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Heaps [CLRS 6.1]
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A heap is a data structure that organizes data in an essentially complete

rooted tree,

i.e. a rooted tree that is completely filled on all levels except possibly on

the lowest, which is filled from the left up to a point.

Example: binary heap, storing numbers (keys) at the nodes of the tree
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The height of a tree is the longest simple path from the root to a leave.

A binary heap with n nodes has height ⌊lg n⌋.



Implementation with arrays
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A heap can be implemented by an array without any explicit pointers.

In particular, a binary heap can be implemented by an array A as follows:

� Root of the binary tree is A[1]

� Left child of A[i] is A[2i].

� Right child of A[i] is A[2i+ 1].

� Hence, for i > 0, the parent of node i is the node Parent(i) = ⌊i/2⌋.
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The heap is stored as the following array:

A = 6 4 22 8 11 9 3 32 7 1



Max-heaps
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A max-heap is a heap that satisfies the

Max-Heap Property: The key of a node (except the root) is less than or

equal to the key of its parent.

In the array implementation, the Max-Heap Property Reads:

For all 1 < i ≤ A.heap-size: A[i] ≤ A[⌊i/2⌋].

Remarks:

� The maximum element of a max-heap is at the root.

� In the following we will focus on binary max-heaps.

Generally, a max-heap may be k-ary.

� One could also define min-heaps, where the key of each node (except

the root) is larger than or equal to the key of its parent.



Example
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This is a max-heap. It can be stored in the array

A = 16 10 14 8 9 4 3 2 7 1

Note that the array A is not sorted:

it does not satisfy the property A[i] ≤ A[i− 1] for every i > 1.

However, A satisfies the max-heap property

A[i] ≤ A[⌊i/2⌋] for every i > 1.



Building a max-heap
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Given an array A, there is a procedure to turn A into a max-heap:

MAKE-MAX-HEAP(A)

Takes an array A of n integers and rearranges it into a max-heap of size n.

In turn, MAKE-MAX-HEAP is based on the following procedure:

MAX-HEAPIFY(A, i)

Assuming that the left and right subtrees of node i are max-heaps,

MAX-HEAPIFY transforms the subtree rooted at the node i to a max-heap.



MAX-HEAPIFY [CLRS 6.2]
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Idea: compare the key at node i with the keys of its children, and

rearrange them in order to satisfy the max-heap property.

Example:
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Idea: compare the key at node i with the keys of its children, and

rearrange them in order to satisfy the max-heap property.

Example:

4

16

14

2 8

7

1

10

9 3

16

4

14

2 8

7

1

10

9 3

16

14

4

2 8

7

1

10

9 3

16

14

8

2 4

7

1

10

9 3



MAX-HEAPIFY in pseudocode
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MAX-HEAPIFY(A, i)

Input: Assume left and right subtrees of i are max-heaps.

Output: Subtree rooted at i is a max-heap.

1 n = A.heap-size

2 l = 2i // A[l] is the left-child of A[i]
3 r = 2i+ 1 // A[r] is the right-child of A[i]
4 if l ≤ n and A[l] > A[i] // Lines 4-8: Determine

5 largest = l // largest among A[i], A[l] and A[r].
6 else largest = i
7 if r ≤ n and A[r] > A[largest ]
8 largest = r
9 if largest 6= i

10 exchange A[i] with A[largest ]
11 MAX-HEAPIFY(A, largest)



Running time of MAX-HEAPIFY
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MAX-HEAPIFY a subtree of size n at node i

� Θ(1) to find the largest among A[i], A[2i] and A[2i+ 1].

� The subtree rooted at a child of node i has size upper bounded by 2n/3
(Exercise. Prove this fact.

Proof idea: the worst case is when last row of tree is exactly half full).

� Thus T (n) ≤ T (2n/3) + Θ(1).

� By the Master Theorem, we have

T (n) = O(n0 log n) = O(log n).

Alternative reasoning:

Define the height of a node to be the number of edges on the longest

simple downward path from the node to a leaf.

On a node of height h, MAX-HEAPIFY runs for O(h) time at most.

The height of the root of a heap of size n is ⌊lg n⌋, so T (n) = O(log n).



MAKE-MAX-HEAP [CLRS 6.3]
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Idea: starting from the last non-leave node,

apply MAX-HEAPIFY to the subtree based at that node.

Repeat the same procedure for all the previous nodes.

Example
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MAKE-MAX-HEAP (example continued)
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MAKE-MAX-HEAP (example continued)
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Note that the procedure works because at every step the left and right

subtrees are max-heaps.



Pseudocode
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Recall that the leaves are the array elements indexed by

⌈n+1
2
⌉, ⌈n+1

2
⌉+ 1, · · · , n.

MAKE-MAX-HEAP(A)

Input: An (unsorted) integer array A of length n.

Output: A heap of size n.

1 A.heap-size = A.length
2 for i = ⌈n+1

2
⌉ − 1 downto 1

3 MAX-HEAPIFY(A, i)



Correctness
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Loop invariant: Each node i+ 1, i+ 2, · · · , n is the root of a max-heap.

Initialization

Each node ⌈n+1
2
⌉, ⌈n+1

2
⌉+ 1, · · · , n is a leaf, which is the root of a trivial

max-heap. Since i = ⌈n+1
2
⌉ − 1 before the first iteration, the invariant is

initially true.

Maintenance

Suppose i = i0 ≥ 1 and assume each node i0 + 1, i0 + 2, · · · , n is the root

of a max-heap. Executing MAX-HEAPIFY(A, i) causes i0 to be the root of

a new max-heap. Hence each node i0, i0 + 1, · · · , n is now the root of a

max-heap, meaning that the loop invariant holds after i has been

decremented from i0 to i0 − 1.

Termination

When i = 0 (i.e. after the counter becomes less than 1) the loop

terminates. By the loop invariant, each node, in particular node 1, is the

root of a max-heap.



Running time analysis
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Simple (but loose) bound: O(n log n).

We have O(n) calls to MAX-HEAPIFY, each taking O(log n) time.

Tighter analysis: O(n).

MAX-HEAPIFY takes linear time in the height of the node it runs on,

and “most nodes have small heights”.

Fact. The number of nodes of height h is upper bounded by n/2h,

and the cost of MAX-HEAPIFY on a node of height h is ≤ ch, for some

c > 0.

Hence, the cost of MAKE-MAX-HEAP is

T (n) ≤

⌊lgn⌋
∑

h=0

n

2h
ch ≤ cn

(

∞
∑

h=0

h

2h

)

= 2cn ,

Note. For |x| < 1, one has
∑∞

k=0 x
k = 1

1−x
. Differentiating and

multiplying by x, we get
∑∞

k=0 kx
k = x

(1−x)2
.



Applications of heaps
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� Sorting: heapsort, an in-place sorting algorithm

with worst-case complexity O(n log n).

� Efficient implementation of priority queues:

Max-heap → max-priority queue.

Min-heap → min-priority queue.

Max-priority queues can be used to schedule jobs on a shared

computer.

Min-priority queues can be used to simulate events in time.

Remark. Actual implementations often have a handle in each heap

element that allows access to an object in the application, and objects in

the application often have a handle (likely an array index) to access the

heap element.



Heapsort [CLRS 6.4]

DAA 2021-22 3. Heaps, Heapsort, and Priority Queues – 17 / 25

A sorting algorithm based on the heap data structure.

Idea. Given an input array,

� Build a max-heap using MAKE-MAX-HEAP.

� Starting from the root (maximum element), place the maximum

element into the correct place in the array by swapping it with the

element in the last position in the array.

� “Discard” this last node – decrement the heap size, and call

MAX-HEAPIFY on the smaller structure with the possibly

incorrectly-placed root.

� Repeat this discarding process until only one node (the minimum)

remains, and is therefore in the correct place in the array.

Features:

� O(n log n) worst case – like merge sort.

� Sorts in place – like insertion sort.



Example: heapsort
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HEAPSORT(A)

1 MAKE-MAX-HEAP(A)
2 for i = A.heap-size downto 2
3 exchange A[1] with A[i]
4 A.heap-size = A.heap-size − 1
5 MAX-HEAPIFY(A, 1)

Loop invariant: subarray A[i+ 1 . . n] is sorted, and the remaining

elements in A[1 . . i] are ≤ than the elements in A[i+ 1 . . n].
Running time

� MAKE-MAX-HEAP takes O(n)

� The for -loop is executed O(n) times.

� Exchange operation takes O(1).

� MAX-HEAPIFY takes O(log n).

Total time: O(n log n).



Priority queues [CLRS 6.5]
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A Priority queue is an abstract data structure for maintaining a set of

elements, each with an associated value called a key.

Max-priority queues give priority to the elements with larger keys,

min-priority queues give priority to the elements with smaller keys.

Operations supported by a max-priority queue:

1. INSERT(S, x, k) inserts element x with key k into set S.

2. MAXIMUM(S) returns the element of S with the largest key.

3. EXTRACT-MAX(S) removes and returns the element of S with the

largest key.

4. INCREASE-KEY(S, x, k) increases value of x’s key to k.

Requires k to be at least as large as x’s current key value.
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A Priority queue is an abstract data structure for maintaining a set of

elements, each with an associated value called a key.

Max-priority queues give priority to the elements with larger keys,

min-priority queues give priority to the elements with smaller keys.

Operations supported by a max-priority queue:

1. INSERT(S, x, k) inserts element x with key k into set S.

2. MAXIMUM(S) returns the element of S with the largest key.

3. EXTRACT-MAX(S) removes and returns the element of S with the

largest key.

4. INCREASE-KEY(S, x, k) increases value of x’s key to k.

Requires k to be at least as large as x’s current key value.

Operations supported by a min-priority queue supports INSERT(S, x),
MINIMUM(S), EXTRACT-MIN(S) and DECREASE-KEY(S, x, k).



Implementation by unordered-sequence
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Store the elements e and their keys k (as pairs (e, k)) in an unordered

sequence, implemented as an array or a doubly-linked list.

� Implement INSERT(S, e, k) by inserting (e, k) at the end of the

sequence; takes O(1) time.

� Implement EXTRACT-MAX(S) by inspecting all elements of the

sequence and removing the maximum; takes Θ(n) time.

We can do better with a heap implementation!



Implementation by heap
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� A heap offers a good compromise between insertion and extraction.

Both operations take O(log n) time.

� For simplicity, in the following, we identify the element with its key.
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� A heap offers a good compromise between insertion and extraction.

Both operations take O(log n) time.

� For simplicity, in the following, we identify the element with its key.

Finding the maximum

HEAP-MAXIMUM(A)

return A[1]

Time: Θ(1)



Extracting maximum
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� Check that the heap is non-empty.

� Make a copy of the maximum element (root).

� Make the last node in the tree the new root.

� HEAPIFY the array, but less the last node.

� Return the copy of the maximum.

HEAP-EXTRACT-MAX(A)

1 if A.heap-size < 1
2 error “heap underflow”

3 max = A[1]
4 A[1] = A[A.heap-size]
5 A.heap-size = A.heap-size − 1
6 MAX-HEAPIFY(A, 1)
7 return max

Time: O(log n), where n is the size of the heap.



Increasing key value
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Given set S, entry i, and new key value key:

1. Check that key is greater than or equal to i’s current value.

2. Update i’s key value to key.

3. Traverse the tree upward comparing i to its parent and swapping keys

if necessary, until i’s key is smaller than its parent’s key.

HEAP-INCREASE-KEY(A, i, key)

1 if key < A[i]
2 error “new key is smaller than current key”

3 A[i] = key

4 while i > 1 and A[Parent(i)] < A[i]
5 exchange A[i] with A[Parent(i)]
6 i = Parent(i)

Time. O(log n)



Insertion
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Given a key k to insert into the heap:

� Insert a new node in the very last position in the tree with key −∞.

� Increase the −∞ key to k using HEAP-INCREASE-KEY

HEAP-INSERT(A, key)

1 A.heap-size = A.heap-size + 1
2 A[A.heap-size] = −∞
3 HEAP-INCREASE-KEY(A,A.heap-size, key)

Time. O(log n)
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