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Lecture 5: Expressive Power of Message Passing 
Neural Networks
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Graph representation learning with strong relational inductive bias 
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Learned parameters are independent of graph size 
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Applies to variable-size graphs 

         h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )



Graph Representation Learning

5

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

What is the expressive power? 
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Overview

• A journey into model representation capacity 

• Graph isomorphism and color refinement 

• Expressive power of message passing neural networks  

• The logic of graphs 

• Logical characterization of message passing neural networks 

• Summary
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A Journey into Model 
Representation Capacity
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Model Representation Capacity
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Expressive power: Capacity of a model (e.g., neural network) to approximate functions.  

Universal approximation: MLPs can approximate any continuous function on a compact domain, i.e., for any 
such function, there is a parameter configuration for an MLP, corresponding to an approximation of the 
function (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989). 

Graphs: One way of characterizing the expressive power would be through graph distinguishability. Learn graph 
embeddings ,  for graphs  and : 

    if and only if   is isomorphic to  

Problem: This contains graph isomorphism testing, an NP-intermediate problem, where the best algorithm 
requires quasi-polynomial time (Babai, 2016). 

Question: Where do MPNNs stand in graph distinguishability? 

zG zH G H

zG = zH G H



A Tale of Two Graphs 
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Problem: Any MPNN will learn identical representations for the graphs shown. 

MPNNs cannot distinguish between two triangles and a 6-cycle — severe limitation for graph classification, 
as the predictions for these graphs will be identical regardless of the function we are trying to learn!  

Is this only a problem for graph classification?



A Tale of Two Graphs
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Task: A separator node has two neighbors that are non-adjacent. Consider the graph that is the disjoint 
union of graphs shown and classify the nodes as separator and non-separator.  

All nodes in the 6-cycle are separator nodes, whereas all nodes in the triangles are non-separator nodes. 

An MPNN will either predict all nodes to be separator nodes, or all of them as non-separator nodes, a 
random answer with exactly  accuracy.50 %



Finding the Culprits
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Recall that we can embed a graph  using a multi-layer perceptron as follows:  

            

Problem: Order-dependent embedding of graphs - MLPs are expressive but lack relational inductive bias. 

Message passing neural networks: Strong relational inductive bias, but not expressive. 

Trade-off: Constrain the learning space (e.g., incorporating inductive bias), but not too much to entail 
strong limitations in the representation capacity.

G

f(G) = MLP(AG
[1] ⊕ … ⊕ AG

[|VG|])



Graph Isomorphism and Color 
Refinement
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Graph Isomorphism
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Two graphs  and  are isomorphic if there is a bijection between the vertex sets   and  : 

                                  

such that any two vertices   and   of   are adjacent in   if and only if  and   are adjacent in . 

We can restate this using features and matrices…  

Two graphs  and  are isomorphic if and only if there exists a permutation matrix  such that:  

             . 

where  and  are the respective adjacency matrices and  and   the respective node features. 

Graph isomorphism testing: Problem of deciding whether the input graphs are isomorphic. 

Exact testing: Suspected to be NP-intermediate - unsurprisingly beyond MPNNs. 

Approximations: Many algorithms that can work well within broad classes of graphs.

G H VG VH

f : VG ↦ VH

u v G G f(u) f(v) H

G H P

PAGP⊤ = AH  and  PXG = XH

AG AH XG XH



Colour Refinement

14

Color refinement is a simple and effective algorithm for graph 
isomorphism testing: 

1. Initialization: All vertices in a graph are initialized to 
their initial colors. 

2. Refinement: All vertices are re-colored depending on their 
current color and the colors in their neighborhoods. 

3. Stop: Terminate when the coloring stabilizes.



Colour Refinement
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Given a graph , and a set  of colors, a function  

                        

colors each vertex of the graph with a color from . 

• Partition: Each  induces a partition  of  into vertex color classes.   

• Refinement ( ): A partition  refines a partition , 

if every element of  is a subset of an element of .  

• Stabilization ( ): If  and .

G = (V, E) C

λ : VG ↦ C

C

λ π(λ) VG

π(λ) ⪯ π(λ′ ) π(λ) π(λ′ )
π(λ) π(λ′ )

π(λ) ≡ π(λ′ ) π(λ) ⪯ π(λ′ ) π(λ′ ) ⪯ π(λ)



Colour Refinement
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Input: A graph  with an initial coloring . 

1. Initialization: All vertices , are initialized to their initial colors . 

2. Refinement: All vertices  are recursively re-colored: 

    , 

where double-braces denote a multiset, and  bijectively maps any pair (composed of a color and 
a multiset of colors) to a unique value in . 

3. Stop: The algorithm terminates at iteration , where  is the minimal integer satisfying: 

 . 

Stopping condition is well-defined, since each iteration corresponds to a refinement, and there exists a 

minimal integer  such that  .

G = (V, E) λ(0)

u ∈ V λ(0)(u)

u ∈ V

λ(i+1)(u) = 𝖧𝖠𝖲𝖧(λ(i)(u), {{λ(i)(v) ∣ v ∈ N(u))}})
𝖧𝖠𝖲𝖧

C

j j

∀u, v ∈ VG : λ( j+1)(u) = λ( j+1)(v) if and only if λ( j)(u) = λ( j)(v)

j π(λj) ≡ π(λ( j+1))



Colour Refinement
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Colour refinement can be used to check whether two given graphs  and  are non-isomorphic: 

• Compute the stable coloring  on the disjoint union of  and .  

• If there is a  in the stable coloring , where the numbers of vertices of color  differ in  and , 
they are non-isomorphic. 

G H

λ(k) G H

c ∈ C λ(k) c G H

A B C

D FE

G
A B C

D FE

H



Colour Refinement
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Soundness: Color refinement is sound for non-isomorphism checking: whenever it returns yes, for two graphs  
and , they are non-isomorphic. 

Incompleteness: Colour refinement is incomplete for non-isomorphism checking: even if  and  agree in 
every color class size in the stable coloring, the graphs might not be isomorphic. 

Color refinement: AKA naive vertex refinement, or 1-dimensional Weisfeiler Lehman (1-WL) algorithm.
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Two graphs: Vertex color classes differ for these graphs - color refinement can distinguish…



Expressive Power of MPNNs
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Colour Refinement: Example
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1-WL and neural message passing aggregate information from the neighborhoods and update accordingly: 

                  

                               

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

λ(i+1)(u) = 𝖧𝖠𝖲𝖧(λ(i)(u), {{λ(i)(v) ∣ v ∈ N(u))}})



Colour Refinement: Example
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Can we view the rounds of the 1-WL algorithm as the layers of an MPNN?  

                         

                               

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

λ(i+1)(u) = 𝖧𝖠𝖲𝖧(λ(i)(u), {{λ(i)(v) ∣ v ∈ N(u))}})



An Upper Bound for Expressiveness of MPNNs
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Theorem ([Morris et al., 2019, Xu et al., 2019]). Consider any MPNN that consists of  message-passing layers: 

 

Assuming only discrete input features , we have that  only if the nodes  and 
 have different labels after  iterations of the 1-WL algorithm.

k

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))

h(0)
u = xu ∈ ℤd h(k)

u ≠ h(k)
v u

v k



An Upper Bound for Expressiveness of MPNNs
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MPNNs are at most as powerful as the 1-WL test: 

• If the 1-WL algorithm assigns the same label to two nodes, then any MPNN will also assign the 
same embedding to these two nodes.  

• If the 1-WL test cannot distinguish between two graphs, then an MPNN is also incapable of 
distinguishing between these two graphs. 



A Lower Bound for Expressiveness of MPNNs
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Theorem ([Morris et al., 2019, Xu et al., 2019]). There exists an MPNN such that  if 
and only if the two nodes  and  have the same label after  iterations of the 1-WL algorithm.  

In particular, the basic MPNN model is as powerful as 1-WL (in addition to GIN):            

                            

h(k)
u ≠ h(k)

v
u v k

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )



A Lower Bound for Expressiveness of MPNNs
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Most of the popular MPNN models, such as GCNs, are not even as expressive as 1-WL. 

Key ingredient: The functions  and  need to be injective (Xu et al., 2019).  

MPNNs are as powerful as 1-WL test under mild assumptions.

aggregate(t) combine(t)



The Logic of Graphs
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From Distinguishing Graphs to Capturing Functions

29

Question: Where do MPNNs stand in graph distinguishability? 

Analysis: Expressive power through graph distinguishability:    if and only if   is isomorphic to  

Result: MPNNs learnable, differentiable extension of the 1-WL with the same expressive power. 

Question: What is the class of functions that is captured by MPNNs? 

Idea: Characterizing classes of functions by a language…logic of graphs.

zG = zH G H

u v

w



A Descriptive Complexity Perspective
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WL hierarchy: The class of WL algorithms and forms an hierarchy, i.e., 1-WL, 2-WL,… as we shall see later. 

Logic and WL: Connection between the WL hierarchy and first order logic with counting quantifiers: 

Theorem (Cai et al., 1992). For all , two graphs  and  satisfy the same -sentences if and only if 
-WL does not distinguish them.  

Together with the results of Morris et al. (2019) and Xu et al. (2019), this implies: 

Proposition (Morris et al., 2019; Xu et al., 2019). Two graphs  and  are indistinguishable by all MPNNs if 
and only if they satisfy the same  -sentences. 

Remark: One may be tempted to think that this result entails that MPNNs can capture : This result is 
about graph/node distinguishability, but we are interested characterizing the class of functions captured.  

Territory of descriptive complexity — a branch of complexity theory, where the goal is to characterize 
complexity classes in terms of the logics that can capture the complexity classes (Immerman,  1995). 

k ≥ 2 G H 𝖢𝗄

(k − 1)

G H
𝖢𝟤

𝖢𝟤



First-Order Logic: Syntax
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Basics: A (first-order) relational vocabulary denoted by , consists of sets  of relation,  of constant, and  
of variable names. A term is either a constant or a variable.  An atom is of the form , where  is an 
-ary relation, and  are terms. A ground atom is an atom without variables. 

Logical connectives and quantifiers: The logical connectives are negation ( ), conjunction ( ), and 
disjunction ( ), and quantifiers are existential quantifier ( ) and universal quantifier ( ). 

Formulas: First-order logic ( ) formulas are inductively built from atomic formulas using the logical 
constructors and quantifiers based on the grammar rule:  

        , 

where  is an -ary relation,  are terms, and  is a variable. 

Remark: Upper-case letters denote relation names, and lower case letters denote variables/constants.

σ R C V
P(s1, …, sn) P

n s1, …, sn

¬ ∧
∨ ∃ ∀

𝖥𝖮

Φ = P(s1, …, sn) ∣ ¬Φ ∣ Φ ∧ Φ ∣ Φ ∨ Φ ∣ ∃x . Φ ∣ ∀x . Φ

P n s1, …, sn x



First-Order Formulae
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A variable  in a formula  is quantified, or bound if it is in the scope of a quantifier; otherwise, it is free.  

A  (first-order) sentence is a (first-order) formula without any free variables, also called a Boolean formula. 

In the sequel, we write, e.g.,  to denote Boolean formulas, and  to denote formulas with free 
variables  

As usual, some constructors are only syntactic sugar, i.e., we use usual abbreviations: 

                  ,  

                     , 

                     , 

and so we define the semantics based on the constructors , , .

x Φ

Φ Φ(x1, …, xk)
x1, …, xk .

∀x . Φ ≡ ¬∃x . ¬Φ

Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

Φ → Ψ ≡ ¬Φ ∨ Ψ

¬ ∧ ∃



First-Order Logic: Semantics
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A first-order interpretation is a pair , where  is a non-empty domain, and  is an interpretation 
function. 

The interpretation function  maps every constant name  to an element  of the domain, and every 
predicate name  with arity  to a subset  of the domain.  

A variable assignment is a function  that maps variables to domain elements. 

Given an element   and a variable , we write  to denote the variable assignment that 
maps  to , and that agrees with  on all other variables. 

For an interpretation  and a variable assignment , we define: 

•  for all constant names , 

•  for all variable names , 

•   for all relation names .

I = (ΔI, ⋅I ) ΔI ⋅I

⋅I a aI ∈ ΔI

P n PI ⊆ (ΔI)n

μ : V ↦ ΔI

e ∈ ΔI x ∈ V μ[x ↦ e]
x e μ

I μ

aI,μ = aI a ∈ C

xI,μ = μ(x) x ∈ V

PI,μ = PI P ∈ R



First-Order Logic: Semantics
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Given an interpretation  and a variable assignment , the entailment relation ( ) is inductively defined as  

•   if  , 

•  if , 

•  if , 

•  if there exists  such that , 

Sentences: The truth value of sentences does not depend on any variable assignment; so, assignments are 
omitted in this case. We say that an interpretation  is a model of a sentence  if . 

Finite structures: An interpretation, or a model, is finite if its domain (or, universe) is finite. Our focus is on 
first-order logic over finite models/structures. 

Unique names: We assume that constants are mapped to themselves (i.e., unique name assumption).

I μ ⊨

I, μ ⊨ P(s1, …, sn) (sI,μ
1 , …, sI,μ

n ) ∈ PI,μ

I, μ ⊨ ¬Φ(x1, …, xn) I, μ ⊭ Φ(x1, …, xn)

I, μ ⊨ Φ(x1, …, xn) ∧ Ψ(y1, …, ym) I, μ ⊨ Φ(x1, …, xn) and I, μ ⊨ Ψ(y1, …, yn)

I, μ ⊨ ∃x . Φ(y1, …, yn) e ∈ ΔI I, μ[x ↦ e] ⊨ Φ(y1, …, yn)

I Φ I ⊨ Φ



Logic of Graphs
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The following  formula with one free variable : 

  ,  

is in the language of graphs:  means that there is an edge 
between the nodes interpreting  and . 

Graphs as interpretations: View the graphs  and  as 
interpretations over a domain of nodes :  

•  

•  

It is easy to verify that  and . 

The graph  is a model of  when  is interpreted as !

𝖥𝖮 x

Φ(x) = ∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z) ∧ (x ≠ z) ∧ (x ≠ y) ∧ (y ≠ z)

E(x, y)
x y

G H
{u, v, w}

EG = {(u, v), (v, w), (u, w)}

EH = {(u, v), (v, w)}

G ⊨ Φ(u) H ⊭ Φ(u)

G Φ(x) x u

u v

w

G

u v

w

H



Logic of Colored Graphs
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Colored graphs: The following  formula 

 

requires a red node connected to a blue and a green node in the input 
graph to satisfy the specified property: 

 and  

We are interested in , i.e.,  extended with counting quantifiers: 

. 

A graph  satisfies  if and only if  has at most 2 red neighbors in 
 that have degree at least 5.

𝖥𝖮

Ψ(x) = Red(x) ∧ ∃y(E(x, y) ∧ Blue(y) ∧ ∃z(E(x, z) ∧ Green(z)))

G ⊨ Ψ(u) H ⊭ Ψ(u)

𝖢𝟤 𝖥𝖮2

Θ(x) = ¬∃≥3y(Red(y) ∧ E(x, y) ∧ ∃≥5xE(y, x))
G Θ(v) v

G

u v

w

G

u v

w

H



Two-Variable Fragment of First-Order Logic 
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: -variable fragment of first-order logic. The formula from earlier is in : 

               

This reduces their expressive power:  is strictly contained in , i.e, there are  formulas not in . 

Re-using variables:  can be equivalently written (by re-using the variable  in place of ) in : 

                 

Remark:  is a syntactic extension of , as counting quantifiers of the form  can be simulated with 
standard existential quantifiers using  variables. Counting quantifiers add expressiveness to .

𝖥𝖮k k 𝖥𝖮3

Ψ(x) = Red(x) ∧ ∃y(E(x, y) ∧ Blue(y) ∧ ∃z(E(x, z) ∧ Green(z)))
𝖥𝖮2 𝖥𝖮 𝖥𝖮 𝖥𝖮2

Ψ(x) y z 𝖥𝖮2

Ψ(x) = Red(x) ∧ ∃y(E(x, y) ∧ Blue(y) ∧ ∃y(E(x, y) ∧ Green(y)))
𝖢 𝖥𝖮 ∃≥k x

k 𝖥𝖮2



Logical Characterization of 
MPNNs

38



A Logical Characterization for MPNNs

39

Question: What is the class of functions that is captured by MPNNs (Barcelo et al 2020)? 

Context: Node classification and Boolean functions.  

A logical node classifier is a formula  in  with exactly one free variable 

 for each node   

An MPNN classifier  captures a logical classifier  when both classifiers coincide over every input: if for 
every graph  and node  in , it holds that  evaluates to true if and only if . 

An MPNN classifier  captures a logic  if for every  , there exists an MPNN that captures . 

Goal: Identify a logic that is captured by MPNNs — identifying the expressive power of MPNNs.

Φ(x) 𝖢𝟤

Φ(u) : VG ↦ 𝔹 u ∈ VG

M Φ(x)
G u G M(G, v) G ⊨ Φ(u)

M ℒ Φ(x) ∈ ℒ Φ(x)



A Logical Characterization for MPNNs
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Theorem (Barcelo et al., 2020). Each  classifier can be captured by an MPNN with global readout: 

      

The following formula cannot be expressed in : 

       

𝖢𝟤

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), read(t)({h(t−1)

w ∣ w ∈ G})) .

𝖢𝟤

Φ(x) = ∃y, z E(x, y) ∧ E(y, z) ∧ E(x, z) ∧ (x ≠ z) ∧ (x ≠ y) ∧ (y ≠ z)



A Logical Characterization for MPNNs
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Theorem (Barcelo et al., 2020). Each  classifier can be captured by an MPNN with global readout: 

      

Size of the network: The depth of the MPNN is bounded by the depth of the formula. 

Special cases: Result holds even for homogeneous MPNNs and also for MPNNs with a single (final) global 
readout, but in the latter case we require MPNN to be non-homogeneous.

𝖢𝟤

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}), read(t)({h(t−1)

w ∣ w ∈ G})) .



A Logical Characterization for MPNNs

42

MPNNs without any readouts can capture graded modal logic, a strict subset of  (Barcelo et al., 2020). 

The following formula is in  and cannot by MPNNs without global readout : 

    , 

since, e.g., the red and blue nodes may be in disjoint subgraphs and never communicate.

𝖢𝟤

𝖢𝟤

γ(x) = Red(x) ∧ ∃y(¬E(x, y) ∧ ∃≥2x(E(y, x) ∧ Blue(x)))



A Logical Characterization for MPNNs

43

The proof shows how to simulate a  sentence with MPNNs following the roadmap: 

• Enumerate all sub-formulas  of a given formula , such that  

• Define an MPNN   with feature vectors in  such that every component of those vectors represents a 
different sub-formula. 

•  updates the feature vector  of node  ensuring that its component corresponding to the sub-formula 
 gets a value 1 if and only if the sub-formula  is satisfied in node .

𝖢𝟤

(ϕ1, …, ϕL) Φ Φ = ϕL

MΦ ℝL

MΦ xu u
ϕi ϕi u

Φ(x)



Summary
• Model representation capacity & expressive power 

• Graph isomorphism, color refinement, 1-WL 

• MPNNs with injective aggregation and combine functions are as powerful as 1-WL test. 

• The logic of graphs: , , ,  — an interesting connection to descriptive complexity! 

• Logical characterization of MPNNs 

•  Each  classifier can be captured by an MPNNs with global readout (even with a final readout). 

•  MPNNs without global readout cannot capture , but can capture graded model logic. 

• We have not discussed the practical implications of the limitations in expressive power, and neither the 
proposed tools to address such limitations — Lecture 6 & 7.

𝖥𝖮 𝖢 𝖥𝖮2 𝖢𝟤

𝖢𝟤

𝖢𝟤
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