
 İsmail İlkan Ceylan Advanced Topics in Machine Learning, University of Oxford 24.01.2022

Relational Learning

1

Lecture 5: Expressive Power of Message Passing
Neural Networks

Graph Representation Learning

2

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Graph representation learning with strong relational inductive bias

 h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Graph Representation Learning

3

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Learned parameters are independent of graph size

 h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Graph Representation Learning

4

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Applies to variable-size graphs

 h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Graph Representation Learning

5

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

What is the expressive power?

 h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Overview

• A journey into model representation capacity

• Graph isomorphism and color refinement

• Expressive power of message passing neural networks

• The logic of graphs

• Logical characterization of message passing neural networks

• Summary

6

A Journey into Model
Representation Capacity

7

Model Representation Capacity

8

Expressive power: Capacity of a model (e.g., neural network) to approximate functions.

Universal approximation: MLPs can approximate any continuous function on a compact domain, i.e., for any
such function, there is a parameter configuration for an MLP, corresponding to an approximation of the
function (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989).

Graphs: One way of characterizing the expressive power would be through graph distinguishability. Learn graph
embeddings , for graphs and :

 if and only if is isomorphic to

Problem: This contains graph isomorphism testing, an NP-intermediate problem, where the best algorithm
requires quasi-polynomial time (Babai, 2016).

Question: Where do MPNNs stand in graph distinguishability?

zG zH G H

zG = zH G H

A Tale of Two Graphs

9

Problem: Any MPNN will learn identical representations for the graphs shown.

MPNNs cannot distinguish between two triangles and a 6-cycle — severe limitation for graph classification,
as the predictions for these graphs will be identical regardless of the function we are trying to learn!

Is this only a problem for graph classification?

A Tale of Two Graphs

10

Task: A separator node has two neighbors that are non-adjacent. Consider the graph that is the disjoint
union of graphs shown and classify the nodes as separator and non-separator.

All nodes in the 6-cycle are separator nodes, whereas all nodes in the triangles are non-separator nodes.

An MPNN will either predict all nodes to be separator nodes, or all of them as non-separator nodes, a
random answer with exactly accuracy.50 %

Finding the Culprits

11

Recall that we can embed a graph using a multi-layer perceptron as follows:

Problem: Order-dependent embedding of graphs - MLPs are expressive but lack relational inductive bias.

Message passing neural networks: Strong relational inductive bias, but not expressive.

Trade-off: Constrain the learning space (e.g., incorporating inductive bias), but not too much to entail
strong limitations in the representation capacity.

G

f(G) = MLP(AG
[1] ⊕ … ⊕ AG

[|VG|])

Graph Isomorphism and Color
Refinement

12

Graph Isomorphism

13

Two graphs and are isomorphic if there is a bijection between the vertex sets and :

such that any two vertices and of are adjacent in if and only if and are adjacent in .

We can restate this using features and matrices…

Two graphs and are isomorphic if and only if there exists a permutation matrix such that:

 .

where and are the respective adjacency matrices and and the respective node features.

Graph isomorphism testing: Problem of deciding whether the input graphs are isomorphic.

Exact testing: Suspected to be NP-intermediate - unsurprisingly beyond MPNNs.

Approximations: Many algorithms that can work well within broad classes of graphs.

G H VG VH

f : VG ↦ VH

u v G G f(u) f(v) H

G H P

PAGP⊤ = AH and PXG = XH

AG AH XG XH

Colour Refinement

14

Color refinement is a simple and effective algorithm for graph
isomorphism testing:

1. Initialization: All vertices in a graph are initialized to
their initial colors.

2. Refinement: All vertices are re-colored depending on their
current color and the colors in their neighborhoods.

3. Stop: Terminate when the coloring stabilizes.

Colour Refinement

15

Given a graph , and a set of colors, a function

colors each vertex of the graph with a color from .

• Partition: Each induces a partition of into vertex color classes.

• Refinement (): A partition refines a partition ,

if every element of is a subset of an element of .

• Stabilization (): If and .

G = (V, E) C

λ : VG ↦ C

C

λ π(λ) VG

π(λ) ⪯ π(λ′) π(λ) π(λ′)
π(λ) π(λ′)

π(λ) ≡ π(λ′) π(λ) ⪯ π(λ′) π(λ′) ⪯ π(λ)

Colour Refinement

16

Input: A graph with an initial coloring .

1. Initialization: All vertices , are initialized to their initial colors .

2. Refinement: All vertices are recursively re-colored:

 ,

where double-braces denote a multiset, and bijectively maps any pair (composed of a color and
a multiset of colors) to a unique value in .

3. Stop: The algorithm terminates at iteration , where is the minimal integer satisfying:

 .

Stopping condition is well-defined, since each iteration corresponds to a refinement, and there exists a

minimal integer such that .

G = (V, E) λ(0)

u ∈ V λ(0)(u)

u ∈ V

λ(i+1)(u) = 𝖧𝖠𝖲𝖧(λ(i)(u), {{λ(i)(v) ∣ v ∈ N(u))}})
𝖧𝖠𝖲𝖧

C

j j

∀u, v ∈ VG : λ(j+1)(u) = λ(j+1)(v) if and only if λ(j)(u) = λ(j)(v)

j π(λj) ≡ π(λ(j+1))

Colour Refinement

17

Colour refinement can be used to check whether two given graphs and are non-isomorphic:

• Compute the stable coloring on the disjoint union of and .

• If there is a in the stable coloring , where the numbers of vertices of color differ in and ,
they are non-isomorphic.

G H

λ(k) G H

c ∈ C λ(k) c G H

A B C

D FE

G
A B C

D FE

H

Colour Refinement

18

Soundness: Color refinement is sound for non-isomorphism checking: whenever it returns yes, for two graphs
and , they are non-isomorphic.

Incompleteness: Colour refinement is incomplete for non-isomorphism checking: even if and agree in
every color class size in the stable coloring, the graphs might not be isomorphic.

Color refinement: AKA naive vertex refinement, or 1-dimensional Weisfeiler Lehman (1-WL) algorithm.

G
H

G H

A B C

D FE

G
A B C

D FE

H

Colour Refinement: Example

19

YY B

YY R

B

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

(Y,{{B}}) (Y,{{B}})

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

KK L

PM N

Q

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

KK L

PM N

Q

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

(1,{{2}}) (1,{{2}})

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

KK L

PM N

Q

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

(1,{{2}}) (1,{{2}})

(3,{{4, 5}}) (3,{{2, 4}})

Colour Refinement: Example

19

YY B

YY R

B

11 2

33 4

5

KK L

PM N

Q

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

(1,{{2}}) (1,{{2}})

(3,{{4, 5}}) (3,{{2, 4}})

(2,{{1,1,3,4}})

(4,{{2,3,3,5}})

(5,{{3, 4}})

Colour Refinement: Example

20

YY B

YY R

B

YY B

YY R

B

Two graphs: Vertex color classes differ for these graphs - color refinement can distinguish…

Expressive Power of MPNNs

21

Colour Refinement: Example

22

YY B

YY R

B

YY B

YY R

B

1-WL and neural message passing aggregate information from the neighborhoods and update accordingly:

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

λ(i+1)(u) = 𝖧𝖠𝖲𝖧(λ(i)(u), {{λ(i)(v) ∣ v ∈ N(u))}})

Colour Refinement: Example

23

YY B

YY R

B

YY B

YY R

B

Can we view the rounds of the 1-WL algorithm as the layers of an MPNN?

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

λ(i+1)(u) = 𝖧𝖠𝖲𝖧(λ(i)(u), {{λ(i)(v) ∣ v ∈ N(u))}})

An Upper Bound for Expressiveness of MPNNs

24

Theorem ([Morris et al., 2019, Xu et al., 2019]). Consider any MPNN that consists of message-passing layers:

Assuming only discrete input features , we have that only if the nodes and
 have different labels after iterations of the 1-WL algorithm.

k

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

h(0)
u = xu ∈ ℤd h(k)

u ≠ h(k)
v u

v k

An Upper Bound for Expressiveness of MPNNs

25

MPNNs are at most as powerful as the 1-WL test:

• If the 1-WL algorithm assigns the same label to two nodes, then any MPNN will also assign the
same embedding to these two nodes.

• If the 1-WL test cannot distinguish between two graphs, then an MPNN is also incapable of
distinguishing between these two graphs.

A Lower Bound for Expressiveness of MPNNs

26

Theorem ([Morris et al., 2019, Xu et al., 2019]). There exists an MPNN such that if
and only if the two nodes and have the same label after iterations of the 1-WL algorithm.

In particular, the basic MPNN model is as powerful as 1-WL (in addition to GIN):

h(k)
u ≠ h(k)

v
u v k

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

A Lower Bound for Expressiveness of MPNNs

27

Most of the popular MPNN models, such as GCNs, are not even as expressive as 1-WL.

Key ingredient: The functions and need to be injective (Xu et al., 2019).

MPNNs are as powerful as 1-WL test under mild assumptions.

aggregate(t) combine(t)

The Logic of Graphs

28

From Distinguishing Graphs to Capturing Functions

29

Question: Where do MPNNs stand in graph distinguishability?

Analysis: Expressive power through graph distinguishability: if and only if is isomorphic to

Result: MPNNs learnable, differentiable extension of the 1-WL with the same expressive power.

Question: What is the class of functions that is captured by MPNNs?

Idea: Characterizing classes of functions by a language…logic of graphs.

zG = zH G H

u v

w

A Descriptive Complexity Perspective

30

WL hierarchy: The class of WL algorithms and forms an hierarchy, i.e., 1-WL, 2-WL,… as we shall see later.

Logic and WL: Connection between the WL hierarchy and first order logic with counting quantifiers:

Theorem (Cai et al., 1992). For all , two graphs and satisfy the same -sentences if and only if
-WL does not distinguish them.

Together with the results of Morris et al. (2019) and Xu et al. (2019), this implies:

Proposition (Morris et al., 2019; Xu et al., 2019). Two graphs and are indistinguishable by all MPNNs if
and only if they satisfy the same -sentences.

Remark: One may be tempted to think that this result entails that MPNNs can capture : This result is
about graph/node distinguishability, but we are interested characterizing the class of functions captured.

Territory of descriptive complexity — a branch of complexity theory, where the goal is to characterize
complexity classes in terms of the logics that can capture the complexity classes (Immerman, 1995).

k ≥ 2 G H 𝖢𝗄

(k − 1)

G H
𝖢𝟤

𝖢𝟤

First-Order Logic: Syntax

31

Basics: A (first-order) relational vocabulary denoted by , consists of sets of relation, of constant, and
of variable names. A term is either a constant or a variable. An atom is of the form , where is an
-ary relation, and are terms. A ground atom is an atom without variables.

Logical connectives and quantifiers: The logical connectives are negation (), conjunction (), and
disjunction (), and quantifiers are existential quantifier () and universal quantifier ().

Formulas: First-order logic () formulas are inductively built from atomic formulas using the logical
constructors and quantifiers based on the grammar rule:

 ,

where is an -ary relation, are terms, and is a variable.

Remark: Upper-case letters denote relation names, and lower case letters denote variables/constants.

σ R C V
P(s1, …, sn) P

n s1, …, sn

¬ ∧
∨ ∃ ∀

𝖥𝖮

Φ = P(s1, …, sn) ∣ ¬Φ ∣ Φ ∧ Φ ∣ Φ ∨ Φ ∣ ∃x . Φ ∣ ∀x . Φ

P n s1, …, sn x

First-Order Formulae

32

A variable in a formula is quantified, or bound if it is in the scope of a quantifier; otherwise, it is free.

A (first-order) sentence is a (first-order) formula without any free variables, also called a Boolean formula.

In the sequel, we write, e.g., to denote Boolean formulas, and to denote formulas with free
variables

As usual, some constructors are only syntactic sugar, i.e., we use usual abbreviations:

 ,

 ,

 ,

and so we define the semantics based on the constructors , , .

x Φ

Φ Φ(x1, …, xk)
x1, …, xk .

∀x . Φ ≡ ¬∃x . ¬Φ

Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

Φ → Ψ ≡ ¬Φ ∨ Ψ

¬ ∧ ∃

First-Order Logic: Semantics

33

A first-order interpretation is a pair , where is a non-empty domain, and is an interpretation
function.

The interpretation function maps every constant name to an element of the domain, and every
predicate name with arity to a subset of the domain.

A variable assignment is a function that maps variables to domain elements.

Given an element and a variable , we write to denote the variable assignment that
maps to , and that agrees with on all other variables.

For an interpretation and a variable assignment , we define:

• for all constant names ,

• for all variable names ,

• for all relation names .

I = (ΔI, ⋅I) ΔI ⋅I

⋅I a aI ∈ ΔI

P n PI ⊆ (ΔI)n

μ : V ↦ ΔI

e ∈ ΔI x ∈ V μ[x ↦ e]
x e μ

I μ

aI,μ = aI a ∈ C

xI,μ = μ(x) x ∈ V

PI,μ = PI P ∈ R

First-Order Logic: Semantics

34

Given an interpretation and a variable assignment , the entailment relation () is inductively defined as

• if ,

• if ,

• if ,

• if there exists such that ,

Sentences: The truth value of sentences does not depend on any variable assignment; so, assignments are
omitted in this case. We say that an interpretation is a model of a sentence if .

Finite structures: An interpretation, or a model, is finite if its domain (or, universe) is finite. Our focus is on
first-order logic over finite models/structures.

Unique names: We assume that constants are mapped to themselves (i.e., unique name assumption).

I μ ⊨

I, μ ⊨ P(s1, …, sn) (sI,μ
1 , …, sI,μ

n) ∈ PI,μ

I, μ ⊨ ¬Φ(x1, …, xn) I, μ ⊭ Φ(x1, …, xn)

I, μ ⊨ Φ(x1, …, xn) ∧ Ψ(y1, …, ym) I, μ ⊨ Φ(x1, …, xn) and I, μ ⊨ Ψ(y1, …, yn)

I, μ ⊨ ∃x . Φ(y1, …, yn) e ∈ ΔI I, μ[x ↦ e] ⊨ Φ(y1, …, yn)

I Φ I ⊨ Φ

Logic of Graphs

35

The following formula with one free variable :

 ,

is in the language of graphs: means that there is an edge
between the nodes interpreting and .

Graphs as interpretations: View the graphs and as
interpretations over a domain of nodes :

•

•

It is easy to verify that and .

The graph is a model of when is interpreted as !

𝖥𝖮 x

Φ(x) = ∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z) ∧ (x ≠ z) ∧ (x ≠ y) ∧ (y ≠ z)

E(x, y)
x y

G H
{u, v, w}

EG = {(u, v), (v, w), (u, w)}

EH = {(u, v), (v, w)}

G ⊨ Φ(u) H ⊭ Φ(u)

G Φ(x) x u

u v

w

G

u v

w

H

Logic of Colored Graphs

36

Colored graphs: The following formula

requires a red node connected to a blue and a green node in the input
graph to satisfy the specified property:

 and

We are interested in , i.e., extended with counting quantifiers:

.

A graph satisfies if and only if has at most 2 red neighbors in
 that have degree at least 5.

𝖥𝖮

Ψ(x) = Red(x) ∧ ∃y(E(x, y) ∧ Blue(y) ∧ ∃z(E(x, z) ∧ Green(z)))

G ⊨ Ψ(u) H ⊭ Ψ(u)

𝖢𝟤 𝖥𝖮2

Θ(x) = ¬∃≥3y(Red(y) ∧ E(x, y) ∧ ∃≥5xE(y, x))
G Θ(v) v

G

u v

w

G

u v

w

H

Two-Variable Fragment of First-Order Logic

37

: -variable fragment of first-order logic. The formula from earlier is in :

This reduces their expressive power: is strictly contained in , i.e, there are formulas not in .

Re-using variables: can be equivalently written (by re-using the variable in place of) in :

Remark: is a syntactic extension of , as counting quantifiers of the form can be simulated with
standard existential quantifiers using variables. Counting quantifiers add expressiveness to .

𝖥𝖮k k 𝖥𝖮3

Ψ(x) = Red(x) ∧ ∃y(E(x, y) ∧ Blue(y) ∧ ∃z(E(x, z) ∧ Green(z)))
𝖥𝖮2 𝖥𝖮 𝖥𝖮 𝖥𝖮2

Ψ(x) y z 𝖥𝖮2

Ψ(x) = Red(x) ∧ ∃y(E(x, y) ∧ Blue(y) ∧ ∃y(E(x, y) ∧ Green(y)))
𝖢 𝖥𝖮 ∃≥k x

k 𝖥𝖮2

Logical Characterization of
MPNNs

38

A Logical Characterization for MPNNs

39

Question: What is the class of functions that is captured by MPNNs (Barcelo et al 2020)?

Context: Node classification and Boolean functions.

A logical node classifier is a formula in with exactly one free variable

 for each node

An MPNN classifier captures a logical classifier when both classifiers coincide over every input: if for
every graph and node in , it holds that evaluates to true if and only if .

An MPNN classifier captures a logic if for every , there exists an MPNN that captures .

Goal: Identify a logic that is captured by MPNNs — identifying the expressive power of MPNNs.

Φ(x) 𝖢𝟤

Φ(u) : VG ↦ 𝔹 u ∈ VG

M Φ(x)
G u G M(G, v) G ⊨ Φ(u)

M ℒ Φ(x) ∈ ℒ Φ(x)

A Logical Characterization for MPNNs

40

Theorem (Barcelo et al., 2020). Each classifier can be captured by an MPNN with global readout:

The following formula cannot be expressed in :

𝖢𝟤

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), read(t)({h(t−1)

w ∣ w ∈ G})) .

𝖢𝟤

Φ(x) = ∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z) ∧ (x ≠ z) ∧ (x ≠ y) ∧ (y ≠ z)

A Logical Characterization for MPNNs

41

Theorem (Barcelo et al., 2020). Each classifier can be captured by an MPNN with global readout:

Size of the network: The depth of the MPNN is bounded by the depth of the formula.

Special cases: Result holds even for homogeneous MPNNs and also for MPNNs with a single (final) global
readout, but in the latter case we require MPNN to be non-homogeneous.

𝖢𝟤

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), read(t)({h(t−1)

w ∣ w ∈ G})) .

A Logical Characterization for MPNNs

42

MPNNs without any readouts can capture graded modal logic, a strict subset of (Barcelo et al., 2020).

The following formula is in and cannot by MPNNs without global readout :

 ,

since, e.g., the red and blue nodes may be in disjoint subgraphs and never communicate.

𝖢𝟤

𝖢𝟤

γ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ ∃≥2x(E(y, x) ∧ Blue(x)))

A Logical Characterization for MPNNs

43

The proof shows how to simulate a sentence with MPNNs following the roadmap:

• Enumerate all sub-formulas of a given formula , such that

• Define an MPNN with feature vectors in such that every component of those vectors represents a
different sub-formula.

• updates the feature vector of node ensuring that its component corresponding to the sub-formula
 gets a value 1 if and only if the sub-formula is satisfied in node .

𝖢𝟤

(ϕ1, …, ϕL) Φ Φ = ϕL

MΦ ℝL

MΦ xu u
ϕi ϕi u

Φ(x)

Summary
• Model representation capacity & expressive power

• Graph isomorphism, color refinement, 1-WL

• MPNNs with injective aggregation and combine functions are as powerful as 1-WL test.

• The logic of graphs: , , , — an interesting connection to descriptive complexity!

• Logical characterization of MPNNs

• Each classifier can be captured by an MPNNs with global readout (even with a final readout).

• MPNNs without global readout cannot capture , but can capture graded model logic.

• We have not discussed the practical implications of the limitations in expressive power, and neither the
proposed tools to address such limitations — Lecture 6 & 7.

𝖥𝖮 𝖢 𝖥𝖮2 𝖢𝟤

𝖢𝟤

𝖢𝟤

44

45

References
• C. Morris, M. Ritzert, M. Fey, W. Hamilton,J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and Leman go neural: Higher-order

graph neural networks. AAAI, 2019.

• K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? ICLR, 2019.

• P. Barcelo, E. Kostylev, M. Monet, J. Perez, J. Reutter, and J. Silva. The logical expressiveness of graph neural networks. ICLR,
2020.

• G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303–314,
1989.

• K. Hornik, M. Stinchcombe, H. White, et al. Multilayer feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989

• Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural networks. Neural networks, 2(3):183–192,
1989

• L. Babai, Graph isomorphism in quasipolynomial time, arXiv:1512.03547, 2016.

• N. Immermann, Descriptive Complexity. 1999.

• J. Cai, M. Furer, and N. Immerman. An optimal lower bound on the number of variables for graph identification. Combinatorica,
12(4):389–410, 1992.

