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Previous Lecture:
Bayesian modeling

• Graphical models

𝑝 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓
= 𝑝 𝑎 * 𝑝 𝑏 * 𝑝 𝑐 𝑎, 𝑏 *

𝑝(𝑑|𝑐) * 𝑝 𝑓 𝑐 * 𝑝(𝑒|𝑐, 𝑑)
*Example and image credit: Pieter Abbeel
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This Lecture

• Estimating and using Bayesian posteriors 

• While previous lectures have focused on modeling, we will now be mostly 
concerned with computation instead; we will generally assume the model is given 

• Why is Bayesian inference challenging? And ways to work around:

- Deterministic Approximations
- Monte Carlo
- Rejection sampling 
- Importance sampling 



Why is Bayesian inference 
challenging? 



Bayesian Inference is Hard!

• It might at first seem like Bayesian inference is a straightforward problem 

- By Bayes’ rule we have that 𝑝(𝜃|𝒟) ∝ 𝑝(𝒟|𝜃) ( 𝑝(𝜃) and so we already know 
the relative probability of any one value of θ compared to another 

• In practice, this could hardly be further from the truth 

- For non–trivial models, Bayesian inference is akin to calculating a high–
dimensional integral: the normalization constant 𝑝(𝒟) = ∫𝑝(𝒟|𝜃) ) 𝑝(𝜃) 𝑑𝜃

- It is, in general, an NP-hard problem (the examples we have considered so far 
are special cases) 



NP-hardness of Bayesian inference

• G. F. Cooper, The computa-onal complexity of probabilis-c inference using 
Bayesian belief networks, ArSficial Intelligence, 1990

• We can reduce the NP-complete problem 3SAT to Bayesian inference

3SAT Bayesian inference

(𝑥! ∨ 𝑥" ∨ 𝑥#) ∧
(¬𝑥" ∨ ¬𝑥$ ∨ ¬𝑥%) ∧

…
…

(¬𝑥& ∨ 𝑥! ∨ 𝑥')



Why is Bayesian Inference Hard?

• We can break down Bayesian inference into two key challenges: 

- Calculating the normalization constant 𝑝(𝒟) = ∫𝑝(𝒟|𝜃) ) 𝑝(𝜃) 𝑑𝜃

- Providing a useful characterization of the posterior 𝑝(𝜃|𝒟), for 
example, a set of approximate samples 

• Each of these constitutes a somewhat distinct problem 

• Many methods sidestep the first problem and directly produce 
approximate samples 



The Normalization Constant (1) 

• If 𝑝 𝒟 = ∫𝑝 𝒟 𝜃 ( 𝑝 𝜃 𝑑𝜃 is unknown, we lack 
scaling when evaluaDng a point 

- We have no concept of how relaDvely 
significant that point is compared to the 
distribuDon as a whole 

- We don’t know how much mass is missing 

- The larger the space of θ, the more difficult 
this becomes 

* Image Credit: www.theescapeartist.me

𝑝 𝜃 𝒟 =
𝑝 𝜃 ( 𝑝 𝒟 𝜃

𝑝 𝒟



The Normalization Constant (2)

• In practice, even having an exact form for 𝑝(𝜃|𝒟) is often not enough for many 
tasks we might want to carry out when 𝜃 is continuous or has a very large 
number of possible values: 

- To make predictions using the posterior predictive distribution 

- To calculate the expected value of some function, 𝔼.(/|𝒟) [𝑓(𝜃)]

- To find the most probable variable values 𝜃∗ = argmax
/

𝑝(𝜃|𝒟)

- To produce a useful representation of the posterior for passing on to 
another part of a computational pipeline or to be directly observed by a user

• Knowing is 𝑝(𝒟) is only sufficient for this first of these tasks. The others require 
additional computation of some form



Characterizing the Posterior: Example 

• Lets consider a simple example where we can easily calculate 𝑝(𝒟), and thus 
𝑝(𝜃|𝒟), numerically: 

• Even though we have the posterior in closed form, it is not a standard distribution 
and so we don’t know how to sample from it 

- Even more difficult for higher dimensional problems 



Determinis4c 
Approxima4ons



Point Estimates 

• One of the simplest approaches is to effectively ignore the posterior 
computation problem completely and instead resort to a heuristic 
approximation

• The simplest such approach is to take a point estimate +𝜃 for 𝜃 (i.e., no 
uncertainty) and then approximate the posterior predictive distribution 
using only this value: 

𝑝 𝒟∗ 𝒟 ≈ 𝑝 𝒟∗ +𝜃 .

𝑝 𝒟∗ 𝒟 ≔ 6𝑝(𝒟∗|𝜃) ( 𝑝(𝜃) 𝑑𝜃



Point Estimates 

• One of the simplest approaches is to effectively ignore the posterior 
computation problem completely and instead resort to a heuristic 
approximation

• The simplest such approach is to take a point estimate +𝜃 for 𝜃 (i.e., no 
uncertainty) and then approximate the posterior predictive distribution 
using only this value: 

𝑝 𝒟∗ 𝒟 ≈ 𝑝 𝒟∗ +𝜃 .

• Finding +𝜃 requires only an optimization problem to be solved 

- This is far easier than the integration problem posed by full posterior 
inference 



Maximum Likelihood

• Maximum likelihood (MLH) is a non-Bayesian, frequentist, approach for 
calculating a +𝜃 based on maximizing the likelihood: 

+𝜃"#$ = argmax% 𝑝(𝒟|𝜃)

L This can be prone to overfitting and does not incorporate prior
information, leading to a host of issues we previously discussed (see the 
lecture notes: Bayesian vs frequentist) 



Maximum a Posteriori (MAP) 

• Maximum a Posteriori (MAP) estimation corresponds to choosing +𝜃 to 
maximize the posterior probability: 

+𝜃"&' = argmax% 𝑝 𝒟 𝜃 ) 𝑝 𝜃

• J This provides regularization compared to MLH estimation 

• L but still has a number of drawbacks compared to full inference: 
- It incorporates less information into the predictive distribution 

- The position of the MAP estimate is dependent of the parametrization of the 
problem (see notes on change of variables) 

≡ argmax% 𝑝 𝜃 𝒟



Laplace Approximation (1)
• The Laplace approximation refines the MAP estimate by approximating the 

full posterior with a Gaussian centered at the MAP estimate and covariance 
dictated by the curvature of the log density around this point 

*Images Credit: Luis Herranz
MAP estimate 
in our case



Laplace Approximation (2) 

• More formally, the Laplace approximaDon is given by



Monte Carlo



Monte Carlo

• It forms the underlying principle for all stochastic computation 
- The foundation for a huge array of methods for numerical integration, 

optimization, and Bayesian inference 
• It provides us with a means of dealing with complex models and problems 

in a statistically principled manner 

DEFINITION

Monte Carlo is the characterization of a probability distribution through random 
sampling. 



Monte Carlo Estimators 

• Consider the problem of calculating the expectation of some function 𝑓(𝜃) under 
the distribution 𝜃 ∼ 𝜋(𝜃): 

𝐼 ∶= 𝔼2(/) [𝑓(𝜃)] = 6𝑓(𝜃) ( 𝜋 𝜃 𝑑𝜃

This can be approximated using the Monte Carlo estimator 𝐼3: 

𝐼 ≈ 𝐼3: =
4
3
∑5643 𝑓( >𝜃5) where  >𝜃5 ∼ 𝜋(𝜃)

are independent draws from 𝜋(𝜃)

• Most of the tasks we laid out for Bayesian inference can be formulated as some 
form of (potentially implicit) expectation 



Example: Production Line

• The producDon machine randomly generates colored shapes from some 
distribuDon, a robot sorts them into bins 
• The producDon machine is performing Monte Carlo sampling, the robot is 

construcDng a Monte Carlo esDmate 

*Images Credit: Pieter Abbeel



Example: Election Polling

*Images Credit: Anthony Figueroa 



Unbiasedness (1) 

• The Monte Carlo estimate is unbiased (for fixed N ), i.e. 𝔼[𝐼'] = 𝐼

𝔼 𝐼3 = 𝔼
1
𝑁
A
564

3

𝑓 >𝜃5

=
1
𝑁
A
564

3

𝔼 𝑓 >𝜃5

=
1
𝑁
A
564

3

𝔼 𝑓 >𝜃4 = 𝔼 𝑓 >𝜃4 = 𝐼



Unbiasedness (1) 

What exactly does unbiasedness mean?

• It means that Monte Carlo does not introduce any systemaDc error, i.e. 
bias, into the approximaDon

- In expectaSon, it does not overesSmate or underesSmate the target

- A biased esSmator B𝐼 would have 𝔼 B𝐼 = 𝐼 + 𝐵 for some 𝐵 ≠ 0
- Here we are implicitly using the frequenSst definiSon of probability: the 

expectaSon is defined through repeaSng the sampling infinitely o\en

• It does not mean that it is equally likely to overesDmate or underesDmate
- It may, for example, typically underesSmate by a small amount and then 

rarely overesSmate by a large amount



Consistency of an Estimator 



The Law of Large Numbers 



The Law of Large Numbers (2) 



Monte Carlo vs Classical Integration Schemes 

• Classical integration approaches like Simpson’s rule can offer far better 
convergence rates in low dimensions that the 𝑂(1/ 𝑁) of Monte Carlo 

• But these rates break down (typically exponentially) as the dimension 
increases 

• In high–dimensions, Monte Carlo estimates are one of the only approaches 
that can remain accurate 



Drawing Samples



Drawing Samples 

• We have shown how to use samples to characterize distribuDons and 
esDmate expectaDons 

• But how to we draw these samples in the first place? 

• We’ll now introduce a number of sampling schemes 

• Note that most (with the excepDon of our first example) will not require us 
to know the normalizaDon constant 𝑝(𝒟): they can operate on 𝑝(𝜃, 𝒟)
directly 



Sampling Using the Inverse CDF 

• If we know the cumulative density function (CDF) of the posterior 

𝑃 𝜃 ≤ 𝑥 𝒟) ≔ 6
/!678

/!69
𝑝 𝜃 = 𝜃: 𝒟 𝑑𝜃′

along with its inverse 𝑃74 (we rarely do in practice), then we can draw exact 
samples by first sampling 𝑢 ∼ Uniform(0, 1) and then taking 𝑥 = 𝑃74 (𝑢), i.e.
we have 𝑢 = 𝑃 𝜃 ≤ 𝑥 𝒟)

pdf cdf
0

1

Sample 
𝑢 ∼ Uniform(0, 1)



Sampling by RejecLon

• How might we draw samples uniformly 
from within this butterfly shape? 



Sampling by Rejection

• How might we draw samples uniformly 
from within this butterfly shape? 

• We can draw samples uniformly from a 
surrounding box 



Sampling by Rejection

• How might we draw samples uniformly 
from within this butterfly shape? 

• We can draw samples uniformly from a 
surrounding box 

• Then reject those not falling within the 
shape 



Sampling by Rejection: Estimate Shape Area

J The probability of any one sample falling 
within the shape is equal to the ratio of the 
areas of the shape and bounding box

𝐴FGHIJ = 𝐴KLM ( 𝑃 𝜃 ∈ shape

≈ N"#$
3
∑5643 𝕀( >𝜃5 ∈ shape)

• Here we have used a Monte Carlo estimator 
for 𝑃(𝜃 ∈ shape)

• Note that the value of 𝑃(𝜃 ∈ shape) will 
dictate the efficiency of our estimation as it 
represents the acceptance rate of our samples 



Sampling from Area Under Density 

• Sampling from the area under a density function is equivalent to sampling from 
that density itself

Think about sampling from a histogram with even width bins and then take the 
width of these bins to zero 

𝑥

PDF(𝑥)



Sampling from Area Under Density 

• Sampling from the area under a density function is equivalent to sampling from 
that density itself

Think about sampling from a histogram with even width bins and then take the 
width of these bins to zero 

𝑥
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Sampling from Area Under Density 

• Sampling from the area under a density function is equivalent to sampling from 
that density itself

Think about sampling from a histogram with even width bins and then take the 
width of these bins to zero 

𝑥

PDF(𝑥)



Rejection Sampling (1)

• RejecSon sampling uses this idea to draw samples from a target by drawing samples 
from an area enveloping its density using an auxiliary variable 𝑢



Rejection Sampling (2)

• More formally, we define a proposal distribution 𝑞(𝜃)
which completely envelopes a scaled version of the 
unnormalized target distribution 𝐶 ) 𝑝(𝜃) for some 
fixed 𝐶, such that 𝑞(𝜃) ≥ 𝐶 ) 𝑝(𝜃|𝒟) for all values of 
𝜃

• We then sample a pair .𝜃, 𝑢 by first sampling .𝜃 ∼ 𝑞
and then 𝑢~Uniform(0, 𝑞(𝜃)). Accept the sample if

𝑢 ≤ 𝐶 ) 𝑝( .𝜃|𝒟)

in which case .𝜃 is an exact sample from 𝑝(𝜃|𝒟)

• The acceptance rate of samples is 𝐶 ) 𝑝(𝒟), which 
thus provides an estimate for 𝑝(𝒟) by dividing 
through by 𝐶

Proposal 
distribution 𝑞 𝜃



Rejection Sampling (3)

• Rejection sampling in action for our earlier example: 



Rejection Sampling: Pros and Cons

.Pros.
• One of the only inference methods to produce exact samples 
• Can be highly effective in low dimensions 

• Works equally well for unnormalized targets (i.e. we there is no need to know 𝑝(𝒟)
• Provides a marginal likelihood estimate via the acceptance rate 

.Cons.

• Scales poorly to higher dimensions (more on this later) 

• Requires carefully designed proposals 

• Very dependent on the value of 𝐶
• Finding a valid 𝐶 requires significant knowledge about the target density 



Importance Sampling 



Importance Sampling 

• Importance sampling is a common sampling method that is also the 
cornerstone for many more advanced inference schemes 

• It is closely related to rejection sampling in that it uses a proposal, i.e. 8𝜃 ∼
𝑞(𝜃)

• Instead of having an accept–reject step, it assigns an importance weight to 
each sample 

• These importance weights act like correction factors to account for the fact 
that we sampled from 𝑞(𝜃) rather than our target 𝑝(𝜃|𝒟)



Importance Sampling Algorithm 

• Assume for now that we can evaluate 𝑝(𝜃|𝒟) exactly. Here the algorithm is as 
follows: 



Importance Sampling Example 



Importance Sampling Example 



Importance Sampling Example 



Importance Sampling ProperLes 

• Provided that 𝑞(𝜃) has lighter tails than 𝑝(𝜃|𝒟), i.e. ( %
) 𝜃 𝒟 < 𝜀, ∀𝜃 for 

some 𝜀 > 0, then importance sampling provides an unbiased and 
consistent estimator for any integrable target function 𝑓(𝜃): 

(see the lecture notes for more details)



Pros and Cons of Importance Sampling

.Pros.
• By using all the samples from the proposal, can achieve lower variance estimates than 

rejection sampling from the same cost 
• No need to find a constant scaling to bound the target (i.e. the 𝐶 in rejection sampling) 
• Can also be highly effective in low dimensions 
• Provides an unbiased marginal likelihood estimate by taking the average of the weights

.Cons.
• Also scales poorly to higher dimensions (more on this next lecture) 

• Also requires a carefully designed proposals

• Samples are not exact 



Summary

• Bayesian inference is hard! 

• Even if we can directly evaluate the posterior (which is rare), this may not be 
enough to characterize it and estimate expectations 

• Monte Carlo methods give us a mechanism of representing distributions through 
samples 

• Rejection sampling samples from an envelope of the target than only takes the 
samples that fall within it 

• Importance sampling samples from a proposal and then assigns weights to the 
samples to account for them not being from the target 

Next lecture: MCMC and variational methods 



Further Reading

• The notes quite closely match the lecture with some extra details 

• Chapters 1, 2, 7, and 9 of Art Owen’s online book on Monte Carlo: 
h`ps://statweb.stanford.edu/~owen/mc/ 

• Chapter 23 of K P Murphy. Machine learning: a probabilis1c perspec1ve. 2012 

• M F Bugallo et al. “AdapDve importance sampling: the past, the present, and 
the future”. In: IEEE Signal Processing Magazine (2017) 

• David MacKay on Monte Carlo methods 
h`p://videolectures.net/mackay_course_12/

https://statweb.stanford.edu/~owen/mc/
http://videolectures.net/mackay_course_12/

