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Overview

Biomedical data: Molecule, interactome, complex relationships
Drug discovery

Protein folding

Particle physics

Combinatorial optimization and reasoning

Computer vision: Scene graphs and question answering
Recommender systems

Traffic forecasting

Summary of the relational learning theme



Biomedical Data



Biomedical Data: Molecular Scale
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Molecules (Rao et al, 2013): Figure shows the of
NSAID drugs. “Me" is an abbreviation for "methyl" (CH3).

Molecular scale: Small molecule drugs can be represented as graphs relating their constituent atoms and

chemical bonding structure. Complex molecules, such as proteins can be represented as graphs capturing
spatial and structural relationships between their amino acid residues.




Biomedical Data: Intermediary Scale
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Excerpt from Schizophrenia interactome (Ganapathiraju et al, 2016): are shown as nodes
and as edges connecting the nodes. Schizophrenia-associated genes are shown as dark blue

nodes, novel interactors as red color nodes and known interactors as blue color nodes. Red edges are
the novel interactions, whereas blue edges are known interactions.

Intermediary scale: An interactome defines a set of molecular interactions in a particular cell — They can

be represented as graphs, e.g., protein—protein interaction graphs.



Biomedical Data: Abstract Scale

all genes

all proteins

all drugs

PharmGKB (Hewett et al., 2002): Abstract, complex relationships among the objects,

including ‘expresses’, as in ‘a gene expresses a protein’: 600+ different relationships.

Abstract scale: KGs can represent the complex relationships between drugs, side effects, diagnosis,
associated treatments, and test results etc.



Drug Discovery




Timeline of Drug Development

Design of biologics:

e ML-assisted directed evolution
(affinity, specificity, immunogenicity)

Target e Protein engineering
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Design of small molecules:
e Enhanced HTS [target-based]

(property prediction)
e Enhanced HTS [phenotypic]
(reporter analysis) e ADME
e De novo design (property prediction)

(generative chemistry)

Figure (Gadoulet et al, 2021): Timeline of drug development.
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Drug repurposing & product line extensions:
e Off-target repurposing

e On-target repurposing

e Combinations repurposing

process - Great interest in applying computational methods to enhance drug discovery.
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Drug Development Applications

Relevant application Reference Method type Task level ML approach Data types Exp. val?
4.1 Target identification
— [47] Geometric (§3.2) Node-level Unsupervised Di, Dr, GA
4.2 Design of small molecules therapies
(21] GNN (§3.4) Graph-level Supervised Dr
Molecular property prediction 101] GNN (§3.4) Graph-level Supervised Dr
[22] GNN (§3.4) Graph-level Supervised Dr
Enhanced high throughput screens [50] GNN (§3.4) Graph-level Supervised Dr v
De novo desien (102] GNN (§3.4) Graph-level Unsupervised Dr
& 48] Factorisation (§3.3) Graph-level Semi-supervised  Dr v
4.3 Design of new biological entities
ML-assisted directed evolution — — — — —
Protein engineering [49] GNN (§3.4) Subgraph-level™ Supervised PS
De novo design [103] GNN (§3.4) Graph-level Supervised PS v
44 Drug repurposing
Off-tarcet r osin (104 Factorisation (§3.3) Node-level Unsupervised Dr, PI
BEL TEpUIposing (105 GNN (§3.4) Graph-level Supervised Dr, PS
(106 Factorisation (§3.3) Node-level Unsupervised Dr, Di
On-target repurposing (107 ] GNN (§3.4) Node-level Supervised Dr, Di
(108 ] Geometric (§3.2) Node-level Unsupervised Dr, Di, PI, GA
Combination repurnosin (109 GNN (§3.4) Node-level Supervised Dr, PI, DC
puposing (110 GNN (§3.4) Graph-level Supervised Dr, DC v
Table (Gadoulet et al, 2021): Applications of GNNs in drug discovery. The acronyms stand for Dr: Drugs, . Drug

combinations, - Protein,

: Protein interactions,

- Gene annotations,

:Diseases, respectively.



A Message Passing Approach to Antibiotic Discovery

Context: Very few antibiotics developed recently,

and most of those newly approved antibiotics are
slightly different variants of existing drugs.

A message passing approach: Stokes et al.,
(2020) use MPNNS5s for

e MPNN model trained to predict a molecular
property: antibacterial activity.

e Model applied to various chemical databases and
candidate compounds are selected.

e Novel molecules are identified with antibacterial
activity against pathogens.
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A message passing approach: Stokes et al.,
(2020) use MPNNs for

e Train MPNN model to predict the inhibition of
the growth of E. coli using a collection of

e Apply the model to multiple chemical libraries

and rank the according
to the model’s predicted score.
e Select a list of that can

potentially inhibit the growth of E. coli.
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Overview of the results:

. is identified from Drug Repurposing Hub
as a potent inhibitor of E. coli growth.

e Experimental investigations revealed that halicin
displays growth inhibitory properties against a

ZINC15 database (

e Two of these molecules displayed
and could overcome an array of

discovered
based on 23 compounds identified from t

NE

molecu

antibiotic-resistance determinants in E. coli.

A Message Passing Approach to Antibiotic Discovery
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A Message Passing Approach to Antibiotic Discovery

HN\(Y
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“Indeed, modern neural molecular representations have the potential to: (1) of lead molecule
identification because screening is limited to gathering appropriate training data, (2)

of identifying structurally novel compounds with the desired bioactivity, and (3)
required to find these ideal compounds from months or years to weeks."

(Stokes et al., 2020)
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Protein Folding



Protein Folding

Protein folding: Chains of amino acids spontaneously
to form the of the proteins.

Computational task: Determine the 3D structure of a
protein from a sequence of amino acids.

Highly challenging: Depends on the thermodynamics of
the interatomic forces, etc.

Competitions: To predict the native structure of a

protein from its amino acid sequence is a problem of
great Interest.
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Primary structure
Polypeptide chain

Secondary structure

Alpha helix and beta
sheet structures
produced by hydrogen
bonds forming within
the polypeptide

Tertiary structure

3D overall fold of the Region of

protein containing secondary

secondary structures structure —
alpha helix

Region of secondary

. structure — beta sheet
Random coil

Quaternary structure
Multi-subunit complex
where each subunit is a
distinct polypeptide
chain

Polypeptide 1

Polypeptide 2

Polypeptide 3

By Kep17 - Own work, CC BY-SA 4.0,
https:/commons.wikimedia.org/w/index.php?curid=87932134



Protein Folding: AlphaFold

T1037 / 6vr4 T1049 / 6y4f
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

©® Experimental result

® Computational prediction

A breakthrough by a Deepmind team, read more at:
https:/deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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AlphaFold
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Key ideas behind AlphaFold (Jumper et al., 2021):

Encoding as a spatial graph: Amino acids as nodes, and proximity between amino acids as edges.

GNN approach: Train to predict the new positions of amino acids - allowing to predict the 3D structure.
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Particle Physics




Particle Physics

Data in particle physics: Often represented by sets and graphs - GNNs offer key advantages.

We follow the survey by Shlomi et al., (2021), and highlight some applications of GNNs in particle physics.
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Particle Physics

Jets: Sprays of stable particles that stem from multiple

successive interaction and decays of particles, originating
from a , 1.e., quark, gluon, W-boson,
top-quark, or Higgs boson.

Jet classification: Identify the original object that gave

rise to the jet — a very important task in particle physics.

Jets as graphs: View a jet as a graph, where nodes are

particles (with features) and edges represent interactions,
and apply graph classification.

Event classification: Predicting the physics process at

the origin of the recorded data, e.g., to classify signals in
the lceCube neutrino observatory (Choma et al., 2018).

Many other problems are of interest, e.g., jet clustering.
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Figure (Shlomi et al., 2021), depicting jet classification based on
the particles associated to the jet.



Combinatorial Optimization and
Reasoning



Reasoning Capacity of Graph Neural Networks

What is the of GNNs?

Not plausible for GNNs to solve NP-hard problems. / | \
Example: Can GNNs learn to solve (small) instances with

single-bit supervision (Selsam et al., 2018)? /// | >< \

e Represent each propositional formula as a graph.

e Produce training data, based on existing SAT solvers.

= (" XVYAXVAVVIOA(TYV Z
e Train the GNN to predict satisfiability of novel formulas. = A YV Ay )
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Reasoning Capacity of Graph Neural Networks

GNNSs are a good choice:

e Explicit of an input formula. / | \
. e.g.,

XAV XATY)=E(XxATY)VIXAY).

. XX N

XAY)V(xAY)=("z2Au)V (AU,

e Strong , given by formula distinguishability.

o for logical operators A, V. ¢ = ( 'xvy)/\(xv_lyVZ)/\(_'yv_IZ)

Many other problems, such as TSP, #SAT, etc. are investigated.
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Graph Neural Networks and Combinatorial Problems

States/Rewards Actions

Environment

GNNSs alone are limited for such problems, and a line of work combines
the power of GNNs with reinforcement learning for solving combinatorial
problems. Figure (Mazyavkina et al., 2020) shows the pipeline.

Problem

BB
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Graph Neural Networks and Combinatorial Problems

Idea: Model the problem as 3 , e.g., MDP, where the agent interacts with

the environment by performing a sequence of actions in order to find a solution.

Goal: An agent acting in MDP tries to find a policy function that maps states into actions, while maximizing
the expected cumulative discounted sum of rewards, i.e.,

A typical run is as follows:
e Formulate the combinatorial problem (e.g., Max-Cut), as an MDP.

e Use a reinforcement learning algorithm (e.g., Monte-Carlo Tree Search) to move the environment to the
next state (e.g., removing a vertex from a solution set).

e Encode states with a GNN: Map states to the actions’ values (e.g., replacing simulation step in MCTS).

e Once the model is trained, the agent can search the solutions for unseen instances of the problem.
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Computer Vision: Scene Graphs
and Question Answering




Scene Graphs
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Legend: objects attributes relationships

Scene graph (Johnson et al., 2015): A data

structure that describes the contents of a scene,
encoding object instances, attributes of objects, and
relationships between objects.
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Retrieving images/videos by describing their contents is an
exciting application of computer vision.

Example: A system may allow people to search for images by
specifying not only objects (“man”, “boat™) but also structured

Scene Graphs

relationships (“man on boat”) and attributes (“boat is white")

involving these objects.

Structured data: Explicitly represent and reason about the

objects, attributes, and relationships in images.
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them, e.g., visual question answering.
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Scene graph (Johnson et al., 2015).



Visual Question Answering

Neural
network

Encode the representing the objects and their spatial arrangement. Encode the
representing words and their syntactic dependencies. Train a neural network to reason
over these representations, and to produce a suitable answer as a prediction (Tenet et al., 2016).
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Visual Question Answering

Input scene description Initial Graph Combined Prediction over
and parsed question embedding processing features candidate answers
Affine LU;;S e S /s Objects Weighted Sigmoid or
projection Cij 0 T‘ sum softmax
W
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%, GRU X, §I - ®® @ no 0.0
x; Node
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Figure (Tenet et al., 2016) illustrating a pipeline for visual question answering using gated GNNs.
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Recommender Systems




Recommender Systems




Trathc Forecasting




Road networks: Real-wor
scales and are of relationa

d road networks can be at many

nature.

Complex system: Real-world traf

Road Networks

Ic is complex as it is

affected by live traffic conditions,
rush hours, road quality, speed limits, accidents, and

closures.

nistorical traffic patterns,

Structural constraints: Some routes may be invalid, and

traffic regulations need to be taken into account.

Tasks: Calculating routes, estimating arrival times...

Spatiotemporal domain: Account for location and time,

while incorporating relational learning biases.
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By Beevil - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=66733207



Improving Predictions for Estimated Time of Arrival
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DeepMind partnered with the Google Maps to improve the accuracy of real time ETAs by up to 50 % . Read
more at: https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
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Improving Predictions for Estimated Time of Arrival

travel data Analysed Training network API
data

Predictions
Anonymised ; Supersegments ; Graph neural : Google Maps

Surfaced

Google.Maps Candidate Google Maps
FQULNS user routes i
system A-B

A GNN based approach to improve ETA.

Approach based on organizing the road network into . Multiple adjacent segments of road
that share significant traffic volume:

(1) Route analyzer: Processes terabytes of traffic information to construct super-segments.

(2) A GNN model: Optimized with multiple objectives to predict the travel time for each super-segment.
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Improving Predictions for Estimated Time of Arrival

Predictions
Anonymised ; Supersegments ; Graph neural Google Maps
travel data Analysed Training network API

data

Surfaced

Google Maps Candidate Google Maps

routing user routes i
system A-B

A GNN based approach to improve ETA.

Why is a GNN good choice?

(1) Super-segments: Each super-segment is composed of dynamically sized number of segments
(2) Naive idea: Use a model for each super-segment - At scale, millions of these models are needed!

(3) Quest for a single model: One model that can handle each super-segment.
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Improving Predictions for Estimated Time of Arrival
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Improving Predictions for Estimated Time of Arrival



Improving Predictions for Estimated Time of Arrival
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Improving Predictions for Estimated Time of Arrival

m]+m5

11111

Powerful encoding: Not only traffic ahead or behind, but also along roads.

Model capacity: Each super-segment, which can be of varying length and of varying complexity - from

simple two-segment routes to routes containing hundreds of nodes - shall be processed by the model.

Empirical gains: Expanding to include adjacent roads that are part of the main road gives
improvements, e.g., a jam on a side street can affect traffic on a larger road.
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Summary

Biomedical data: inherently relational

Drug discovery: , ,

Al-assisted antibiotic discovery:

Protein folding: From sequences to 3D structures

Particle physics: ,

Combinatorial optimization:

Computer vision: and

Recommender systems

Traffic forecasting: improving estimated arrival time with graph encodings

Plethora of recent applications, e.g., assisting mathematicians to conjecture and prove theorems in knot theory.
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Summary of the Relational Learning Theme

Lecture 1. Relational data & node embeddings: Model properties, inductive capacity, expressiveness, evaluation.
Lecture 2. Knowledge graph embedding models: translational, bilinear, box embedding models, and beyond.

Lecture 3. Graph neural networks: motivation, permutation-invariance, permutation-equivariance, message passing
neural networks, generalizations, graph representation learning tasks.

Lecture 4. Message passing neural network architectures: GGNN, GCN, GAT, GIN, rGCN.

Lecture 5. Expressive power of message passing neural networks: graph isomorphism, 1-WL equivalence, logical
characterization, limitations.

Lecture 6. Higher-order graph neural networks: k-GNN, invariant/equivariant graph networks, PPGNs, homophily,
heterophily.

Lecture 7. Message passing neural networks and randomization: universality, permutation-invariance, evaluation.
Lecture 8. Generative graph neural networks: variational, adversarial, autoregressive.

Lecture 9. Applications of graph neural networks: life sciences, combinatorial optimization, traffic forecasting,
computer vision, etc.
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Thanks!

Good luck with your projects...
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