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Relational Learning  
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Lecture 9: Applications of Graph Neural Networks



Overview

• Biomedical data: Molecule, interactome, complex relationships 

• Drug discovery 

• Protein folding 

• Particle physics 

• Combinatorial optimization and reasoning 

• Computer vision: Scene graphs and question answering 

• Recommender systems 

• Traffic forecasting 

• Summary of the relational learning theme
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Biomedical Data
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Biomedical Data: Molecular Scale
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Molecules (Rao et al, 2013): Figure shows the molecule structure of 
NSAID drugs. “Me" is an abbreviation for "methyl" (CH3).

Molecular scale: Small molecule drugs can be represented as graphs relating their constituent atoms and 
chemical bonding structure. Complex molecules, such as proteins can be represented as graphs capturing 
spatial and structural relationships between their amino acid residues.



Biomedical Data: Intermediary Scale
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Excerpt from Schizophrenia interactome (Ganapathiraju et al, 2016): Genes are shown as nodes 
and PPIs as edges connecting the nodes. Schizophrenia-associated genes are shown as dark blue 
nodes, novel interactors as red color nodes and known interactors as blue color nodes. Red edges are 
the novel interactions, whereas blue edges are known interactions.

Intermediary scale: An interactome defines a set of molecular interactions in a particular cell — They can 
be represented as graphs, e.g., protein–protein interaction graphs. 



Biomedical Data: Abstract Scale
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PharmGKB (Hewett et al., 2002): Abstract, complex relationships among the objects, 
including ‘expresses’, as in ‘a gene expresses a protein’:  different relationships.600+

Abstract scale: KGs can represent the complex relationships between drugs, side effects, diagnosis, 
associated treatments, and test results etc.



Drug Discovery
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Timeline of Drug Development

8

Figure (Gadoulet et al, 2021): Timeline of drug development. Drug discovery is a long and expensive 
process - Great interest in applying computational methods to enhance drug discovery. 



Drug Development Applications
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Table (Gadoulet et al, 2021): Applications of GNNs in drug discovery. The acronyms stand for Dr: Drugs, DC: Drug 
combinations, PS: Protein, PI: Protein interactions, GA: Gene annotations, Di:Diseases, respectively.



A Message Passing Approach to Antibiotic Discovery
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Context: Very few antibiotics developed recently, 
and most of those newly approved antibiotics are 
slightly different variants of existing drugs. 

A message passing approach: Stokes et al., 
(2020) use MPNNs for antibiotic discovery: 

• MPNN model trained to predict a molecular 
property: antibacterial activity. 

• Model applied to various chemical databases and 
candidate compounds are selected. 

• Novel molecules are identified with antibacterial 
activity against pathogens.



A Message Passing Approach to Antibiotic Discovery
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A message passing approach: Stokes et al., 
(2020) use MPNNs for antibiotic discovery: 

• Train MPNN model to predict the inhibition of 
the growth of E. coli using a collection of 2,335 
diverse molecules. 

• Apply the model to multiple chemical libraries 
and rank the candidate compounds according 
to the model’s predicted score.  

• Select a list of promising candidates that can 
potentially inhibit the growth of E. coli.



A Message Passing Approach to Antibiotic Discovery
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Overview of the results: 

• Halicin is identified from Drug Repurposing Hub 
as a potent inhibitor of E. coli growth. 

• Experimental investigations revealed that halicin 
displays growth inhibitory properties against a 
wide spectrum of pathogens.  

• 8 additional antibacterial compounds discovered 
based on 23 compounds identified from the 
ZINC15 database (  million molecules). 

• Two of these molecules displayed potent broad-
spectrum activity and could overcome an array of 
antibiotic-resistance determinants in E. coli.

> 107



A Message Passing Approach to Antibiotic Discovery
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“Indeed, modern neural molecular representations have the potential to: (1) decrease the cost of lead molecule 
identification because screening is limited to gathering appropriate training data, (2) increase the true positive 
rate of identifying structurally novel compounds with the desired bioactivity, and (3) decrease the time and labor 
required to find these ideal compounds from months or years to weeks.”  

                                                                                      (Stokes et al., 2020)



Protein Folding
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Protein Folding
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Protein folding: Chains of amino acids spontaneously 
fold to form the 3D structures of the proteins.  

Computational task: Determine the 3D structure of a 
protein from a sequence of amino acids. 

Highly challenging: Depends on the thermodynamics of 
the interatomic forces, etc.  

Competitions: To predict the native structure of a 
protein from its amino acid sequence is a problem of 
great interest.

By Kep17 - Own work, CC BY-SA 4.0,  
https://commons.wikimedia.org/w/index.php?curid=87932134



Protein Folding: AlphaFold
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A breakthrough by a Deepmind team, read more at: 
 https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology


AlphaFold
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Key ideas behind AlphaFold (Jumper et al., 2021): 

Encoding as a spatial graph: Amino acids as nodes, and proximity between amino acids as edges. 

GNN approach: Train to predict the new positions of amino acids - allowing to predict the 3D structure.



Particle Physics
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Particle Physics

19

Data in particle physics: Often represented by sets and graphs - GNNs offer key advantages.  

We follow the survey by Shlomi et al., (2021), and highlight some applications of GNNs in particle physics.



Particle Physics
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Jets: Sprays of stable particles that stem from multiple 
successive interaction and decays of particles, originating 
from a single initial object, i.e., quark, gluon, W-boson, 
top-quark, or Higgs boson.  

Jet classification: Identify the original object that gave 
rise to the jet — a very important task in particle physics.  

Jets as graphs: View a jet as a graph, where nodes are 
particles (with features) and edges represent interactions, 
and apply graph classification. 

Event classification: Predicting the physics process at 
the origin of the recorded data, e.g., to classify signals in 
the IceCube neutrino observatory (Choma et al., 2018).  

Many other problems are of interest, e.g., jet clustering.

Figure (Shlomi et al., 2021), depicting jet classification based on 
the particles associated to the jet.



Combinatorial Optimization and 
Reasoning
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Reasoning Capacity of Graph Neural Networks
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What is the reasoning capacity of GNNs? 

Not plausible for GNNs to solve NP-hard problems. 

Example: Can GNNs learn to solve (small) SAT instances with 
single-bit supervision (Selsam et al., 2018)? 

• Represent each propositional formula as a graph. 

• Produce training data, based on existing SAT solvers. 

• Train the GNN to predict satisfiability of novel formulas.
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Reasoning Capacity of Graph Neural Networks
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GNNs are a good choice: 

• Explicit structural encoding of an input formula.  

• Permutation-invariance, e.g., 
. 

• Naming-invariance, e.g., 
, 

• Strong inductive bias, given by formula distinguishability. 

• Separate representations for logical operators . 

Many other problems, such as TSP, #SAT, etc. are investigated.

(x ∧ y) ∨ (¬x ∧ ¬y) ≡ (¬x ∧ ¬y) ∨ (x ∧ y)

(x ∧ y) ∨ (¬x ∧ ¬y) ≡ (¬z ∧ ¬u) ∨ (z ∧ u)

∧ , ∨
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Graph Neural Networks and Combinatorial Problems

24

GNNs alone are limited for such problems, and a line of work combines 
the power of GNNs with reinforcement learning for solving combinatorial 
problems. Figure (Mazyavkina et al., 2020) shows the pipeline.



Graph Neural Networks and Combinatorial Problems
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Idea: Model the problem as a sequential decision-making process, e.g., MDP, where the agent interacts with 
the environment by performing a sequence of actions in order to find a solution.  

Goal: An agent acting in MDP tries to find a policy function that maps states into actions, while maximizing 
the expected cumulative discounted sum of rewards, i.e., finding an optimal policy. 

A typical run is as follows: 

• Formulate the combinatorial problem (e.g., Max-Cut), as an MDP.  

• Use a reinforcement learning algorithm (e.g., Monte-Carlo Tree Search) to move the environment to the 
next state (e.g., removing a vertex from a solution set). 

• Encode states with a GNN: Map states to the actions’ values (e.g., replacing simulation step in MCTS). 

• Once the model is trained, the agent can search the solutions for unseen instances of the problem.



Computer Vision: Scene Graphs 
and Question Answering
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Scene Graphs
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Scene graph (Johnson et al., 2015):  A data 
structure that describes the contents of a scene, 
encoding object instances, attributes of objects, and 
relationships between objects.



Scene Graphs
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Retrieving images/videos by describing their contents is an 
exciting application of computer vision.  

Example: A system may allow people to search for images by 
specifying not only objects (“man”, “boat”) but also structured 
relationships (“man on boat”) and attributes (“boat is white”) 
involving these objects.  

Structured data: Explicitly represent and reason about the 
objects, attributes, and relationships in images. 

Tasks: GNNs are used in both generating scene graphs and for 
high-level tasks that one would be interested in performing on 
them, e.g., visual question answering.

         Scene graph (Johnson et al., 2015).



Visual Question Answering
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Encode the input scene as a graph representing the objects and their spatial arrangement. Encode the input 
question as a graph representing words and their syntactic dependencies. Train a neural network to reason 
over these representations, and to produce a suitable answer as a prediction (Tenet et al., 2016).



Visual Question Answering
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       Figure (Tenet et al., 2016) illustrating a pipeline for visual question answering using gated GNNs.



Recommender Systems
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Recommender Systems
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Traffic Forecasting
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Road Networks
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Road networks: Real-world road networks can be at many 
scales and are of relational nature.  

Complex system: Real-world traffic is complex as it is 
affected by live traffic conditions, historical traffic patterns, 
rush hours, road quality, speed limits, accidents, and 
closures. 

Structural constraints: Some routes may be invalid, and 
traffic regulations need to be taken into account. 

Tasks: Calculating routes, estimating arrival times… 

Spatiotemporal domain: Account for location and time, 
while incorporating relational learning biases.

By Beevil - Own work, CC BY-SA 4.0,  
https://commons.wikimedia.org/w/index.php?curid=66733207



Improving Predictions for Estimated Time of Arrival
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DeepMind partnered with the Google Maps to improve the accuracy of real time ETAs by up to . Read 
more at: https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

50 %

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Improving Predictions for Estimated Time of Arrival
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Approach based on organizing the road network into super-segments: Multiple adjacent segments of road 
that share significant traffic volume: 

(1) Route analyzer: Processes terabytes of traffic information to construct super-segments.  

(2) A GNN model: Optimized with multiple objectives to predict the travel time for each super-segment.

A GNN based approach to improve ETA.



Improving Predictions for Estimated Time of Arrival
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Why is a GNN good choice? 

(1) Super-segments: Each super-segment is composed of dynamically sized number of segments 

(2) Naive idea: Use a model for each super-segment - At scale, millions of these models are needed! 

(3) Quest for a single model: One model that can handle each super-segment.

A GNN based approach to improve ETA.



Improving Predictions for Estimated Time of Arrival
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Improving Predictions for Estimated Time of Arrival

39



Improving Predictions for Estimated Time of Arrival
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Improving Predictions for Estimated Time of Arrival
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Powerful encoding: Not only traffic ahead or behind, but also along adjacent and intersecting roads.  

Model capacity: Each super-segment, which can be of varying length and of varying complexity - from 
simple two-segment routes to routes containing hundreds of nodes - shall be processed by the same model.  

Empirical gains: Expanding to include adjacent roads that are not part of the main road gives 
improvements, e.g., a jam on a side street can affect traffic on a larger road.



Summary
• Biomedical data: inherently relational 

• Drug discovery: target identification, small molecule therapies, drug repurposing 

• AI-assisted antibiotic discovery: Halicin  

• Protein folding: From sequences to 3D structures 

• Particle physics: jet classification, event classification 

• Combinatorial optimization: reinforcement learning and GNNs 

• Computer vision: Scene graphs and visual question answering 

• Recommender systems 

• Traffic forecasting: improving estimated arrival time with graph encodings 

• Plethora of recent applications, e.g., assisting mathematicians to conjecture and prove theorems in knot theory.
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Summary of the Relational Learning Theme
• Lecture 1. Relational data & node embeddings: Model properties, inductive capacity, expressiveness, evaluation. 

• Lecture 2. Knowledge graph embedding models: translational, bilinear, box embedding models, and beyond. 

• Lecture 3. Graph neural networks: motivation, permutation-invariance, permutation-equivariance, message passing 
neural networks, generalizations, graph representation learning tasks. 

• Lecture 4. Message passing neural network architectures: GGNN, GCN, GAT, GIN, rGCN. 

• Lecture 5. Expressive power of message passing neural networks: graph isomorphism, 1-WL equivalence, logical 
characterization, limitations. 

• Lecture 6. Higher-order graph neural networks: k-GNN, invariant/equivariant graph networks, PPGNs, homophily, 
heterophily. 

• Lecture 7. Message passing neural networks and randomization: universality, permutation-invariance, evaluation. 

• Lecture 8. Generative graph neural networks: variational, adversarial, autoregressive. 

• Lecture 9. Applications of graph neural networks: life sciences, combinatorial optimization, traffic forecasting, 
computer vision, etc.
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Thanks!  

Good luck with your projects…
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