Tensor Comprehensions in SaC

Radboud University § %

%

E

o
P N
) M

Array Programming as a tool for enabling
HPC3 for everyone

SVP SVP SVP
FVP SVP SV;_‘
'SVP ' 'SVP '
'SVP' .SVP' 'SVP' .SVP'

www. shuttorstock.com - 78030517

Radboud University §

MiNe S

Q)V

Tensors, Tensor Notation, Einstein Notation, Ricci
Calculus,... and their applications

» N-dimensional index spaces for data and operations on them

» Notation omits ranges and boundaries whenever “obvious”
» Typically nested!

- General Activation Formula: a.g.” = gl(>, wﬂag_l] o= b_[jl]) = gt (zy])

- J(x,W,b,y) or J(y,y) denote the cost function.

Examples of cost function:

- Jee(9,y) ==Y,y log g

- S (@,y) =S |y =9 |

Isn’t that just array comprehensions?
--- Or getting to the point?

. generator,]

We need to
“‘compose” the
generators!

[expr | id, 4= generator,, .

Here we need lower
and upper bounds

We want non-inherently-
sequential generators!

Radboud University § %“

N
MINE" ©

Transposition

Mathematics: [J
aTi’j - aj,i

on:

“typlical” array compr
' shape(a)[l], J in 0 .. shape(a)[0]]

aT = [a[j,1i] |i

SaC 1.0:
aT = { [lIJ] -> a[.li] }i 4

data-parallelism

Lower and upper bounds
are inferred if possible

Element-wise addition

Mathematlcsk |

Cr= ap+t b

“typical” arra rehension:

c = [a[i] + b[i] |i in 0 .. shape(a)[0]]

saC 1.0:) |

Cc = { iv => a[iV] + b[iV] };

\

{ [1] -> a[i] + b[i]};

recursive call !

Q
Il

Radboud University : %

N
’ﬂmefe

Our physics example

[| |l— [
ay) = g"(Ly wiay " +bj)

in SaC 1.0:

= { [31 -=> g * (sum({[k] -> w[]J,k]*a[k]}) + Db[J]) };

Radboud University § %“‘
}poMlNefeO

Concatenation

y J

c ={ [1] -> (1 < len(a) ? a[i] : b[i-len(a)]) };
\
Conditional is ugly!
SaC 1.4, Tensor Comprehensions!

c = { [1] -> a[1] ;
[i] -> b[i-len(a)] | [i] < shape(a) + shape(b) };

Radboud University § %“‘
}pofrlmefe\

oY)

Aim

With-Loop
Expressiveness

Tensor
Comprehensions

Set Notation
Beauty

Radboud University § %“

I

Tensor Comprehensions:
Full With-Loop expressiveness in Set Notation!

with {
(Ib <=1iq,...,i,] < ub) : expr;

(Ib <=1iq,...,i,] < ub) : expr;
} . genarray(shape, default-expr)

!

{[i4,...,1,] -=>expr | Ib<=[iy,...,i,] < ub;

[i4,...,1,] == expr | Ib<=]i,...,I,] < ub;
[i4,...,1] -=> default-expr | [i4,...,1,] < Sshape }

Radboud University § %

%

E

o
c N
£ 3

Beauty Measure #1: Make some parts optional
& use the Set Notation inference

{[i4,...,1)] -=>expr] Ib <=[i4,...,i,] < ub;

l4,...,i,] -=>expr | Ib<=[i,...,i,] < ub; Optional parts!

l4,...,1n] -=> default-expr | [iq,...,I] < shape

Radboud University %“‘
0,V &

N
MINE- ©

Beauty Measure #2: Extend the Inference

Example: take (int[.] s, int[*]a):

{iv ->aliv]|iv<s}
Type-inference cannot help!

Consider take ([0],a) where a:int[0,7] |
New Inference:

{iv ->a[iv] | iv<s;
Ilv -> genarray (drop (shape (s), shape (a)), 0) }

Radboud University ¢ %“
}l""‘rluqef(/}7

Key Idea of the Inference

{iv ->aliv]|iv<s}
i Generate default from one expression

{iv ->a[iv] | iv<s;
Iv -> genarray (shape (a[0*s]), zero (a[0*s]) }
i Rewrite to manifest some laziness

{iv ->aliv] | iv<s;
iv -> genarray (drop (shape (s), shape (a)), 0) }

Radboud University %“‘
0,V &

A
MINE- ©

Leveraging Demand Analysis

genarray (shape (a[0*s]), zero (a[0*s])
=> Analysis of selection yields: in order to compute the shape of a[0*s],

we only need to know the shape of a and the shape of s!

(for details see “A Binding Scope Analysis for Generic Programs on Arrays”, IFL'05)
=> A systematic rewrite of the definition of selection yields that

shape (a[0*s]) = sel s(shape(s), shape(a)) = drop(shape(s), shape(a))

(for details see “Tensor Comprehensions in SaC”, IFL'19)

Hence, we get overall:

genarray (drop (shape (s), shape (a)), 0)

Radboud University § %“‘
%MIN@?Q’\

g

Conclusions

* Array Comprehensions in the context of n-
dimensional arrays / arbitrary tensors with
homogeneous nesting is surprisingly challenging!

- Full Expressiveness leads to very extensive
specifications.

- Range inference is non-trivial.

- Default element inference is even harder.

* The Tensor Comprehensions presented here offer:
- Full expressiveness
- Flexibility in the degree of specificational demand
- Novel default element inference that is

independent of the type system

* Leads to a mechanism for manifesting laziness with
an eager execution mechanism

Radboud University § % :

~

1, A0
Mine <

