Design and Analysis of Algorithms

Part 3

Data structures as a tool for algorithm design: heaps, heapsort, and priority queues

Elias Koutsoupias with thanks to Giulio Chiribella

Hilary Term 2022

DAA 2021-22

3. Heaps, Heapsort, and Priority Queues -1/25

Heaps [CLRS 6.1]

A *heap* is a data structure that organizes data in an *essentially complete* rooted tree,

i.e. a rooted tree that is **completely filled on all levels except possibly on the lowest**, *which is* **filled from the left up to a point.**

Example: binary heap, storing numbers (keys) at the nodes of the tree

The *height* of a tree is the longest simple path from the root to a leave. A binary heap with n nodes has height $\lfloor \lg n \rfloor$.

Implementation with arrays

A heap can be implemented by an array without any explicit pointers.

In particular, a *binary* heap can be implemented by an array A as follows:

- \square Root of the binary tree is A[1]
- \Box Left child of A[i] is A[2i].
- \square Right child of A[i] is A[2i+1].
- \square Hence, for i > 0, the parent of node *i* is the node $Parent(i) = \lfloor i/2 \rfloor$.

The heap is stored as the following array:

$$A = \begin{bmatrix} 6 & 4 & 22 & 8 & 11 & 9 & 3 & 32 & 7 & 1 \end{bmatrix}$$

A *max-heap* is a heap that satisfies the

Max-Heap Property: The key of a node (except the root) is less than or equal to the key of its parent.

In the array implementation, the Max-Heap Property Reads: For all $1 < i \le A.heap$ -size: $A[i] \le A[\lfloor i/2 \rfloor]$.

Remarks:

- \Box The maximum element of a max-heap is at the root.
- □ In the following we will focus on *binary max-heaps*. Generally, a max-heap may be k-ary.
- □ One could also define *min-heaps*, where the key of each node (except the root) is larger than or equal to the key of its parent.

This is a max-heap. It can be stored in the array

$$A = \begin{bmatrix} 16 & 10 & 14 & 8 & 9 & 4 & 3 & 2 & 7 & 1 \end{bmatrix}$$

Note that the array A is *not sorted*: it does *not* satisfy the property $A[i] \le A[i-1]$ for every i > 1. However, A satisfies the max-heap property $A[i] \le A[\lfloor i/2 \rfloor]$ for every i > 1. Given an array A, there is a procedure to turn A into a max-heap: MAKE-MAX-HEAP(A)

Takes an array A of n integers and rearranges it into a max-heap of size n.

In turn, MAKE-MAX-HEAP is based on the following procedure: MAX-HEAPIFY(A, i)

Assuming that the left and right subtrees of node *i* are max-heaps, MAX-HEAPIFY transforms the subtree rooted at the node *i* to a max-heap.

DAA 2021-22

MAX-HEAPIFY(A, i)

Input: Assume left and right subtrees of *i* are max-heaps. **Output**: Subtree rooted at *i* is a max-heap.

1 n = A.heap-size 2 l = 2i3 r = 2i + 14 if $l \le n$ and A[l] > A[i] // Lines 4-8: Determine 5 largest = lelse largest = i6 if $r \leq n$ and A[r] > A[largest]7 8 largest = r9 if $largest \neq i$ 10 exchange A[i] with A[largest]MAX-HEAPIFY(A, largest)11

// A[l] is the left-child of A[i]// A[r] is the right-child of A[i]// largest among A[i], A[l] and A[r].

Running time of MAX-HEAPIFY

MAX-HEAPIFY a subtree of size n at node i

- $\Box \quad \Theta(1)$ to find the largest among A[i], A[2i] and A[2i+1].
- The subtree rooted at a child of node i has size upper bounded by 2n/3 (Exercise. Prove this fact.

Proof idea: the worst case is when last row of tree is exactly half full).

- $\Box \quad \text{Thus } T(n) \leq T(2n/3) + \Theta(1).$
- \Box By the Master Theorem, we have

$$T(n) = O(n^0 \log n) = O(\log n).$$

Alternative reasoning:

Define the *height* of a node to be the number of edges on the longest simple downward path from the node to a leaf.

On a node of height h, MAX-HEAPIFY runs for O(h) time at most.

The height of the root of a heap of size n is $\lfloor \lg n \rfloor$, so $T(n) = O(\log n)$.

Idea: starting from the last *non-leave* node, apply MAX-HEAPIFY to the subtree based at that node. Repeat the same procedure for all the previous nodes.

Idea: starting from the last *non-leave* node, apply MAX-HEAPIFY to the subtree based at that node. Repeat the same procedure for all the previous nodes.

Idea: starting from the last *non-leave* node, apply MAX-HEAPIFY to the subtree based at that node. Repeat the same procedure for all the previous nodes.

Idea: starting from the last *non-leave* node, apply MAX-HEAPIFY to the subtree based at that node. Repeat the same procedure for all the previous nodes.

MAKE-MAX-HEAP (example continued)

MAKE-MAX-HEAP (example continued)

Note that the procedure works because at every step the left and right subtrees are max-heaps.

Recall that the leaves are the array elements indexed by $\lceil \frac{n+1}{2} \rceil, \lceil \frac{n+1}{2} \rceil + 1, \cdots, n.$

Make-Max-Heap(A)

Input: An (unsorted) integer array A of length n. **Output**: A heap of size n.

 $1 \quad A.heap-size = A.length$

2 for
$$i = \lceil \frac{n+1}{2} \rceil - 1$$
 downto 1

3 MAX-HEAPIFY(A, i)

Correctness

Loop invariant: Each node $i + 1, i + 2, \dots, n$ is the root of a max-heap.

Initialization

Each node $\lceil \frac{n+1}{2} \rceil$, $\lceil \frac{n+1}{2} \rceil + 1$, \cdots , *n* is a leaf, which is the root of a trivial max-heap. Since $i = \lceil \frac{n+1}{2} \rceil - 1$ before the first iteration, the invariant is initially true.

Maintenance

Suppose $i = i_0 \ge 1$ and assume each node $i_0 + 1, i_0 + 2, \dots, n$ is the root of a max-heap. Executing MAX-HEAPIFY(A, i) causes i_0 to be the root of a new max-heap. Hence each node $i_0, i_0 + 1, \dots, n$ is now the root of a max-heap, meaning that the loop invariant holds after i has been decremented from i_0 to $i_0 - 1$.

Termination

When i = 0 (i.e. after the counter becomes less than 1) the loop terminates. By the loop invariant, each node, in particular node 1, is the root of a max-heap.

DAA 2021-22

Simple (but loose) bound: $O(n \log n)$.

We have O(n) calls to MAX-HEAPIFY, each taking $O(\log n)$ time.

Tighter analysis: O(n).

MAX-HEAPIFY takes linear time in the height of the node it runs on, and "most nodes have small heights".

Fact. The number of nodes of height h is upper bounded by $n/2^h$, and the cost of MAX-HEAPIFY on a node of height h is $\leq ch$, for some c > 0.

Hence, the cost of MAKE-MAX-HEAP is

$$T(n) \le \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{n}{2^h} ch \le cn \left(\sum_{h=0}^{\infty} \frac{h}{2^h}\right) = 2cn \,,$$

Note. For |x| < 1, one has $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$. Differentiating and multiplying by x, we get $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$.

Applications of heaps

- □ Sorting: *heapsort*, an *in-place* sorting algorithm with worst-case complexity $O(n \log n)$.
- □ Efficient implementation of *priority queues*: Max-heap → max-priority queue. Min-heap → min-priority queue. Max-priority queues can be used to schedule jobs on a shared computer. Min-priority queues can be used to simulate events in time.

Remark. Actual implementations often have a *handle* in each heap element that allows access to an object in the application, and objects in the application often have a handle (likely an array index) to access the heap element.

A sorting algorithm based on the heap data structure.

Idea. Given an input array,

- □ Build a max-heap using MAKE-MAX-HEAP.
- □ Starting from the root (maximum element), place the maximum element into the correct place in the array by swapping it with the element in the last position in the array.
- "Discard" this last node decrement the heap size, and call
 MAX-HEAPIFY on the smaller structure with the possibly
 incorrectly-placed root.
- □ Repeat this discarding process until only one node (the minimum) remains, and is therefore in the correct place in the array.

Features:

- \Box $O(n \log n)$ worst case like merge sort.
- \Box Sorts *in place* like insertion sort.

3. Heaps, Heapsort, and Priority Queues – 18 / 25

 $\operatorname{Heapsort}(A)$

- 1 MAKE-MAX-HEAP(A)
- 2 for i = A.heap-size downto 2
- 3 exchange A[1] with A[i]
- 4 A.heap-size = A.heap-size 1
- 5 Max-Heapify(A, 1)

Loop invariant: subarray A[i+1..n] is sorted, and the remaining elements in A[1..i] are \leq than the elements in A[i+1..n]. **Running time**

- \square MAKE-MAX-HEAP takes O(n)
- \Box The for -loop is executed O(n) times.
- \Box Exchange operation takes O(1).
- \Box MAX-HEAPIFY takes $O(\log n)$.

Total time: $O(n \log n)$.

Priority queues [CLRS 6.5]

A Priority queue is an *abstract data structure* for maintaining a set of elements, each with an associated value called a *key*. Max-priority queues give priority to the elements with larger keys, min-priority queues give priority to the elements with smaller keys.

Operations supported by a max-priority queue:

- 1. INSERT(S, x, k) inserts element x with key k into set S.
- 2. MAXIMUM(S) returns the element of S with the largest key.
- 3. EXTRACT-MAX(S) removes and returns the element of S with the largest key.
- 4. INCREASE-KEY(S, x, k) increases value of x's key to k. Requires k to be at least as large as x's current key value.

Priority queues [CLRS 6.5]

A Priority queue is an *abstract data structure* for maintaining a set of elements, each with an associated value called a *key*. Max-priority queues give priority to the elements with larger keys, min-priority queues give priority to the elements with smaller keys.

Operations supported by a max-priority queue:

- 1. INSERT(S, x, k) inserts element x with key k into set S.
- 2. MAXIMUM(S) returns the element of S with the largest key.
- 3. EXTRACT-MAX(S) removes and returns the element of S with the largest key.
- 4. INCREASE-KEY(S, x, k) increases value of x's key to k. Requires k to be at least as large as x's current key value.

Operations supported by a min-priority queue supports INSERT(S, x), MINIMUM(S), EXTRACT-MIN(S) and DECREASE-KEY(S, x, k).

Store the elements e and their keys k (as pairs (e, k)) in an unordered sequence, implemented as an array or a *doubly-linked list*.

- □ Implement INSERT(S, e, k) by inserting (e, k) at the end of the sequence; takes O(1) time.
- □ Implement EXTRACT-MAX(S) by inspecting all elements of the sequence and removing the maximum; takes $\Theta(n)$ time.

We can do better with a heap implementation!

Implementation by heap

- □ A heap offers a good compromise between insertion and extraction. Both operations take $O(\log n)$ time.
- \Box For simplicity, in the following, we identify the element with its key.

Implementation by heap

- □ A heap offers a good compromise between insertion and extraction. Both operations take $O(\log n)$ time.
- \Box For simplicity, in the following, we identify the element with its key.

Finding the maximum

```
\operatorname{Heap-Maximum}(A)
```

return A[1]

Time: $\Theta(1)$

Extracting maximum

- \Box Check that the heap is non-empty.
- \Box Make a copy of the maximum element (root).
- \Box Make the last node in the tree the new root.
- \Box HEAPIFY the array, but *less the last node*.
- \Box Return the copy of the maximum.

Heap-Extract-Max(A)

- 1 if A.heap-size < 1
- 2 **error** "heap underflow"
- 3 max = A[1]
- 4 A[1] = A[A.heap-size]
- 5 A.heap-size = A.heap-size 1
- 6 MAX-HEAPIFY(A, 1)

7 return max

Time: $O(\log n)$, where n is the size of the heap.

Increasing key value

Given set S, entry i, and new key value key:

- 1. Check that key is greater than or equal to *i*'s current value.
- 2. Update *i*'s key value to *key*.
- 3. Traverse the tree upward comparing i to its parent and swapping keys if necessary, until i's key is smaller than its parent's key.

Heap-Increase-Key(A, i, key)

1 **if** key < A[i]

- 2 **error** "new key is smaller than current key"
- 3 A[i] = key
- 4 while i > 1 and A[Parent(i)] < A[i]
- 5 exchange A[i] with A[Parent(i)]
- $6 i = \operatorname{Parent}(i)$

Time. $O(\log n)$

Insertion

Given a key k to insert into the heap:

- □ Insert a new node in the very last position in the tree with key $-\infty$.
- \Box Increase the $-\infty$ key to k using HEAP-INCREASE-KEY

Heap-Insert(A, key)

- 1 A.heap-size = A.heap-size + 1
- 2 $A[A.heap-size] = -\infty$
- 3 HEAP-INCREASE-KEY(A, A.heap-size, key)

Time. $O(\log n)$