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Our focus so far was on MPNNs
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...and on popular instances of MPNNs
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Today's Lecture: Graph neural networks beyond MPNNs



Graph Neural Networks: A General Perspective
<K

Initial motivation (Lecture 3): Learn functions over graphs with invariance (resp., equivariance) to node
orderings: no need to be via a specific message passing framework, or even, message passing.

A more general definition: In a graph neural network, nodes of the input graph are assigned vector
representations, which are updated iteratively through series of or computational layers.

Today’s Lecture: , which use higher-order representations of the graphs,

e.g., higher-order tensors, to be able to approximate a larger class of functions.



Overview

The Weisfeiler-Lehman hierarchy

Higher-order graph neural networks

e Higher-order message passing neural networks: k-GNNs
* Invariant/Equivariant graph networks

e Provably powerful graph networks

Expressive power in real-world data

Homophily and heterophily

Summary



The Weisteiler-Lehman Hierarchy



A Tale of Two Graphs

N

NN C )

Refresher: 1-WL the nodes in the respective graphs — and so neither can MPNNSs.
Question: What if we extend the 1-WL algorithm to consider, e.g., when coloring?

This extended algorithm is called the 2-dimensional WL algorithm, and it these two graphs!
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Folklore k~-dimensional Weisfeiler-Lehman

For a WL-dimension k € N, the &~-WL algorithm is as follows:

* Consider (Vl, ey Vk) = Vg of nodes.

* Consider a coloring function A : Vé — C that each
of the graph with a color from a set C of colors.

e This color will depend on the of the tuple, e.g., a
k-cycle and a k-tree will have different colors.

Partitions m(4) of V. and the refinement relation < is as before.

Note: A k-tuple is denoted as I = (l/tl, ey uk), a substitution as
tv/i] = (l/tl, e Wi s Vo Ui 15 e ey uk) and each coloring respects
the isomorphism type of a tuple in graph.
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Folklore k~-dimensional Weisfeiler-Lehman

Algorithm: Given a graph G = (V, E), a k> 1, and an /1(0) of k-tuples:

1. Initialization: All [ © Vé, are to their initial colors ﬂ(o)(t).

2. Refinement: The color of a k-tuple I = (ul, Cees Ltk) IS by combining the colors of its
neighborhood, which is defined as the set of all k-tuples in which from t:

A1) = HASH(N@), LAV, ..., AVvIkD)) | v e VG}}),

where double-braces denote a , and HASH bijectively maps any to a unique value in C.

3. Stop: Terminates on a is reached, at iteration j, where j is the integer satisfying

Vi,t' € V& : AVTD() = 2UtD() if and only if AY(r) = AY(1).
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Folklore k~-dimensional Weisfeiler-Lehman

k-WL: Different versions of k-WL lead to

We follow Cai et al. (1992), which is also known as the
, or k-FWL (Grohe, 2021).

In the non-folklore (oblivious) version, the update step is defined
differently based on set of tuples, instead of ordered tuples. Nevertheless:

e Both lead to the same expressive power modulo the shift in k: For
any k > 2. is equivalent to (Grohe, 2017).

e The &-FWL hierarchy is proper: For each kK > 1 there is a pair of non-
isomorphic graphs distinguishable by but not by

e Non-folklore case: 1-WL and 2-WL have the same expressive power.

We write k-WL to refer to the folklore version, as it is more standard.
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A Tale of Two Graphs
 o0— / \
\‘ \‘ AN /

Theorem (Cai et al., 1992). For all k > 2, two graphs G and H satisfy the same CK-sentences if and only if
(k — 1)-WL does not distinguish them.

The graphs can be distinguished by the following sentence:

O =3, V, 2 E&,WAEGV,DAEX,DAXE DA FYAG #2)

That is, there are C3-sentences, distinguishing these graphs, and so must 2-WL.
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Higher-Order Graph Neural
Networks



Higher-Order Graph Neural Networks
e /
N

\

Higher-order graph neural networks: Graph neural networks which use of the graphs,

e.g., higher-order message passing, or higher-order tensors, to be able to approximate a larger class of functions.
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Higher-Order Message Passing
Neural Networks




Woeisfeiler-Lehman: From 1-GNNs to k~-GNNs

NV VRGN

The &~-GNN model (Morris et al., 2019) is a of MPNNs based on the (k — 1)-WL algorithm.

Idea: Higher-order message passing between , rather than individual nodes.

Intuition: This form of message passing can capture that is not visible at the node-level.

18



Woeisfeiler-Lehman: From 1-GNNs to k~-GNNs

NV VRGN

3-GNNs of (Morris et al., 2019) have the same power as folklore 2-WL and can distinguish these graphs.

The C3 formula characterizes a property that distinguishes these graphs:

© =dx,y,z E(x,y) NEX, D) ATEQW, D) AXF D) AKX FY)AQY F2)

C> can distinguish these graphs — 2-WL and hence 3-GNN can distinguish these graphs.
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(a) Hierarchical 1-2-3-GNN network architecture (b) Pooling from 2- to 3-GNN.

Figure 1: Illustration of the proposed hierarchical variant of the £-GNN layer. For each subgraph S on k nodes a feature f is learned,
which is initialized with the learned features of all (kK — 1)-element subgraphs of S. Hence, a hierarchical representation of the input
graph is learned.

Hierarchical variants of k-GNNSs: 1-k-GNNs representations learned at
Idea: Applying the usual message passing (1-WL), and then using the resulting representations to
learn representations for , with a higher-order message passing (2-WL), etc.
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Hierarchical Vanants
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(a) Hierarchical 1-2-3-GNN network architecture (b) Pooling from 2- to 3-GNN.

Figure 1: Illustration of the proposed hierarchical variant of the £-GNN layer. For each subgraph S on k nodes a feature f is learned,
which is initialized with the learned features of all (kK — 1)-element subgraphs of S. Hence, a hierarchical representation of the input

graph is learned.

Intuition: Initial messages in a k-GNN are based on the output of GNNs, which allows the

model to effectively capture graph structures of

Practice: Many real-world graphs inherit a hierarchical structure, and so a hierarchical message passing
approach is potentially helpful — and this is empirically confirmed in the evaluation (Morris et al., 2019).
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Limitations of k~-GNNs

Excessive memory requirements: k-GNNs have (k — 1)-WL expressive power, but need O(] Vlk) memory to
run. These higher-order models require In practice.

In fact, it is implemented only up to 3-GNNs (corresponding to 2-WL expressiveness), which already requires

cubic memory allocations — already intractable on existing benchmarks.

Time complexity: The complexity message passing also increases combinatorially in k!

Power: k-GNNs are more expressive than MPNNs, but still limited in their expressive power, as (k+ 1)-GNN is

strictly more expressive than k-GNN for any k > 2.

Inductive bias: Though permutation-invariant, the non-hierarchical version of t

ne algorithm can somewhat lose

the , as only k-tuples are considered.

22



Invariant /Equivariant Graph
Networks



Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-

tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

Idea: A GNN model based on permutation equivariant/invariant

2
Input: A tensor X € R|V| Xd, where the first two channels correspond to the
and the remaining channels encode the initial
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Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-
tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

| k |
can be defined as &£ : Rlvl Xd |y R% such that for all permutations 7t

ZL(n(X)) = L(X).
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Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-

tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

. k1 k2 .
can be defined as £ : R|V| Xdy R|V| Xd, such that for all permutations 7

Z(2(X)) = 7(Z£(X))
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Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-
tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

k
Intermediate representations X € R|V| ><d: k-order tensors where the first k channels are indexed by the
nodes of the graph.

Higher-order: The model is called , as it allows invariant/equivariant layers with k channels, and this
directly correlates with the of the model.

Remark: The hidden variables can be tensors of arbitrary order - even if the input tensor is low-order.
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Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-

tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

Invariant k-order GNNs (Maron et al., 2019b), or k-IGNs, is defined as:
F= MLPO%OngUO coe 06031,

where Sfp ceny de are equivariant linear layers (with up to k different channels), A is an invariant layer,
and o denotes element-wise non-linearity.
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Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-

tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

Invariant by construction:

F(n(X)) = MLP(Z (£ j(++ (£ |(n(X)))-++)
= MLP(Z (Z (- (2(Z(X)))-+*)
= MLP(# (2(Z 4(-+-((Z1(X)))-++) = F(X)
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Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-
tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

Characterizing linear layers: Maron et al. (2019b) characterize all invariant (resp., equivariant) linear functions,
showing that they live in vector spaces of dimension b(k) (respectively, b(k + [)), where b(i) is the i-th Bell number.

Parametrization: The dimension of this space does not depend on | V|, but only on the order of the input and

output tensors - parameterize linearly for all | V| such an operator by the same set of coetfficients.
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Expressive Power of Invariant Graph Networks

Expressive power: k-IGNs are as powerful as (k— 1)-WL test.

Theorem 1 (Maron et al., 2019a). For k > 1, any graphs G, G’ that can be distinguished by the (k — 1)-WL
graph isomorphism test, there exists a k-order network F' so that F(G) # F(G'). On the other direction for
every two isomorphic graphs G, G’ and k-order network F, F(G) = F(G).

Remark: We are using the folklore variant of WL and the original theorem refers to the oblivious version.

If we bound the size of the input graphs with n, then n-th order invariant networks can distinguish any pair of
non-isomorphic graphs. Invariant networks with order-2 tensors could already be computationally challenging!

nn—1)
5

An alternative proof is given by (Keriven and Peyré, 2019), who also showed universality result for EGNs.

Universality (Maron et al., 2019¢c): IGNs are universal, but with tensor order of
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Limitations of Invariant Graph Networks

Excessive memory and time requirement: Prohibitive to run for large values of k, due to their very large

Power: k-IGNs are more expressive than MPNNs, and even universal, but with high-order tensors.

Inductive bias: Similarly to &-GNNs, k-IGNs may lose the of relative to
standard MPNNSs.

Representations: The correspondence with node-level representations and interactions are implicit. This is
unlike &-GNNs, where tuples have representations that are explicitly maintained and updated.

Information propagation: Not solely through edge-connected nodes. Indeed, k-IGNs are inherently designed
for computations which are more global.
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Provably Powerful Graph
Networks



Provably Powerful Graph Networks

Provably powerful graph networks (PPGNSs) are special type

of invariant networks, motivated by the search for more
yet still - GNN models:

F=MLPoJ o3 o-0RB,

where, & is an invariant layer, and 9551» cees %d are blocks
have the structure shown in Figure 2 of (Maron et al., 2019a).

Idea: Given an input X € RIVXIVIXd 3551y MLPs in each block to
each feature of the input tensor independently (i.e., 3 MLPs), and
then perform matrix multiplication between matching features.

34
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Figure 2: Block structure.



Provably Powerful Graph Networks

Invariant: Matrix multiplication is , and so the
is equivariant, which makes the overall function

Expressive power: PPGNs are than

MPNNs. In fact, PPGNs can distinguish any pair of graphs that
can be distinguished by 2-WL.

Intuitively, the matrix multiplication yields a richer aggregation,
which enables 2-WL aggregation.

Memory requirements: PPGNs have the as 3-GNNs,

but they maintain only O(n?%) embeddings, which makes them
than 3-GNNs.
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Figure 2: Block structure.



Expressive Power In the
Real World




Expressive Power in Real-World Data

Figure 5 of (Newman, 2013)

MPNNs cannot distinguish very basic graph pairs, but this limitation is not very pronounced empirically, as

modern-day benchmarks are

to include limiting cases.

Variability: 1-WL edge cases typically correspond to data that is , whereas real-world data is

overwhelmingly and

Size: Real-world graphs are typically

distinguish graphs as the number of graph nodes tenc

and involve thousanc

37

s, and potentially millions, of nodes: 1-WL can
s to infinity (Babai et al., 1980).



Expressive Power in Real-World Data

Figure 5 of (Newman, 2013)

MPNNs cannot distinguish very basic graph pairs, but this limitation is not very pronounced empirically, as
modern-day benchmarks are to include limiting cases.

Node features: Rich features on most real-world graphs, yielding unique node features: 1-WL can distinguish
all such graphs! Positional encodings to enrich the node features, or randomized features:

Datasets: Synthetic datasets dedicated to quantify the effect of expressive power are proposed (Abboud et al.,
2021) with a detailed comparison against higher-order models:
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Expressive Power in Real-World Data

Figure 5 of (Newman, 2013)

There is an excellent survey covering observed in real-world data (Newman, 2013):

“In many networks it is found that if vertex A is connected to vertex B and vertex B to vertex C, then there is a
heightened probability that vertex A will also be connected to vertex C. In the language of social networks, the
friend of your friend is likely also to be your friend.”

triangles in the network
C=3X it 5

#connected triples of vertices
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Expressive Power in Real-World Data

Figure 5 of (Newman, 2013)

“In simple terms, C is the mean that two vertices that are network neighbors of the same other
vertex will themselves be neighbors.” (Newman, 2013)

The graph shown above has 1 triangle and 8 connected triples, and so has a clustering coefficient of 3/8 .

There are other ways of defining cluster coefficient but they rely on being able to detect triangles.
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Homophily and Heterophily



Homophily and Heterophily

N AN

Homophily: Describes a strong between nodes and their neighbors within a graph, i.e., a

node is highly likely to share features and attributes with its neighbors in the graph.

Example: Citation networks, where connected papers tend to tackle

Heterophily: Describes between nodes and their neighbors, i.e., a node tends to have
contrasting features relative to its neighbors.

Example: , as the proteins interacting with each other may differ from a composition perspective.
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Homophily and Heterophily

N AN

Data-driven inductive bias: Unlike permutation-invariance, the bias does rely on structural properties of
graphs, but on the and the specific input instances.

Practical: These biases are prominent in real-world applications, and are commonly exploited.

Local vs global: MPNNs employ operations and neighbor aggregation. Easy to capture correlations by

simply adjusting combination and aggregation weights.

Higher-order models are more . k-GNN requires handling of its tuples, based on local
neighborhoods, and k-IGN processes ~and so must learn to filter out non-local features.
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Summary

The and its relevance to GNNs

Higher-order graph neural networks

o neural networks: k-GNNSs, hierarchical variants, limitations
. . universality, limitations
o . expressive power, scalability

Lack of expressive power may not surface in existing benchmarks.
and : MPNNSs vs higher-order models

There are other extensions of MPNNs, particularly with random features, yielding more expressive
power without the need for higher-order tensors —
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