initialization, IJCAI, 2021



51

References
• M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. IJCNN, 2005. 

• F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini. The graph neural network model. IEEE Trans. Neural Networks 
20(1):61–80, 2009. 

• Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural 
networks, 2(5):359–366, 1989. 

• Uri Alon, Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical Implications, ICLR, 2021. 

• Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. AAAI, 
2018.  

• Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. ICLR, 
2015.  

• M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van den Berg, I. Titov, M. Welling, Modeling Relational Data with Graph Convolutional 
Networks, ESWC, 2018. 

• K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. Representation learning on graphs with jumping knowledge 
networks. In ICML, 2018. 


