Tensor Comprehensions in SaC
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Array Programming as a tool for enabling
HPC3 for everyone
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Tensors, Tensor Notation, Einstein Notation, Ricci
Calculus,... and their applications

» N-dimensional index spaces for data and operations on them

» Notation omits ranges and boundaries whenever “obvious”
» Typically nested!

- General Activation Formula: a.g.” = gl(>, wﬂag_l] o= b_[jl]) = gt (zy])

- J(x,W,b,y) or J(y,y) denote the cost function.

Examples of cost function:

- Jee(9,y) ==Y,y log g

- S (@,y) =S |y =9 |




Isn’t that just array comprehensions?
--- Or .... getting to the point?

. generator,]

We need to
“‘compose” the
generators!

[ expr | id, 4= generator,, .

Here we need lower
and upper bounds

We want non-inherently-
sequential generators!
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Transposition

Mathematics: [ J
aTi’j - aj,i

on:

“typlical” array compr
' shape(a)[l], J in 0 .. shape(a)[0] ]

aT = [ a[j,1i] |i

SaC 1.0:
aT = { [lIJ] -> a[.li] }i 4

data-parallelism

Lower and upper bounds
are inferred if possible




Element-wise addition

Mathematlcsk |

Cr= ap+t b

“typical” arra rehension:

c = [ a[i] + b[i] |i in 0 .. shape(a)[0] ]

saC 1.0: ) |

Cc = { iv => a[iV] + b[iV] };

\

{ [1] -> a[i] + b[i]};

recursive call !

Q
Il

Radboud University : %

N
’ﬂmefe




Our physics example

[ | |l— [
ay) = g"(Ly wiay " +bj)

in SaC 1.0:

= { [31 -=> g * (sum({[k] -> w[]J,k]*a[k]}) + Db[J]) };
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Concatenation

y J

c ={ [1] -> ( 1 < len(a) ? a[i] : b[i-len(a)]) };
\
Conditional is ugly!
SaC 1.4, Tensor Comprehensions!

c = { [1] -> a[1] ;
[i] -> b[i-len(a)] | [i] < shape(a) + shape(b) };
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Aim

With-Loop
Expressiveness

Tensor
Comprehensions

Set Notation
Beauty
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Tensor Comprehensions:
Full With-Loop expressiveness in Set Notation!

with {
(Ib <=1iq,...,i,] < ub) : expr;

(Ib <=1iq,...,i,] < ub) : expr;
} . genarray( shape, default-expr)

!

{[i4,...,1,] -=>expr | Ib<=[iy,...,i,] < ub;

[i4,...,1,] == expr | Ib<=]i,...,I,] < ub;
[i4,...,1] -=> default-expr | [i4,...,1,] < Sshape }
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Beauty Measure #1: Make some parts optional
& use the Set Notation inference

{[i4,...,1)] -=>expr] Ib <=[i4,...,i,] < ub;

l4,...,i,] -=>expr | Ib<=[i,...,i,] < ub; Optional parts!

l4,...,1n] -=> default-expr | [iq,...,I] < shape
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Beauty Measure #2: Extend the Inference

Example: take (int[.] s, int[*]a):

{iv ->aliv]|iv<s}
Type-inference cannot help!

Consider take ([0],a) where a:int[0,7] |
New Inference:

{iv ->a[iv] | iv<s;
Ilv -> genarray (drop (shape (s), shape (a)), 0) }
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Key Idea of the Inference

{iv ->aliv]|iv<s}
i Generate default from one expression

{iv ->a[iv] | iv<s;
Iv -> genarray (shape (a[0*s]), zero (a[0*s]) }
i Rewrite to manifest some laziness

{iv ->aliv] | iv<s;
iv -> genarray (drop (shape (s), shape (a)), 0) }
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Leveraging Demand Analysis

genarray (shape (a[0*s]), zero (a[0*s])
=> Analysis of selection yields: in order to compute the shape of a[0*s],

we only need to know the shape of a and the shape of s!

(for details see “A Binding Scope Analysis for Generic Programs on Arrays”, IFL'05)
=> A systematic rewrite of the definition of selection yields that

shape (a[0*s]) = sel s( shape(s), shape(a)) = drop(shape(s), shape(a))

(for details see “Tensor Comprehensions in SaC”, IFL'19)

Hence, we get overall:

genarray (drop (shape (s), shape (a)), 0)
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Conclusions

* Array Comprehensions in the context of n-
dimensional arrays / arbitrary tensors with
homogeneous nesting is surprisingly challenging!

- Full Expressiveness leads to very extensive
specifications.

- Range inference is non-trivial.

- Default element inference is even harder.

* The Tensor Comprehensions presented here offer:
- Full expressiveness
- Flexibility in the degree of specificational demand
- Novel default element inference that is

independent of the type system

* Leads to a mechanism for manifesting laziness with
an eager execution mechanism
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