
      İsmail İlkan Ceylan                   Advanced Topics in Machine Learning, University of Oxford                              26.02.2021

Relational Learning  

1

Lecture 6: Higher-Order Graph Neural Networks
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Our focus so far was on MPNNs  

h(t)
u = combine(t)(h(t−1)

u , aggregate(t)({h(t−1)
v ∣ v ∈ N(u)}))
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…and on popular instances of MPNNs 

                                       h(t)
u = GRU(h(t−1)

u , ∑
v∈N(u)

W(t)h(t−1)
v )
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…and on popular instances of MPNNs 

                                       h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v

N(u) + N(v) )



Encoder-Decoder

5

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

…and on popular instances of MPNNs 

                                       h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

α(u,v) h(t−1)
v )
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Today’s Lecture: Graph neural networks beyond MPNNs



Graph Neural Networks: A General Perspective
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Initial motivation (Lecture 3): Learn functions over graphs with invariance (resp., equivariance) to node 
orderings: no need to be via a specific message passing framework, or even, message passing. 

A more general definition: In a graph neural network, nodes of the input graph are assigned vector 
representations, which are updated iteratively through series of invariant or equivariant computational layers. 

Today’s Lecture: Higher-order graph neural networks, which use higher-order representations of the graphs, 
e.g., higher-order tensors, to be able to approximate a larger class of functions.



Overview

• The Weisfeiler-Lehman hierarchy 

• Higher-order graph neural networks 

• Higher-order message passing neural networks: k-GNNs 

• Invariant/Equivariant graph networks 

• Provably powerful graph networks 

• Expressive power in real-world data 

• Homophily and heterophily  

• Summary
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The Weisfeiler-Lehman Hierarchy
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A Tale of Two Graphs 
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Refresher: 1-WL cannot distinguish the nodes in the respective graphs — and so neither can MPNNs. 

Question: What if we extend the 1-WL algorithm to consider, e.g., pairs of nodes when coloring? 

This extended algorithm is called the 2-dimensional WL algorithm, and it can distinguish these two graphs!



Folklore -dimensional Weisfeiler-Lehmank
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For a WL-dimension , the -WL algorithm is as follows: 

• Consider -tuples  of nodes.  

• Consider a coloring function  that colors each -tuple 
of nodes of the graph with a color from a set  of colors.  

• This color will depend on the isomorphism type of the tuple, e.g., a 
-cycle and a -tree will have different colors. 

Partitions  of  and the refinement relation  is as before. 

Note: A -tuple is denoted as , a substitution as

 and each coloring respects 
the isomorphism type of a tuple in graph. 

k ∈ ℕ k

k (v1, …, vk) ∈ Vk
G

λ : Vk
G ↦ C k

C

k k

π(λ) VG ⪯

k t = (u1, …, uk)
t[v/i] = (u1, …, ui−1, v, ui+1, …, uk)



Folklore -dimensional Weisfeiler-Lehmank
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Algorithm: Given a graph , a dimension , and an initial coloring  of -tuples: 

1. Initialization: All -tuples , are initialized to their initial colors . 

2. Refinement: The color of a -tuple  is refined by combining the colors of its 
neighborhood, which is defined as the set of all -tuples in which one node differs from : 

  , 

where double-braces denote a multiset, and  bijectively maps any pair to a unique value in . 

3. Stop: Terminates on a stable coloring is reached, at iteration , where  is the minimal integer satisfying 

                 .

G = (V, E) k ≥ 1 λ(0) k

k t ∈ Vk
G λ(0)(t)

k t = (u1, …, uk)
k t

λ(i+1)(t) = 𝖧𝖠𝖲𝖧(λ(i)(t), {{(λ(i)(t[v/1]), …, λ(i)(t[v/k])) ∣ v ∈ VG}})
𝖧𝖠𝖲𝖧 C

j j

∀t, t′ ∈ Vk
G : λ( j+1)(t) = λ( j+1)(t′ ) if and only if λ( j)(t) = λ( j)(t′ )



Folklore -dimensional Weisfeiler-Lehmank
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-WL: Different versions of -WL lead to inconsistent dimension counts. 
We follow Cai et al. (1992),  which is also known as the folklore WL 
algorithm, or -FWL (Grohe, 2021). 

In the non-folklore (oblivious) version, the update step is defined 
differently based on set of tuples, instead of ordered tuples. Nevertheless: 

• Both lead to the same expressive power modulo the shift in : For 
any ,  -FWL is equivalent to -WL (Grohe, 2017). 

• The -FWL hierarchy is proper: For each  there is a pair of non-
isomorphic graphs distinguishable by -FWL but not by -FWL. 

• Non-folklore case: -WL and -WL have the same expressive power. 

We write -WL to refer to the folklore version, as it is more standard.

k k

k

k
k ≥ 2 k (k + 1)

k k ≥ 1
(k + 1) k

1 2

k



A Tale of Two Graphs 
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Theorem (Cai et al., 1992). For all , two graphs  and  satisfy the same -sentences if and only if 
-WL does not distinguish them.  

The graphs can be distinguished by the following sentence: 

      

That is, there are -sentences, distinguishing these graphs, and so must 2-WL.

k ≥ 2 G H 𝖢𝗄

(k − 1)

Φ = ∃x, y, z E(x, y) ∧ E(y, z) ∧ E(x, z) ∧ (x ≠ z) ∧ (x ≠ y) ∧ (y ≠ z)
𝖢𝟥



Higher-Order Graph Neural 
Networks
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Higher-Order Graph Neural Networks
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Higher-order graph neural networks: Graph neural networks which use higher-order representations of the graphs, 
e.g., higher-order message passing, or higher-order tensors, to be able to approximate a larger class of functions.



Higher-Order Message Passing 
Neural Networks
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Weisfeiler-Lehman: From 1-GNNs to -GNNsk
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The -GNN model (Morris et al., 2019) is a generalization of MPNNs based on the -WL algorithm. 

Idea: Higher-order message passing between subgraph structures, rather than individual nodes.   

Intuition: This form of message passing can capture structural information that is not visible at the node-level. 

k (k − 1)



Weisfeiler-Lehman: From 1-GNNs to -GNNsk
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-GNNs of (Morris et al., 2019) have the same power as folklore -WL and can distinguish these graphs. 

The  formula characterizes a property that distinguishes these graphs: 

     

 can distinguish these graphs  2-WL and hence 3-GNN can distinguish these graphs.

3 2

𝖢𝟥

Φ = ∃x, y, z E(x, y) ∧ E(x, z) ∧ ¬E(y, z) ∧ (x ≠ z) ∧ (x ≠ y) ∧ (y ≠ z)
𝖢𝟥 →



Hierarchical Variants
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Hierarchical variants of -GNNs: 1- -GNNs combine representations learned at different granularities.  

Idea: Applying the usual node-level message passing (1-WL), and then using the resulting representations to 
learn representations for pairs of nodes, with a higher-order message passing (2-WL), etc.

k k



Hierarchical Variants
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Intuition: Initial messages in a -GNN are based on the output of lower-dimensional GNNs, which allows the 
model to effectively capture graph structures of varying granularity.  

Practice: Many real-world graphs inherit a hierarchical structure, and so a hierarchical message passing 
approach is potentially helpful — and this is empirically confirmed in the evaluation (Morris et al., 2019).

k



Limitations of -GNNsk
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Excessive memory requirements: -GNNs have -WL expressive power, but need  memory to 
run. These higher-order models require intractably-sized intermediate tensors in practice. 

In fact, it is implemented only up to -GNNs (corresponding to -WL expressiveness), which already requires 
cubic memory allocations — already intractable on existing benchmarks. 

Time complexity: The complexity message passing also increases combinatorially in !  

Power: -GNNs are more expressive than MPNNs, but still limited in their expressive power, as -GNN is 
strictly more expressive than -GNN for any . 

Inductive bias: Though permutation-invariant, the non-hierarchical version of the algorithm can somewhat lose 
the explicit connection to node-level information, as only -tuples are considered. 

k (k − 1) O( |V |k )

3 2

k

k (k + 1)
k k ≥ 2

k



Invariant/Equivariant Graph 
Networks
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Invariant/Equivariant Graph Networks

24

Idea: A GNN model based on permutation equivariant/invariant tensor operations.  

Input: A tensor , where the first two channels correspond to the adjacency matrix of the graph 
and the remaining channels encode the initial node features.

X ∈ ℝ|V|2×d



Invariant/Equivariant Graph Networks
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A linear invariant layer can be defined as  such that for all permutations :                

                                               .

ℒ : ℝ|V|k×d1 ↦ ℝd2 π

ℒ(π(X)) = ℒ(X)



Invariant/Equivariant Graph Networks
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A linear equivariant layer can be defined as  such that for all permutations :  

                                              .

ℒ : ℝ|V|k1×d1 ↦ ℝ|V|k2×d2 π

ℒ(π(X)) = π(ℒ(X))



Invariant/Equivariant Graph Networks
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Intermediate representations : -order tensors where the first  channels are indexed by the 
nodes of the graph.  

Higher-order: The model is called -order, as it allows invariant/equivariant layers with  channels, and this 
directly correlates with the expressive power of the model. 

Remark: The hidden variables can be tensors of arbitrary order - even if the input tensor is low-order.

X ∈ ℝ|V|k×d k k

k k



Invariant/Equivariant Graph Networks
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Invariant -order GNNs (Maron et al., 2019b), or -IGNs, is defined as:  

                                    , 

where  are equivariant linear layers (with up to  different channels),  is an invariant layer, 
and  denotes element-wise non-linearity. 

k k

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℒd ∘ σ ∘ ⋯ ∘ σ ∘ ℒ1

ℒ1, …, ℒd k ℋ
σ



Invariant/Equivariant Graph Networks
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Invariant by construction: 

    

F(π(X)) = 𝖬𝖫𝖯(ℋ(ℒd(⋯(ℒ1(π(X)))⋯)
= 𝖬𝖫𝖯(ℋ(ℒd(⋯(π(ℒ1(X)))⋯)
= 𝖬𝖫𝖯(ℋ(π(ℒd(⋯((ℒ1(X)))⋯) = F(X)



Invariant/Equivariant Graph Networks
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Characterizing linear layers: Maron et al. (2019b) characterize all invariant (resp., equivariant) linear functions, 
showing that they live in vector spaces of dimension  (respectively, ), where  is the -th Bell number.  

Parametrization: The dimension of this space does not depend on , but only on the order of the input and 
output tensors - parameterize linearly for all  such an operator by the same set of coefficients.

b(k) b(k + l) b(i) i

|V |
|V |



Expressive Power of Invariant Graph Networks
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Expressive power: -IGNs are as powerful as -WL test. 

Theorem 1 (Maron et al., 2019a). For , any graphs  that can be distinguished by the -WL 
graph isomorphism test, there exists a -order network  so that . On the other direction for 
every two isomorphic graphs  and -order network , . 

Remark: We are using the folklore variant of WL and the original theorem refers to the oblivious version. 

If we bound the size of the input graphs with , then -th order invariant networks can distinguish any pair of 
non-isomorphic graphs. Invariant networks with order-2 tensors could already be computationally challenging! 

Universality (Maron et al., 2019c): IGNs are universal, but with tensor order of  .  

An alternative proof is given by (Keriven and Peyré, 2019), who also showed universality result for EGNs.

k (k − 1)

k > 1 G, G′ (k − 1)
k F F(G) ≠ F(G′ )

G, G′ k F F(G) = F(G′ )

n n

n(n − 1)
2



Limitations of Invariant Graph Networks
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Excessive memory and time requirement: Prohibitive to run for large values of , due to their very large 
memory and computational requirements.  

Power: -IGNs are more expressive than MPNNs, and even universal, but with high-order tensors. 

Inductive bias: Similarly to -GNNs, -IGNs may lose the inductive bias of node information relative to 
standard MPNNs.  

Representations: The correspondence with node-level representations and interactions are implicit. This is 
unlike -GNNs, where tuples have representations that are explicitly maintained and updated. 

Information propagation: Not solely through edge-connected nodes. Indeed, -IGNs are inherently designed 
for graph-level computations which are more global. 

k

k

k k

k

k



Provably Powerful Graph 
Networks
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Provably Powerful Graph Networks
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Provably powerful graph networks (PPGNs) are special type 
of invariant networks, motivated by the search for more expressive, 
yet still scalable, GNN models: 

              , 

where,  is an invariant layer, and  are blocks 
have the structure shown in Figure 2 of (Maron et al., 2019a). 

Idea: Given an input  apply MLPs in each block to 
each feature of the input tensor independently (i.e., 3 MLPs), and 
then perform matrix multiplication between matching features.

F = 𝖬𝖫𝖯 ∘ ℋ ∘ ℬd ∘ ⋯ ∘ ℬ1

ℋ ℬ1, …, ℬd

X ∈ ℝ|V|×|V|×d



Provably Powerful Graph Networks
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Invariant: Matrix multiplication is equivariant, and so the building 
block is equivariant, which makes the overall function invariant. 

Expressive power: PPGNs are strictly more powerful than 
MPNNs. In fact, PPGNs can distinguish any pair of graphs that 
can be distinguished by 2-WL. 

Intuitively, the matrix multiplication yields a richer aggregation, 
which enables 2-WL aggregation. 

Memory requirements: PPGNs have the same power as 3-GNNs, 
but they maintain only  embeddings, which makes them 
more memory-efficient than 3-GNNs.

O(n2)



Expressive Power in the  
Real World
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Expressive Power in Real-World Data
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MPNNs cannot distinguish very basic graph pairs, but this limitation is not very pronounced empirically, as 
modern-day benchmarks are unlikely to include limiting cases. 

Variability: 1-WL edge cases typically correspond to data that is highly regular, whereas real-world data is 
overwhelmingly uneven and variable.  

Size: Real-world graphs are typically large, and involve thousands, and potentially millions, of nodes: 1-WL can 
distinguish almost all graphs as the number of graph nodes tends to infinity (Babai et al., 1980).

              Figure 5 of (Newman, 2013)



Expressive Power in Real-World Data
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MPNNs cannot distinguish very basic graph pairs, but this limitation is not very pronounced empirically, as 
modern-day benchmarks are unlikely to include limiting cases. 

Node features: Rich features on most real-world graphs, yielding unique node features: 1-WL can distinguish 
all such graphs! Positional encodings to enrich the node features, or randomized features: Lecture 7. 

Datasets: Synthetic datasets dedicated to quantify the effect of expressive power are proposed (Abboud et al., 
2021) with a detailed comparison against higher-order models: Lecture 7. 

              Figure 5 of (Newman, 2013)



Expressive Power in Real-World Data
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There is an excellent survey covering types of graphs observed in real-world data (Newman, 2013): 

“In many networks it is found that if vertex A is connected to vertex B and vertex B to vertex C, then there is a 
heightened probability that vertex A will also be connected to vertex C. In the language of social networks, the 
friend of your friend is likely also to be your friend.” 

              C = 3 ×
#triangles in the network

#connected triples of vertices

              Figure 5 of (Newman, 2013)



Expressive Power in Real-World Data
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              Figure 5 of (Newman, 2013)

“In simple terms,  is the mean probability that two vertices that are network neighbors of the same other 
vertex will themselves be neighbors.” (Newman, 2013) 

The graph shown above has 1 triangle and 8 connected triples, and so has a clustering coefficient of 3/8 . 

There are other ways of defining cluster coefficient but they rely on being able to detect triangles.

C



Homophily and Heterophily
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Homophily and Heterophily
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Homophily: Describes a strong positive correlation between nodes and their neighbors within a graph, i.e., a 
node is highly likely to share features and attributes with its neighbors in the graph.  

Example: Citation networks, where connected papers tend to tackle similar research areas.  

Heterophily: Describes negative correlations between nodes and their neighbors, i.e., a node tends to have 
contrasting features relative to its neighbors.  

Example: Protein graphs, as the proteins interacting with each other may differ from a composition perspective.



Homophily and Heterophily
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Data-driven inductive bias: Unlike permutation-invariance, the bias does not rely on structural properties of 
graphs, but on the application domain and the specific input instances.  

Practical: These biases are prominent in real-world applications, and are commonly exploited. 

Local vs global: MPNNs employ local operations and neighbor aggregation. Easy to capture correlations by 
simply adjusting combination and aggregation weights. 

Higher-order models are more global: -GNN requires non-uniform handling of its tuples, based on local 
neighborhoods, and -IGN processes all nodes simultaneously, and so must learn to filter out non-local features.

k
k



Summary
• The WL hierarchy and its relevance to GNNs 

• Higher-order graph neural networks 

• Higher-order message passing neural networks: -GNNs, hierarchical variants, limitations 

• Invariant/Equivariant graph networks: universality, limitations 

• Provably powerful graph neural networks: expressive power, scalability 

• Lack of expressive power may not surface in existing benchmarks. 

• Homophily and heterophily: MPNNs vs higher-order models 

• There are other extensions of MPNNs, particularly with random features, yielding more expressive 
power without the need for higher-order tensors — Lecture 7.

k
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