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Last Lecture: the Bayesian Pipeline



Last Lecture: Bayes’ Rule

*Image Credit: Paul Epps
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Last Lecture: Coin Flipping Example
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Outline of This Lecture

• What is a Bayesian model? 

• Bayesian modeling through the eyes of multiple hypotheses 

• Example: Bayesian linear regression



What is a Bayesian Model?



What is a Model?

• Models are mechanisms for reasoning
about the world 

• E.g. Newtonian mechanics, simulators, 
internal models our brain constructs 

• Good models balance fidelity, predictive 
power and tractability

- E.g. Quantum mechanics is a more 
accurate model than Newtonian 
mechanics, but it is actually less
useful for everyday tasks 

Particle physics Nuclear physics 

Weather Material design 

Drug discovery Cosmology 



Example Model: Poler Players’ Reasoning about Each Other



What is a Bayesian Model?

A probabilistic generative model 𝑝(𝜃, 𝒟) over latents 𝜃 and data𝒟

• It forms a probabilistic “simulator” for generating data that we might have 
seen 

• Almost any stochastic simulator can be used as a Bayesian model (we will 
return to this idea in more detail when we cover probabilistic 
programming) 



Example Bayesian Model: Captcha Simulator

𝑝(image|letters)

𝑝(letters|image)



Example Bayesian Model: Gaussian Mixture Model 



Example Bayesian Model: Gaussian Mixture Model 

Gaussian 1:
𝜇! = [−3,−3], Σ! =

1 −0.7
−0.7 1

Gaussian 2:
𝜇" = [3,3], Σ" =

1 0
0 1

Generative mode:

𝜃 ∼ Categorical 0.5, 0.5

𝑥 ∼ 𝒩(𝜇# , Σ#)

𝑝 𝒟 𝜃 = ∏!"#
$ 𝑝(𝑥!|𝜃)



A Fundamental Assumption

• An assumption made by virtually all Bayesian models is that data points are 
conditionally independent given the parameter values. 

• In other words, if our data is given by 𝒟 = 𝑥! !"#
$ , we assume that the 

likelihood factorizes as:

𝑝 𝒟 𝜃 =5
)*+

,

𝑝(𝑥)|𝜃)

• Effectively equates to assuming that our model captures all information 
relevant to prediction 

• For more details, see the lecture notes 



“All models are wrong, 
but some are useful”

George Box
(1919—2013)



“All models are wrong, but some are useful”

• The purpose of a model is to help provide insights into a target problem or 
data and sometimes to further use these insights to make predictions 

• Its purpose is not to try and fully encapsulate the “true” generative process 
or perfectly describe the data 

• There are infinite different ways to generate any given dataset. Trying to 
uncover the “true” generative process is not even a well-defined problem 

• In any real–world scenario, no Bayesian model can be “correct”. The 
posterior is inherently subjective 

• It is still important to criticize—models can be very wrong! E.g. we can use 
frequentist methods to falsify the likelihood 



Bayesian Modeling 
Through the Eyes of 
Multiple Hypotheses 



Bayesian Modeling as Multiple Hypotheses

Bayesian models are rooted in hypotheses:

• Each instance of our parameters 𝜃 is a hypothesis. Given a 𝜃, we can 
simulate data using the likelihood model 𝑝(𝐷|𝜃)

• Bayesian inference allows us to reason about these hypothesis, giving 
the probability that each is true given the actual data we observe 

• The posterior predictive is a weighted sum of the predictions from all 
possible hypotheses, where these weights are how likely that 
hypothesis is to be true 



Recap: Coin Flipping
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!.#×!.%&!.'×!.( = 0.48
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Hypotheses

Posterior

𝑝 𝐻|𝐻 = 𝑝 𝐻|𝑏𝑖𝑎𝑠𝑒𝑑 1 𝑝 𝑏𝑖𝑎𝑠𝑒𝑑|𝐻 +
𝑝 𝐻|𝑓𝑎𝑖𝑟 1 𝑝 𝑓𝑎𝑖𝑟|𝐻

= 0.36

Posterior predictive

𝑝 𝑏𝑖𝑎𝑠𝑒𝑑 = 0.7
𝑝 𝑓𝑎𝑖𝑟 = 0.3

prior belief



Example: Density Estimation

• Suppose that we decide to use an isotropic 
Gaussian likelihood with unknown mean 𝜃
to model the data on the right: 

where 𝐼 is a two-dimensional identity 
matrix 



Example: Density Estimation

Hypothesis 1: 𝜃 = −2, 0

𝑝 𝒟 𝜃 = −2,0 = 0.00059×10"%



Example: Density Estimation

Hypothesis 1: 𝜃 = −2, 0

𝑝 𝒟 𝜃 = −2,0 = 0.00059×10"%

Hypothesis 2: 𝜃 = 0, 0

𝑝 𝒟 𝜃 = 0,0 = 0.99×10"%



Example: Density Estimation

Highest likelihood

Hypothesis 1: 𝜃 = −2, 0

𝑝 𝒟 𝜃 = −2,0 = 0.00059×10"%

Hypothesis 2: 𝜃 = 0, 0

𝑝 𝒟 𝜃 = 0,0 = 0.99×10"%

Hypothesis 3: 𝜃 = 2, 0

𝑝 𝒟 𝜃 = 2,0 = 0.021×10"%



The Posterior Predictive Averages over Hypotheses (1) 

• The posterior predictive distribution allows us to average over each of our 
hypotheses, weighting each by their posterior probability. 

• For example, in our density estimation example, lets introduce (the rather 
unusual but demonstrative) prior:



The Posterior Predictive Averages over Hypotheses (2) 

• Then we have:



The Posterior Predictive Averages over Hypotheses (3) 

• Inserting our likelihoods from earlier and trawling through the algebra gives 

We thus have that the posterior predictive is a weighted sum of the three 
possible predictive distributions 



The Posterior Predictive Averages over Hypotheses 



Some Subtleties
• Even though we average over 𝜃, a Bayesian model is still implicitly assuming that 

there is still a single true 𝜃

- The averaging over hypotheses is from our own uncertainty as which one is correct 

- This can be problematic with lots of data given our model is an approximation 

• In the limit of large data, the posterior is guaranteed to collapse to a point estimate: 

𝑝(𝜃|𝑥+:,) → 𝛿 𝜃 = <𝜃 as  𝑁 → ∞

• The value of <𝜃 and the exact nature of this convergence is dictated by the 
Bernstein–von Mises Theorem (see the lecture notes) 

• Note that, subject to mild assumptions, <𝜃 is independent of the prior: with enough 
data, the likelihood always dominates the prior 



Example: 
Bayesian Linear Regression 



Linear Regression

House size is a good linear predictor for price (ignore the colors)
• Learn a function that maps size to price



Linear Regression
• Inputs: 𝑥 ∈ ℝ. (where 𝐷 = 1 for this example) 

• Outputs: 𝑦 ∈ ℝ

• Data: 𝐷 = 𝑥), 𝑦) )/+
,

• Regression model: 𝑦 ≈ 𝑥0𝑤 + 𝑏 where 𝑤 ∈ ℝ. and 𝑏 ∈ ℝ

We can simplify this notation by redefining 𝑥 ← 1, 𝑥0 0 and 𝑤 ← 𝑏,𝑤0 0, so 
that the model becomes 𝑦 ≈ 𝑥0𝑤

Classical least squares linear regression is a discriminative method aiming to 
minimize the empirical mean squared error

𝐿(𝑤) = +
,
∑)/+, 𝑦) − 𝑥)0𝑤

#



Linear Regression

*Image credit: Pier Palamara



Bayesian Linear Regression

• Least square provides a point estimate without uncertainty

w∗ = argmin
&

𝐿(𝑤)

• Bayesian method introduces uncertainty by building a probabilistic 
generic model based around linear regression and then being 
Bayesian about the weights



Bayesian Linear Regression: Prior and Likelihood 

• For example, prior of 𝑤 is a zero-mean 
Gaussian with a fixed covariance 𝐶

𝑝 𝑤 = 𝒩(𝑤; 0, 𝐶)

• And given input 𝑥, the output is 𝑦 = 𝑥0𝑤
plus a Gaussian noise, and datapoints are 
independent of each other:

𝑝 𝑦 𝑥,𝑤 = ∏)/+
, 𝑝(𝑦)|𝑥), 𝑤)

= ∏)/+
, 𝒩(𝑦); 𝑥)0𝑤, 𝜎#)

where 𝜎 is a fixed standard deviation

*Image credit: Roger Grosse 



Bayesian Linear Regression: Posterior

• Using Bayes’ rule (and some math) to derive the posterior. See Bishop, Pattern 
recognition and machine learning, 2006, Chapter 3 



Bayesian Linear Regression: Posterior

• Note here that the fact the prior and posterior share the same form is highly 
special case. This is known as a conjugate distribution and it is why we were able 
to find an analytic solution for the posterior. 

Posterior after 1 observation Posterior after 2 observations 



Bayesian Linear Regression: Posterior

*Bishop, Pattern recognition and machine learning. 



Bayesian Linear Regression: Posterior

*Bishop, Pattern recognition and machine learning. 



Bayesian Linear Regression: Posterior Predictive

• Some more math to derive the posterior predictive… where the result is again a 
consequence of Gaussian identities, and 𝑚 and 𝑆 are as before



Bayesian Linear Regression: Posterior Predictive

*Image credit: https://www.dataminingapps.com/2017/09/simple- linear- regression- do- it- the- bayesian- way/ 



Further Reading

• Information on non-parametric models and Gaussian processes in course notes

• Bishop, Pattern recognition and machine learning, Chapters 1-3 

• K P Murphy. Machine learning: a probabilistic perspective. 2012, Chapter 5 

• D Barber. Bayesian reasoning and machine learning. 2012, Chapter 12 

• T P Minka. “Bayesian model averaging is not model combination”. In: (2000) 

• Zoubin Ghahramani on Bayesian machine learning (there are various alternative 
variations of this talk): https://www.youtube.com/watch?v=y0FgHOQhG4w

• Iain Murray on Probabilistic Modeling https://www.youtube.com/watch?v=pOtvyVYAuW4 


