Lecture 6: Higher-Order Graph Neural Networks

Relational Learning

Ismail Ilkan Ceylan Advanced Topics in Machine Learning, University of Oxford 26.02.2021

T

Encoder-Decoder

E » (7 = (V, E) nd G’

N\

" 7

8

Our focus so far was on MPNNs

h?) = combine(”<h§f—1), aggregate(t)({h‘(f_l) v e N(u)}))

2

Encoder-Decoder

R G’

/
Uy

Enc E .. E Dec <
\ /)</
Z Z
l/tl u8 /
/ Uu
%

8

...and on popular instances of MPNNs

h(= GRU(hgf—”, Y W<f>h$j—1>)
vEN(u)

Encoder-Decoder

R G’

/
Uy

Enc E .. E Dec <
\ /)</
Z Z
l/tl u8 /
/ Uu
%

8

...and on popular instances of MPNNs

h(—D
hgﬁ — G(W(t) Z -)

veNu)U{u} \/N(I/t) T N(V)

Encoder-Decoder

h = a(W@ Y hff‘”)
veNu)u{u}

R = iR
s

Encoder-Decoder

R G

8

Today's Lecture: Graph neural networks beyond MPNNs

Graph Neural Networks: A General Perspective
<K

Initial motivation (Lecture 3): Learn functions over graphs with invariance (resp., equivariance) to node
orderings: no need to be via a specific message passing framework, or even, message passing.

A more general definition: In a graph neural network, nodes of the input graph are assigned vector
representations, which are updated iteratively through series of or computational layers.

Today’s Lecture: , which use higher-order representations of the graphs,

e.g., higher-order tensors, to be able to approximate a larger class of functions.

Overview

The Weisfeiler-Lehman hierarchy

Higher-order graph neural networks

e Higher-order message passing neural networks: k-GNNs
* Invariant/Equivariant graph networks

e Provably powerful graph networks

Expressive power in real-world data

Homophily and heterophily

Summary

The Weisteiler-Lehman Hierarchy

A Tale of Two Graphs

N

NN C)

Refresher: 1-WL the nodes in the respective graphs — and so neither can MPNNSs.
Question: What if we extend the 1-WL algorithm to consider, e.g., when coloring?

This extended algorithm is called the 2-dimensional WL algorithm, and it these two graphs!

10

Folklore k~-dimensional Weisfeiler-Lehman

For a WL-dimension k € N, the &~-WL algorithm is as follows:

* Consider (Vl, ey Vk) = Vg of nodes.

* Consider a coloring function A : Vé — C that each
of the graph with a color from a set C of colors.

e This color will depend on the of the tuple, e.g., a
k-cycle and a k-tree will have different colors.

Partitions m(4) of V. and the refinement relation < is as before.

Note: A k-tuple is denoted as I = (l/tl, ey uk), a substitution as
tv/i] = (l/tl, e Wi s Vo Ui 15 e ey uk) and each coloring respects
the isomorphism type of a tuple in graph.

11

Folklore k~-dimensional Weisfeiler-Lehman

Algorithm: Given a graph G = (V, E), a k> 1, and an /1(0) of k-tuples:

1. Initialization: All [© Vé, are to their initial colors ﬂ(o)(t).

2. Refinement: The color of a k-tuple I = (ul, Cees Ltk) IS by combining the colors of its
neighborhood, which is defined as the set of all k-tuples in which from t:

A1) = HASH(N@), LAV, ..., AVvIkD)) | v e VG}}),

where double-braces denote a , and HASH bijectively maps any to a unique value in C.

3. Stop: Terminates on a is reached, at iteration j, where j is the integer satisfying

Vi,t' € V& : AVTD() = 2UtD() if and only if AY(r) = AY(1).

12

Folklore k~-dimensional Weisfeiler-Lehman

k-WL: Different versions of k-WL lead to

We follow Cai et al. (1992), which is also known as the
, or k-FWL (Grohe, 2021).

In the non-folklore (oblivious) version, the update step is defined
differently based on set of tuples, instead of ordered tuples. Nevertheless:

e Both lead to the same expressive power modulo the shift in k: For
any k > 2. is equivalent to (Grohe, 2017).

e The &-FWL hierarchy is proper: For each kK > 1 there is a pair of non-
isomorphic graphs distinguishable by but not by

e Non-folklore case: 1-WL and 2-WL have the same expressive power.

We write k-WL to refer to the folklore version, as it is more standard.

13

A Tale of Two Graphs
 o0— / \
\‘ \‘ AN /

Theorem (Cai et al., 1992). For all k > 2, two graphs G and H satisfy the same CK-sentences if and only if
(k — 1)-WL does not distinguish them.

The graphs can be distinguished by the following sentence:

O =3, V, 2 E&,WAEGV,DAEX,DAXE DA FYAG #2)

That is, there are C3-sentences, distinguishing these graphs, and so must 2-WL.

14

Higher-Order Graph Neural
Networks

Higher-Order Graph Neural Networks
e /
N

\

Higher-order graph neural networks: Graph neural networks which use of the graphs,

e.g., higher-order message passing, or higher-order tensors, to be able to approximate a larger class of functions.

16

Higher-Order Message Passing
Neural Networks

Woeisfeiler-Lehman: From 1-GNNs to k~-GNNs

NV VRGN

The &~-GNN model (Morris et al., 2019) is a of MPNNs based on the (k — 1)-WL algorithm.

Idea: Higher-order message passing between , rather than individual nodes.

Intuition: This form of message passing can capture that is not visible at the node-level.

18

Woeisfeiler-Lehman: From 1-GNNs to k~-GNNs

NV VRGN

3-GNNs of (Morris et al., 2019) have the same power as folklore 2-WL and can distinguish these graphs.

The C3 formula characterizes a property that distinguishes these graphs:

© =dx,y,z E(x,y) NEX, D) ATEQW, D) AXF D) AKX FY)AQY F2)

C> can distinguish these graphs — 2-WL and hence 3-GNN can distinguish these graphs.

19

Hierarchical Vanants

- I \ r D s \ ;JPOOI s Y \
o :
/O\

| d

e o . S O—0

iR Ak . 7
0]

1-GNN 2-GNN 3-GNN MLP
l : L || Pool || L 4
Learning higher-order graph properties .
(a) Hierarchical 1-2-3-GNN network architecture (b) Pooling from 2- to 3-GNN.

Figure 1: Illustration of the proposed hierarchical variant of the £-GNN layer. For each subgraph S on k nodes a feature f is learned,
which is initialized with the learned features of all (kK — 1)-element subgraphs of S. Hence, a hierarchical representation of the input
graph is learned.

Hierarchical variants of k-GNNSs: 1-k-GNNs representations learned at
Idea: Applying the usual message passing (1-WL), and then using the resulting representations to
learn representations for , with a higher-order message passing (2-WL), etc.

20

Hierarchical Vanants

[l Pool l ¥

o :

/O\

| d
e o . S O—0
iR Ak . 7

0]
1-GNN 2-GNN 3-GNN MLP
J 1)) :)
Learning higher-order graph properties . ——J
(a) Hierarchical 1-2-3-GNN network architecture (b) Pooling from 2- to 3-GNN.

Figure 1: Illustration of the proposed hierarchical variant of the £-GNN layer. For each subgraph S on k nodes a feature f is learned,
which is initialized with the learned features of all (kK — 1)-element subgraphs of S. Hence, a hierarchical representation of the input

graph is learned.

Intuition: Initial messages in a k-GNN are based on the output of GNNs, which allows the

model to effectively capture graph structures of

Practice: Many real-world graphs inherit a hierarchical structure, and so a hierarchical message passing
approach is potentially helpful — and this is empirically confirmed in the evaluation (Morris et al., 2019).

21

Limitations of k~-GNNs

Excessive memory requirements: k-GNNs have (k — 1)-WL expressive power, but need O(] Vlk) memory to
run. These higher-order models require In practice.

In fact, it is implemented only up to 3-GNNs (corresponding to 2-WL expressiveness), which already requires

cubic memory allocations — already intractable on existing benchmarks.

Time complexity: The complexity message passing also increases combinatorially in k!

Power: k-GNNs are more expressive than MPNNs, but still limited in their expressive power, as (k+ 1)-GNN is

strictly more expressive than k-GNN for any k > 2.

Inductive bias: Though permutation-invariant, the non-hierarchical version of t

ne algorithm can somewhat lose

the , as only k-tuples are considered.

22

Invariant /Equivariant Graph
Networks

Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-

tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

Idea: A GNN model based on permutation equivariant/invariant

2
Input: A tensor X € R|V| Xd, where the first two channels correspond to the
and the remaining channels encode the initial

24

Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-
tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

| k |
can be defined as &£ : Rlvl Xd |y R% such that for all permutations 7t

ZL(n(X)) = L(X).

25

Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-

tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

. k1 k2 .
can be defined as £ : R|V| Xdy R|V| Xd, such that for all permutations 7

Z(2(X)) = 7(Z£(X))

26

Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-
tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

k
Intermediate representations X € R|V| ><d: k-order tensors where the first k channels are indexed by the
nodes of the graph.

Higher-order: The model is called , as it allows invariant/equivariant layers with k channels, and this
directly correlates with the of the model.

Remark: The hidden variables can be tensors of arbitrary order - even if the input tensor is low-order.

27

Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-

tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

Invariant k-order GNNs (Maron et al., 2019b), or k-IGNs, is defined as:
F= MLPO%OngUO coe 06031,

where Sfp ceny de are equivariant linear layers (with up to k different channels), A is an invariant layer,
and o denotes element-wise non-linearity.

28

Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-

tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

Invariant by construction:

F(n(X)) = MLP(Z (£ j(++ (£ |(n(X)))-++)
= MLP(Z (Z (- (2(Z(X)))-+*)
= MLP(# (2(Z 4(-+-((Z1(X)))-++) = F(X)

29

Invariant /Equivariant Graph Networks

r € R" »ILiP| Lo oo oL, h PImPEF(z)cR

Figure 1. Illustration of invariant network architecture. The func-
tion is composed of multiple linear G-equivariant layers (gray),
possibly of high order, and ends with a linear GG-invariant function
(light blue) followed by a Multi Layer Perceptron (yellow).

Characterizing linear layers: Maron et al. (2019b) characterize all invariant (resp., equivariant) linear functions,
showing that they live in vector spaces of dimension b(k) (respectively, b(k + [)), where b(i) is the i-th Bell number.

Parametrization: The dimension of this space does not depend on | V|, but only on the order of the input and

output tensors - parameterize linearly for all | V| such an operator by the same set of coetfficients.

30

Expressive Power of Invariant Graph Networks

Expressive power: k-IGNs are as powerful as (k— 1)-WL test.

Theorem 1 (Maron et al., 2019a). For k > 1, any graphs G, G’ that can be distinguished by the (k — 1)-WL
graph isomorphism test, there exists a k-order network F' so that F(G) # F(G'). On the other direction for
every two isomorphic graphs G, G’ and k-order network F, F(G) = F(G).

Remark: We are using the folklore variant of WL and the original theorem refers to the oblivious version.

If we bound the size of the input graphs with n, then n-th order invariant networks can distinguish any pair of
non-isomorphic graphs. Invariant networks with order-2 tensors could already be computationally challenging!

nn—1)
5

An alternative proof is given by (Keriven and Peyré, 2019), who also showed universality result for EGNs.

Universality (Maron et al., 2019¢c): IGNs are universal, but with tensor order of

31

Limitations of Invariant Graph Networks

Excessive memory and time requirement: Prohibitive to run for large values of k, due to their very large

Power: k-IGNs are more expressive than MPNNs, and even universal, but with high-order tensors.

Inductive bias: Similarly to &-GNNs, k-IGNs may lose the of relative to
standard MPNNSs.

Representations: The correspondence with node-level representations and interactions are implicit. This is
unlike &-GNNs, where tuples have representations that are explicitly maintained and updated.

Information propagation: Not solely through edge-connected nodes. Indeed, k-IGNs are inherently designed
for computations which are more global.

32

Provably Powerful Graph
Networks

Provably Powerful Graph Networks

Provably powerful graph networks (PPGNSs) are special type

of invariant networks, motivated by the search for more
yet still - GNN models:

F=MLPoJ o3 o-0RB,

where, & is an invariant layer, and 9551» cees %d are blocks
have the structure shown in Figure 2 of (Maron et al., 2019a).

Idea: Given an input X € RIVXIVIXd 3551y MLPs in each block to
each feature of the input tensor independently (i.e., 3 MLPs), and
then perform matrix multiplication between matching features.

34

MLP;s

Figure 2: Block structure.

Provably Powerful Graph Networks

Invariant: Matrix multiplication is , and so the
is equivariant, which makes the overall function

Expressive power: PPGNs are than

MPNNs. In fact, PPGNs can distinguish any pair of graphs that
can be distinguished by 2-WL.

Intuitively, the matrix multiplication yields a richer aggregation,
which enables 2-WL aggregation.

Memory requirements: PPGNs have the as 3-GNNs,

but they maintain only O(n?%) embeddings, which makes them
than 3-GNNs.

35

MLP;

Figure 2: Block structure.

Expressive Power In the
Real World

Expressive Power in Real-World Data

Figure 5 of (Newman, 2013)

MPNNs cannot distinguish very basic graph pairs, but this limitation is not very pronounced empirically, as

modern-day benchmarks are

to include limiting cases.

Variability: 1-WL edge cases typically correspond to data that is , whereas real-world data is

overwhelmingly and

Size: Real-world graphs are typically

distinguish graphs as the number of graph nodes tenc

and involve thousanc

37

s, and potentially millions, of nodes: 1-WL can
s to infinity (Babai et al., 1980).

Expressive Power in Real-World Data

Figure 5 of (Newman, 2013)

MPNNs cannot distinguish very basic graph pairs, but this limitation is not very pronounced empirically, as
modern-day benchmarks are to include limiting cases.

Node features: Rich features on most real-world graphs, yielding unique node features: 1-WL can distinguish
all such graphs! Positional encodings to enrich the node features, or randomized features:

Datasets: Synthetic datasets dedicated to quantify the effect of expressive power are proposed (Abboud et al.,
2021) with a detailed comparison against higher-order models:

38

Expressive Power in Real-World Data

Figure 5 of (Newman, 2013)

There is an excellent survey covering observed in real-world data (Newman, 2013):

“In many networks it is found that if vertex A is connected to vertex B and vertex B to vertex C, then there is a
heightened probability that vertex A will also be connected to vertex C. In the language of social networks, the
friend of your friend is likely also to be your friend.”

triangles in the network
C=3X it 5

#connected triples of vertices

39

Expressive Power in Real-World Data

Figure 5 of (Newman, 2013)

“In simple terms, C is the mean that two vertices that are network neighbors of the same other
vertex will themselves be neighbors.” (Newman, 2013)

The graph shown above has 1 triangle and 8 connected triples, and so has a clustering coefficient of 3/8 .

There are other ways of defining cluster coefficient but they rely on being able to detect triangles.

40

Homophily and Heterophily

Homophily and Heterophily

N AN

Homophily: Describes a strong between nodes and their neighbors within a graph, i.e., a

node is highly likely to share features and attributes with its neighbors in the graph.

Example: Citation networks, where connected papers tend to tackle

Heterophily: Describes between nodes and their neighbors, i.e., a node tends to have
contrasting features relative to its neighbors.

Example: , as the proteins interacting with each other may differ from a composition perspective.

42

Homophily and Heterophily

N AN

Data-driven inductive bias: Unlike permutation-invariance, the bias does rely on structural properties of
graphs, but on the and the specific input instances.

Practical: These biases are prominent in real-world applications, and are commonly exploited.

Local vs global: MPNNs employ operations and neighbor aggregation. Easy to capture correlations by

simply adjusting combination and aggregation weights.

Higher-order models are more . k-GNN requires handling of its tuples, based on local
neighborhoods, and k-IGN processes ~and so must learn to filter out non-local features.

43

Summary

The and its relevance to GNNs

Higher-order graph neural networks

o neural networks: k-GNNSs, hierarchical variants, limitations
. . universality, limitations
o . expressive power, scalability

Lack of expressive power may not surface in existing benchmarks.
and : MPNNSs vs higher-order models

There are other extensions of MPNNs, particularly with random features, yielding more expressive
power without the need for higher-order tensors —

44

References

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks. NeurlPS, 2019a.
H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and equivariant graph networks. ICLR, 2019b.

H. Maron, E. Fetaya, N. Segol, and Y. Lipman. On the universality of invariant networks. ICML, 2019c.

N. Keriven and G. Peyré, (2019). Universal invariant and equivariant graph neural networks. Neur/PS, 2019.

C. Morris, M. Ritzert, M. Fey, W. Hamilton,J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and Leman go neural: Higher-order
graph neural networks. AAA/, 2019.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303-314,
1989.

Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory. Cambridge University Press, 2017.
Mark E. J. Newman. The structure and function of complex networks. SIAM Review, 2003.

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, Thomas Lukasiewicz, The Surprising Power of Graph Neural Networks with
Random Node Initialization, 1JCAI, 2021

M. Grohe, The Logic of Graph Neural Networks, LICS, 2021.

45

