Getting to the Point.

Safe Parallel Programming for Scientific Applications

Background: the success of first-order array libraries

Accelerators Autodiff

S]]
ST
‘:x’fié/,ﬂam

Autodiff only sees and outputs a sequential composition of opaque parallel programs.

*# Standard sequential autodiff gives us efficient parallel programs out of the box!

¢ « What users see

Function types, dually

Type
Introduction

Elimination

Reduction

Construction
Application

Domain

Function Array
a ->b a=>b
\x:ty. expr for x:ty. expr
f expr f.expr

(\x. e) u ~ e[x/u]
Cheap
Expensive

Arbitrary

(for x:ty. e).u = e[x/u]
Expensive

Cheap

Finite (ordered)

Quick examples

3d : (Fin 3)=>Float

vector : (Fin n)=>Float (assuming n:Int in scope)

matrix : (Fin n)=>(Fin m)=>Float (assuming n:Int and m:Int in scope)
sum : n:Type ?-> n=>Float -> Float

intIndexed : Int=>Float
> Type error! Couldn't synthesize (Ix Int)!

Syntax benchmark: matrix multiply

combinator_matrix_multiply = \x y.

yt = transpose y
SOAC dot = \x y. sum (map (uncurry (*)) (zip x y))

map (\xr. map (\yc. dot xr yc) yt) x

Numpy matmul = lambda x, y: np.einsum('ik,kj->ij", x, y)
SaC { [1,3] -> sum ({ [k] -> A[i,k]* B[k,j] }) }
for i:(Fin n). for j:(Fin m). sum (for k:(Fin q). x.i.k * y.k.j)
D for i:(Fin n) j:(Fin m). sum (for q:(Fin k). x.i.k * y.k.j)
ex for i j. sum (for q. x.i.k * y.k.j)
for i j. sum for q. x.i.k * y.k.j

By the way: you can be as pointfree as you'd like!

def uncurry {a b c} (f:a ->b ->c) : (@ &b) ->c=\(x, y). fxy
def zip {n a b} (x:n=>a) (y:n=>b) : n=>(a & b) = for i. (x.i, y.1i)
def map {n a b} (f:a -> b) (x:n=>a) : n=>b = for i. f x.1i

def transpose {n m a} (x:n=>m=>a) : m=>n=>a = for i j. x.j.i

def combinator_matrix_multiply {n k m}
(x:n=>k=>Float) (y:k=>m=>Float) : n=>m=>Float =
yt = transpose y
dot = \x y. sum (map (uncurry (*)) (zip x y))
map (\xr. map (\yc. dot xr yc) yt) x

A pointful foundation doesn't make pointfree programming harder!

Rank polymorphism

Not supported!
In the vast majority of cases used for batching.
Have a larger collection? Use a loop!

Some rank polymorphism possible to recover using typeclasses.

interface Add a
(+4) : a->a ->a

instance Add Int ...

instance {n a} [Add a] Add (n=>a)
(+) = \xy. for i. x.i + y.i

matrix : n=>m=>Int = ...
matrix + matrix -- well typed!

Type system

def broadcast {a} (v:a) (n: Type) [IXx n]: n=>a = for i. v

broadcast 2.0 (Fin 5)
[2.0, 2.0, 2.0, 2.0, 2.0]

i5 =2+ 3

i5' =2 + 3

broadcast 2.0 (Fin i5) + broadcast 2.0 (Fin i5")

> Type error! Expected (Fin i5)=>Float, but got (Fin i5')=>Float!

-- in lib/prelude.dx
def Fin (n:Int) : Type = Range @ n
def Range (low:Int) (high:Int) = ...

x : (Fin 5) = ...

A quick look under the hood

data Atom

type Type

data Expr

Var Name

Pair Atom Atom
PairType Type Type

TypeKind
Lambda Name Type Expr
Atom -- statically unchecked invariant: should be of TypeKind

BinOp BinOpKind Atom Atom
For Atom

Sum and (dependent) product types

data Maybe a =
Just a
Nothing

data List a =
MkList (length:Int) (elements:(Fin length)=>a)

def filter {n a} (f:a -> Bool) (x:n=»a) : List a = ...

MkList _ validData = filter isValid data
sum validData

& What does this buy us?

Can tensor programming be liberated from integer indices?

Arrays are predominantly indexed by integers, but:
e static reasoning about integers is difficult;
e integers erase lots of structure that's often useful.

“Parse, don't validate.”™

Pale Ties Out . 4
@PTOOP

Every time you see *numbers*, remember that Nat = List
1, and ask yourself what it is that the 1 has forgotten.
Differences between numbers are often hacker-level
proxies for differences between entities whose pertinence
has become invisible. Numbers are a code smell.
19/01/2022, 23:18

'https://lexi-lambda.qithub.io/blog/2019/11/05/parse-don-t-validate/

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

Rich index sets

In Dex, any type conforming to Ix can be an array index:

interface Ix n where
size n : Int
toOrdinal :n -> Int
unsafeFromOrdinal : Int -> n

def fromOrdinal {n} [Ix n] (o:Int) : n =
case O <= 0 & 0 < size n of
True -> unsafeFromOrdinal o
False -> error ...

Basic shape arithmetic can be done using standard type constructors:

Products (n & m)
Sums (n [m)
Exponentials (n=>m)

Basic examples

Reshapes

Concatenation

Named axes

Boundary
conditions

reshape (2, -1, 4) x

concatenate x y

image[h, w] or image[w, h]?

x: (Fin (1 + n))=>a
x[0] vs x[1 + i]

for i (3, k) 1. x.i.j.k.1

for ci. case ci of
Left xi -> x.xi
Right yi -> y.yi

image.{height=h, width=w}
image.{width=w, height=h}

x: (Unit|n)=>a
x.(Left ()) vs x.(Right i)

Index sets for compilers

Integer-based indexing Sum-type-based indexing
nmp =n+m+p for i in (n|(m|p)).
for i in range(nmp). case i of
ifi<n Left ni -> x.ni
then x[1i] Right i' -> case i' of
else if i - n < m Left mi -> y.mi
then y[i - n] Right pi -> z.pi

else z[i - n - m]

A loop with a sum-typed index set either never inspects the
index, or is a very good candidate for loop splitting!

Indexing lemmas

Array reversal

def reflect {n} (i:n) : n =
unsafeFromOrdinal n (size n - 1 - ordinal i)

sequence : (Fin s)=>Int = ... sequence : n=>Int = ...
for i in range(len(sequence)). for 1i.
sequence[len(sequence) - 1 - i] sequence. (reflect i)

Dynamic programming

def prev (i:n) : (Unit|n) =
unsafeFromOrdinal _ (ordinal i)

X : (Fin s)=>Int = ... x : (Unit|n)=>Int = ...
sumWithPrev = for i in range(len(x)). sumWithPrev = for 1i.
if i == case i of
then x[1i] Left () -> x.i

else x[i - 1] + x[i] Right i' -> x.(prev i') + x.i

Index sets are user-definable

data RGB = Red | Green | Blue
instance Ix RGB
size = 3
toOrdinal = \x. case x of
Red -> 0
Green -> 1
Blue -> 2
unsafeFromOrdinal = ...

data HSV = Hue | Saturation | Value
instance Ix HSV ...

Image = \h w colorSpace. { height: (Fin h) & width: (Fin w) }=>colorSpace=>UInt8

imgRGB : Image 200 200 RGB = loadKnownSizelPG "doggo.jpg"
imgHSV : Image _ _ HSV = RGBtoHSV imgHSV
hues = for h w. imgHSV.{height=h, width=w}.Hue

Array type zoo

%) If we have dependent functions... why don't we try dependent arrays?

Array kind Example type
Homogeneous Static (Fin 10)=>(Fin 20)=>Float
A
Dynamic (Fin n)=>(Fin m)=>Float
Structured ragged (i:Fin 10)=>(...i)=>Float
Ragged (i:Fin 10)=>(Fin lengths.i)=>Float
\/
Heterogeneous Jagged (Fin 10)=>List Float
Also:

Position-dependent arrays and their application for high performance code generation, F. Pizzuti et al.
Generating High Performance Code for Irregular Data Structures using Dependent Types, F. Pizzuti et al.

2 What users don't see

Going deeper

Untyped surface syntax

N

Type inference o o
Automatic differentiation

AW y_A

Normalization to first-order

N

Optimizations

N

Parallelization

N

Code generation

Also: High-Performance Defunctionalisation in Futhark, A. K. Hovgaard et al.

Zooming into AD

forward-mode AD = linearize
linearize : (a -> b) -> a -> (b, a -0 b)
But, we often want a representation of the derivative mapping.
If ais a high-dimensional vector space, then this evaluation is expensive!
But, we also know that every linear transform has a transpose.
transpose : (a -0 b) -> (b -0 a)

reverse-mode AD = linearize + transpose'

'Decomposing reverse-mode automatic differentiation, R. Frostig et al.

Implementing linearization

Multiplication linearize \x. x * vy - \X. (x *vy,
\xt. x * xt + xt * y)

Composition linearize \x. f (g x) [\x. (t, glin) = linearize g x
(y, flin) = linearize f t
(y, \xt. flin (glin xt))

For loops linearize \x. for i. f x i +~ 22?

\x. (for i. f (x, i),
(rematerialize) \xt. for i. . . .
snd (linearize f (x, i)) xt.i)
\x. (ys, flins) = unzip (for i. linearize f (x, 1i))
(ys, \xt. for i. flins.i xt.i)

Normalizing arrays of functions

toFirstOrder : Nest Decl -> (Nest Decl, Substitution Name Atom)

x = for 1i. tmp = for 1.
vl = ... fol = ... X -=> K
toFirstOrder . > . view i.
vn = ... fom = ... 9 atom[reconSubst][al,...,an/tmp.1i]
atom (a1, ..., ak)
((fo1 = ...; ...; fom = ...), reconSubst) = toFirstOrder (vl = ...; ...; vn = ...)

(a1, ..., ak) = intersect (freeVars atom[reconSubst]) (fol, ..., fom)

Similar trick also works (and is needed!) for case expressions

Going deeper

Untyped surface syntax

N\

Type inference o o
Automatic differentiation

\ y_A

Normalization to first-order

N

Optimizations

N

Parallelization

N

Code generation

Efficiency issues loom

Scaling

Addition

Duplication

Broadcast

Indexing

\xt

\(xt, yt).

\xt

\xt

\xt

.zt

zt

t
zt

N

.zt

zt

.zt

zt

. xt.

xt * ¢

xt + yt

(xt, xt

for 1.

)

Xt

\zt. xt = zt * ¢
Xt
\zt. xt = zt
yt = zt
(xt, yt)
\zt. xt = fst zt
xt = xt + snd zt
Xt

\zt. xt = sum zt
Xt

PRR[1] += zt"

FP's unstated cost model: indexing is aliasing

mat x = vec[i]
AL
4/ -
U _J
Y

vec = mat[i]

mat_ct vec[i] += x_ct
AN V4
7 A
U v
Y

vec_ct = mat_ct[i]

Transposition of indexing

Imperative AD
store x_ct[i] ((load x_ct[i]) + y_ct)

Dense updates

x_ct2 = x_ct + one_hot(y_ct, i)

(3)Sparse updates

x_ct2 = x_ct + sparse_one_hot(y_ct, i)

Functional in-place (linear) updates
x_ct2 = consume_and_update(x_ct, i, y ct)

5 Associative accumulation effect
accumulate y ct into x_ct[i]

X Unconstrained heap mutation

X Lots of wasted work, wrong asymptotics

X Unacceptable constant factors, difficult on GPUs

X Sequentializes code

Solution: effects

(Basic) Accumulation
: Float = def scan {n i o s eff}

(f:i -> s -> {|eff} (o, s)) (init:s)
(x:n=>i) : {|eff} n=>0 =

for 1i.
acc += Xx.1i (result, final) = withState init \ref.
for 1i.

total
ref := f x.i (get ref)
result

State

def sum {n} (x:n=>Float)
(_, total) = withAccum \acc.

Arbitrary monoidal reductions

def reduce {n a} (m:Monoid a) (x:n=>a) : a =
(_, total) = withAccum m \acc.

for 1.
acc o= x.i
total

Differentiation through reductions over arbitrary monoids is non-trivial!'

'Parallelism-preserving automatic differentiation for second-order array languages, A. Paszke et al.

Efficient AD as a language design benchmark

There exists a constant ¢ such that for every program P the cost of
evaluating P' (P' being derived using forward- or reverse-mode AD from P)
is at most c times larger than the cost of evaluating P.

Good reverse-mode autodiff support requires:
_1JClosure under partial evaluation

. 2)Closure under data-flow duality

For example, reverse-mode AD of (parallel associative) scan is inefficient!'

'Parallelism-preserving automatic differentiation for second-order array languages, A. Paszke et al.

Current / future work

e User-extensible (parallel-friendly) algebraic effects (see PEPM paper’)
e Scope-correctness of compiler implementation

e Monomorphization without complete inlining

e Typeclass system rework (embracing overlap!)

e Nested data parallelism (see Conal Elliot's earlier presentation?)

e Make Dex fast!

'Parallel Algebraic Effect Handlers, N. Xie, D. J. Johnson et al.
2Can Tensor Programming Be Liberated from the Fortran Data Paradigm?

Thank you!

apaszke@google.com

