
Tensor Comprehensions in SaC

Seminar on Tensor Computation
4.Feb.2022, Oxford

Sven-Bodo Scholz

Heriot-Watt University, Edinburgh
Radboud University Nijmegen

Array Programming as a tool for enabling
HPC3 for everyone

2

SVP SVP SVP SVP

SVP

SVP

SVPSVP

SVP

SVPSVPSVP

SVP SVP

SVPSVP

Tensors, Tensor Notation, Einstein Notation, Ricci
Calculus,… and their applications

Ø N-dimensional index spaces for data and operations on them
Ø Notation omits ranges and boundaries whenever “obvious”
Ø Typically nested!

Isn’t that just array comprehensions?
--- or …. getting to the point?

[expr | id
1
⬅ generator

1
, …, id

n
⬅ generator

n
]

Here we need lower
and upper bounds

We want non-inherently-
sequential generators!

We need to
“compose” the

generators!

Transposition

Mathematics:
aTi,j = aj,i

“typical” array comprehension:
aT = [a[j,i] |i in 0 .. shape(a)[1], j in 0 .. shape(a)[0]]

SaC 1.0:
aT = { [i,j] -> a[j,i] };

Lower and upper bounds
are inferred if possible

Set-notation is mapped into
data-parallelism

Composition is always orthogonal

Element-wise addition

Mathematics:
c i = a i + b i

“typical” array comprehension:
c = [a[i] + b[i] |i in 0 .. shape(a)[0]]

SaC 1.0:
c = { iv -> a[iv] + b[iv] };

c = { [i] -> a[i] + b[i]};

scalar addition!

recursive call !

vector of indices!

scalar addition!

recursive call !

Our physics example

in SaC 1.0:

a = { [j] -> g * (sum({[k] -> w[j,k]*a[k]}) + b[j]) };

Concatenation

c = { [i] -> (i < len(a) ? a[i] : b[i-len(a)]) };

SaC 1.4, Tensor Comprehensions!

c = { [i] -> a[i] ;
[i] -> b[i-len(a)] | [i] < shape(a) + shape(b) };

Conditional is ugly!

Bound inference fails !

Aim

With-Loop
Expressiveness

Set Notation
Beauty

Tensor
Comprehensions

Tensor Comprehensions:
Full With-Loop expressiveness in Set Notation!

with {
(lb <= [i1,…,in] < ub) : expr;
…
(lb <= [i1,…,in] < ub) : expr;

} : genarray(shape, default-expr)

{ [i1,…,in] -> expr | lb <= [i1,…,in] < ub;
…
[i1,…,in] -> expr | lb <= [i1,…,in] < ub;
[i1,…,in] -> default-expr | [i1,…,in] < shape }

Beauty Measure #1: Make some parts optional
& use the Set Notation inference

{ [i1,…,in] -> expr | lb <= [i1,…,in] < ub;
…
[i1,…,in] -> expr | lb <= [i1,…,in] < ub;

[i1,…,in] -> default-expr | [i1,…,in] < shape }

Optional parts!

Beauty Measure #2: Extend the Inference

{ iv -> a[iv] | iv < s }

Example: take (int[.] s, int[*] a): default-expr is missing!

Type-inference cannot help!
Consider take ([0], a) where a::int[0,7] !

{ iv -> a[iv] | iv < s;
iv -> genarray (drop (shape (s), shape (a)), 0) }

New Inference:

Key Idea of the Inference

{ iv -> a[iv] | iv < s }

{ iv -> a[iv] | iv < s;
iv -> genarray (shape (a[0*s]), zero (a[0*s]) }

{ iv -> a[iv] | iv < s;
iv -> genarray (drop (shape (s), shape (a)), 0) }

Generate default from one expression

Rewrite to manifest some laziness

Leveraging Demand Analysis

genarray (shape (a[0*s]), zero (a[0*s])

=> Analysis of selection yields: in order to compute the shape of a[0*s],

we only need to know the shape of a and the shape of s!

(for details see “A Binding Scope Analysis for Generic Programs on Arrays”, IFL’05)

=> A systematic rewrite of the definition of selection yields that

shape (a[0*s]) = sel_s(shape(s), shape(a)) = drop(shape(s), shape(a))

(for details see “Tensor Comprehensions in SaC”, IFL’19)

Hence, we get overall:

genarray (drop (shape (s), shape (a)), 0)

Conclusions

• Array Comprehensions in the context of n-
dimensional arrays / arbitrary tensors with
homogeneous nesting is surprisingly challenging!
- Full Expressiveness leads to very extensive

specifications.
- Range inference is non-trivial.
- Default element inference is even harder.

• The Tensor Comprehensions presented here offer:
- Full expressiveness
- Flexibility in the degree of specificational demand
- Novel default element inference that is

independent of the type system
• Leads to a mechanism for manifesting laziness with

an eager execution mechanism

