Lecture 13 Bayesian Inference (Part 1) (Based on slides by Dr. Tom Rainforth, HT 2020)

Jiarui Gan

jiarui.gan@cs.ox.ac.uk

Previous Lecture:

Bayesian modeling

• Graphical models

p(a, b, c, d, e, f)= $p(a) \cdot p(b) \cdot p(c|a, b) \cdot$ $p(d|c) \cdot p(f|c) \cdot p(e|c, d)$

*Example and image credit: Pieter Abbeel

This Lecture

- Estimating and using Bayesian posteriors
- While previous lectures have focused on modeling, we will now be mostly concerned with computation instead; we will generally assume the model is given
- Why is Bayesian inference challenging? And ways to work around:
 - Deterministic Approximations
 - Monte Carlo
 - Rejection sampling
 - Importance sampling

Why is Bayesian inference challenging?

Bayesian Inference is Hard!

- It might at first seem like Bayesian inference is a straightforward problem
 - By Bayes' rule we have that $p(\theta|D) \propto p(D|\theta) \cdot p(\theta)$ and so we already know the relative probability of any one value of θ compared to another
- In practice, this could hardly be further from the truth
 - For non-trivial models, Bayesian inference is akin to calculating a highdimensional integral: the normalization constant $p(D) = \int p(D|\theta) \cdot p(\theta) d\theta$
 - It is, in general, an NP-hard problem (the examples we have considered so far are special cases)

NP-hardness of Bayesian inference

• We can reduce the NP-complete problem **3SAT** to Bayesian inference

• G. F. Cooper, *The computational complexity of probabilistic inference using Bayesian belief networks,* Artificial Intelligence, *1990*

Why is Bayesian Inference Hard?

- We can break down Bayesian inference into two key challenges:
 - Calculating the normalization constant $p(\mathcal{D}) = \int p(\mathcal{D}|\theta) \cdot p(\theta) d\theta$
 - Providing a useful characterization of the posterior $p(\theta | D)$, for example, a set of approximate samples
- Each of these constitutes a somewhat distinct problem
- Many methods sidestep the first problem and directly produce approximate samples

The Normalization Constant (1)

- If $p(D) = \int p(D|\theta) \cdot p(\theta) d\theta$ is unknown, we lack scaling when evaluating a point
 - We have no concept of how relatively significant that point is compared to the distribution as a whole
 - We don't know how much mass is missing
 - The larger the space of θ , the more difficult this becomes

 $p(\theta|\mathcal{D}) = \frac{p(\theta) \cdot p(\mathcal{D}|\theta)}{p(\mathcal{D})}$

* Image Credit: www.theescapeartist.me

The Normalization Constant (2)

- In practice, even having an exact form for p(θ|D) is often not enough for many tasks we might want to carry out when θ is continuous or has a very large number of possible values:
 - To make **predictions** using the posterior predictive distribution
 - To calculate the **expected value** of some function, $\mathbb{E}_{p(\theta|D)}[f(\theta)]$
 - To find the most probable variable values $\theta^* = \arg \max_{\theta} p(\theta | D)$
 - To produce a useful representation of the posterior for passing on to another part of a computational pipeline or to be directly observed by a user
- Knowing is $p(\mathcal{D})$ is only sufficient for this first of these tasks. The others require additional computation of some form

Characterizing the Posterior: Example

• Lets consider a simple example where we can easily calculate p(D), and thus $p(\theta|D)$, numerically:

$$p(\theta) = \text{GAMMA}(\theta; 3, 1) = \frac{\theta^2 \exp(-\theta)}{2} \quad \theta \in (0, \infty),$$

$$p(y = 5|\theta) = \text{STUDENT-T}(\theta - 5; 2) = \frac{\Gamma(1.5)}{\sqrt{2\pi}} \left(1 + \frac{(\theta - 5)^2}{2}\right)^{-3/2}$$

θ

- Even though we have the posterior in closed form, it is not a standard distribution and so we don't know how to sample from it
 - Even more difficult for higher dimensional problems

Deterministic Approximations

Point Estimates

- One of the simplest approaches is to effectively ignore the posterior computation problem completely and instead resort to a heuristic approximation
- The simplest such approach is to take a **point estimate** $\tilde{\theta}$ for θ (i.e., no uncertainty) and then approximate the posterior predictive distribution using only this value:

$$p(\mathcal{D}^*|\mathcal{D}) \approx p(\mathcal{D}^*|\tilde{\theta})$$

 $p(\mathcal{D}^*|\mathcal{D}) \coloneqq \int p(\mathcal{D}^*|\theta) \cdot p(\theta) \, d\theta$

Point Estimates

- One of the simplest approaches is to effectively ignore the posterior computation problem completely and instead resort to a heuristic approximation
- The simplest such approach is to take a **point estimate** $\tilde{\theta}$ for θ (i.e., no uncertainty) and then approximate the posterior predictive distribution using only this value:

$$p(\mathcal{D}^*|\mathcal{D}) \approx p(\mathcal{D}^*|\tilde{\theta}).$$

- Finding $\tilde{\theta}$ requires only an **optimization** problem to be solved
 - This is far easier than the **integration** problem posed by full posterior inference

Maximum Likelihood

• Maximum likelihood (MLH) is a non-Bayesian, frequentist, approach for calculating a $\tilde{\theta}$ based on maximizing the likelihood:

 $\tilde{\theta}_{\text{MLH}} = \operatorname{argmax}_{\theta} p(\mathcal{D}|\theta)$

Solution This can be prone to overfitting and **does not incorporate prior** information, leading to a host of issues we previously discussed (see the lecture notes: Bayesian vs frequentist)

Maximum a Posteriori (MAP)

• Maximum a Posteriori (MAP) estimation corresponds to choosing $\tilde{\theta}$ to maximize the posterior probability:

 $\tilde{\theta}_{MAP} = \operatorname{argmax}_{\theta} p(\mathcal{D}|\theta) \cdot p(\theta) \equiv \operatorname{argmax}_{\theta} p(\theta|\mathcal{D})$

- ③ This provides regularization compared to MLH estimation
- 😕 but still has a number of drawbacks compared to **full inference**:
 - It incorporates less information into the predictive distribution
 - The position of the MAP estimate is dependent of the parametrization of the problem (see notes on change of variables)

Laplace Approximation (1)

• The Laplace approximation refines the MAP estimate by approximating the full posterior with a Gaussian centered at the MAP estimate and covariance dictated by the curvature of the log density around this point

Laplace Approximation (2)

• More formally, the Laplace approximation is given by

$$p(\theta|\mathcal{D}) \approx \mathcal{N}\left(\theta; \tilde{\theta}_{\mathsf{MAP}}, (\Lambda_{\mathsf{MAP}})^{-1}\right)$$

where Λ_{MAP} is the negative Hessian of the log joint density evaluated at the MAP, i.e.

$$\Lambda_{\mathsf{MAP}} = -
abla_{ heta}^2 \log \left(p(heta, \mathcal{D})
ight) |_{ heta = ilde{ heta}_{\mathsf{MAP}}}.$$

Monte Carlo

DEFINITION

Monte Carlo is the characterization of a probability distribution through **random sampling**.

- It forms the underlying principle for all stochastic computation
 - The foundation for a huge array of methods for numerical integration, optimization, and Bayesian inference
- It provides us with a means of dealing with complex models and problems in a statistically principled manner

Monte Carlo Estimators

• Consider the problem of calculating the expectation of some function $f(\theta)$ under the distribution $\theta \sim \pi(\theta)$:

$$I := \mathbb{E}_{\pi(\theta)} \left[f(\theta) \right] = \int f(\theta) \cdot \pi(\theta) d\theta$$

This can be approximated using the **Monte Carlo estimator** I_N :

$$I \approx I_N := \frac{1}{N} \sum_{n=1}^N f(\hat{\theta}_n)$$
 where $\hat{\theta}_n \sim \pi(\theta)$

are independent draws from $\pi(\theta)$

• Most of the tasks we laid out for Bayesian inference can be formulated as some form of (potentially implicit) expectation

Example: Production Line

• The production machine randomly generates colored shapes from some distribution, a robot sorts them into bins

• The production machine is performing Monte Carlo sampling, the robot is constructing a Monte Carlo estimate

Example: Election Polling

Target Population

*Images Credit: Anthony Figueroa

Unbiasedness (1)

E

• The Monte Carlo estimate is unbiased (for fixed N), i.e. $\mathbb{E}[I_N] = I$

$$[I_N] = \mathbb{E}\left[\frac{1}{N}\sum_{n=1}^N f(\hat{\theta}_n)\right]$$
$$= \frac{1}{N}\sum_{n=1}^N \mathbb{E}[f(\hat{\theta}_n)]$$
$$= \frac{1}{N}\sum_{n=1}^N \mathbb{E}[f(\hat{\theta}_1)] = \mathbb{E}[f(\hat{\theta}_1)] = I$$

Unbiasedness (1)

What exactly does unbiasedness mean?

- It means that Monte Carlo does not introduce any systematic error, i.e. **bias**, into the approximation
 - In expectation, it does not overestimate or underestimate the target
 - A biased estimator \tilde{I} would have $\mathbb{E}[\tilde{I}] = I + B$ for some $B \neq 0$
 - Here we are implicitly using the frequentist definition of probability: the expectation is defined through repeating the sampling infinitely often
- It does **not** mean that it is equally likely to overestimate or underestimate
 - It may, for example, typically underestimate by a small amount and then rarely overestimate by a large amount

Consistency of an Estimator

- In general, we want an estimator to become arbitrarily good in the limit of using a large computation
 - For example, with our Monte Carlo estimator, we would like $I_N \rightarrow I$ as $N \rightarrow \infty$.
- This is know as consistency of an estimator
- It is not the same thing as unbiasedness
 - Unbiasedness is concerned with repeatedly constructing a finite estimator and averaging the results
 - Consistency is concerned with what happens when we increase the budget of a single estimator
 - Many estimators are biased in the finite regime but consistent (their bias decreases as N increases)

The Law of Large Numbers

The consistency of the standard Monte Carlo estimator is demonstrated by the **law of large numbers**.

Informally, the law of large numbers states that the empirical average of **independent and identically distributed** (i.i.d.) random variables converges to the true expected value of the underlying process as the number of samples increases

More formally we have:

The (Weak) Law of Large Numbers

$$\mathbb{E}\left[(I_N - I)^2\right] = \frac{\sigma_{\theta}^2}{N}$$

where $\sigma_{\theta}^2 := \mathbb{E}\left[\left(f(\hat{\theta}_1) - I\right)^2\right] = \operatorname{Var}\left[f(\theta)\right]$

The Law of Large Numbers (2)

There are two key consequences of the LLN:

- $I_N \rightarrow I$ as $N \rightarrow \infty$ such that the Monte Carlo estimate is consistent
- The rate of this convergence is such that $|I_N I|$ is $O(1/\sqrt{N})$

Other more powerful results, like the **central limit theorem**, allow for the i.i.d. assumption of the LLN to be relaxed and give more information about the nature of this convergence.

- This is important if our samples are correlated (e.g. MCMC sampling)
- See the notes for more details

Monte Carlo vs Classical Integration Schemes

- Classical integration approaches like Simpson's rule can offer far better convergence rates in low dimensions that the $O(1/\sqrt{N})$ of Monte Carlo
- But these rates break down (typically exponentially) as the dimension increases
- In high-dimensions, Monte Carlo estimates are one of the only approaches that can remain accurate

Drawing Samples

Drawing Samples

- We have shown how to use samples to characterize distributions and estimate expectations
- But how to we draw these samples in the first place?
- We'll now introduce a number of sampling schemes
- Note that most (with the exception of our first example) will not require us to know the normalization constant $p(\mathcal{D})$: they can operate on $p(\theta, \mathcal{D})$ directly

Sampling Using the Inverse CDF

• If we know the cumulative density function (CDF) of the posterior

$$P(\theta \le x \mid \mathcal{D}) \coloneqq \int_{\theta' = -\infty}^{\theta' = x} p(\theta = \theta' \mid \mathcal{D}) \, d\theta'$$

along with its inverse P^{-1} (we rarely do in practice), then we can draw exact samples by first sampling $u \sim \text{Uniform}(0, 1)$ and then taking $x = P^{-1}(u)$, i.e. we have $u = P(\theta \le x | D)$

Sampling by Rejection

• How might we draw samples uniformly from within this butterfly shape?

Sampling by Rejection

- How might we draw samples uniformly from within this butterfly shape?
- We can draw samples uniformly from a surrounding box

Sampling by Rejection

- How might we draw samples uniformly from within this butterfly shape?
- We can draw samples uniformly from a surrounding box
- Then reject those not falling within the shape

Sampling by Rejection: Estimate Shape Area

The probability of any one sample falling within the shape is equal to the ratio of the areas of the shape and bounding box

 $A_{\text{shape}} = A_{\text{box}} \cdot P(\theta \in \text{shape})$

 $\approx \frac{A_{\text{box}}}{N} \sum_{n=1}^{N} \mathbb{I}(\hat{\theta}_n \in \text{shape})$

- Here we have used a Monte Carlo estimator for P(θ ∈ shape)
- Note that the value of P(θ ∈ shape) will dictate the efficiency of our estimation as it represents the acceptance rate of our samples

Sampling from Area Under Density

• Sampling from the area under a density function is equivalent to sampling from that density itself

Think about sampling from a histogram with even width bins and then take the width of these bins to zero

Sampling from Area Under Density

• Sampling from the area under a density function is equivalent to sampling from that density itself

Think about sampling from a histogram with even width bins and then take the width of these bins to zero

Sampling from Area Under Density

• Sampling from the area under a density function is equivalent to sampling from that density itself

Think about sampling from a histogram with even width bins and then take the width of these bins to zero

Rejection Sampling (1)

• Rejection sampling uses this idea to draw samples from a target by drawing samples from an area **enveloping** its density using an **auxiliary variable** *u*

Rejection Sampling (2)

- More formally, we define a **proposal distribution** $q(\theta)$ which completely envelopes a scaled version of the unnormalized target distribution $C \cdot p(\theta)$ for some fixed C, such that $q(\theta) \ge C \cdot p(\theta | D)$ for all values of θ
- We then sample a pair $\{\hat{\theta}, u\}$ by first sampling $\hat{\theta} \sim q$ and then $u \sim \text{Uniform}(0, q(\theta))$. Accept the sample if $u \leq C \cdot p(\hat{\theta}|\mathcal{D})$

in which case $\hat{\theta}$ is an exact sample from $p(\theta | D)$

 The acceptance rate of samples is C · p(D), which thus provides an estimate for p(D) by dividing through by C

Rejection Sampling (3)

• Rejection sampling in action for our earlier example:

$$p(\theta) = \text{GAMMA}(\theta; 3, 1) = \frac{\theta^2 \exp(-\theta)}{2} \quad \theta \in (0, \infty),$$

$$p(y = 5|\theta) = \text{STUDENT-T}(\theta - 5; 2) = \frac{\Gamma(1.5)}{\sqrt{2\pi}} \left(1 + \frac{(\theta - 5)^2}{2}\right)^{-3/2}$$

$$p(\theta|y = 5) \approx 5.348556 \quad \theta^2 \exp(-\theta) \left(2 + (5 - \theta)^2\right)^{-3/2}$$

Rejection Sampling: Pros and Cons

Pros

- One of the only inference methods to produce exact samples
- Can be highly effective in low dimensions
- Works equally well for unnormalized targets (i.e. we there is no need to know $p(\mathcal{D})$
- Provides a marginal likelihood estimate via the acceptance rate

Cons

- Scales poorly to higher dimensions (more on this later)
- Requires carefully designed proposals
- Very dependent on the value of C
- Finding a valid *C* requires significant knowledge about the target density

Importance Sampling

Importance Sampling

- Importance sampling is a common sampling method that is also the cornerstone for many more advanced inference schemes
- It is closely related to rejection sampling in that it uses a proposal, i.e. $\hat{\theta} \sim q(\theta)$
- Instead of having an accept—reject step, it assigns an importance weight to each sample
- These importance weights act like correction factors to account for the fact that we sampled from $q(\theta)$ rather than our target $p(\theta|\mathcal{D})$

Importance Sampling Algorithm

- Assume for now that we can evaluate $p(\theta | D)$ exactly. Here the algorithm is as follows:
 - 1. Define a proposal $q(\theta)$

 - 2. Draw N i.i.d. samples $\hat{\theta}_n \sim q(\theta)$ n = 1, ..., N3. Assign weight $w_n = \frac{p(\hat{\theta}_n | D)}{q(\hat{\theta}_n)}$ to each sample
 - 4. Combine the samples to form the empirical measure

$$p(\theta|\mathcal{D}) pprox \hat{p}(\theta|\mathcal{D}) := rac{1}{N} \sum_{n=1}^{N} w_n \delta_{\hat{\theta}_n}(\theta)$$

5. This can used to be estimate $\mathbb{E}_{p(\theta|\mathcal{D})}[f(\theta)]$ for any f using

$$\mathbb{E}_{p(\theta|\mathcal{D})}[f(\theta)] \approx \hat{\mu}_{\mathsf{IS}} := \frac{1}{N} \sum_{n=1}^{N} w_n f(\hat{\theta}_n)$$

Importance Sampling Example

Importance Sampling Example

Importance Sampling Example

Importance Sampling Properties

• Provided that $q(\theta)$ has **lighter tails** than $p(\theta|\mathcal{D})$, i.e. $\frac{q(\theta)}{p(\theta|\mathcal{D})} < \varepsilon$, $\forall \theta$ for some $\varepsilon > 0$, then importance sampling provides an unbiased and consistent estimator for any integrable target function $f(\theta)$:

$$\mathbb{E}[\hat{\mu}_{\mathsf{IS}}] = \mathbb{E}_{p(\theta|\mathcal{D})} [f(\theta)]$$
$$\mathsf{Var}[\hat{\mu}_{\mathsf{IS}}] = \frac{\mathsf{Var}_{q(\theta)}[w \ f(\theta)]}{N}$$

(see the lecture notes for more details)

Pros and Cons of Importance Sampling

Pros

- By using all the samples from the proposal, can achieve **lower variance** estimates than rejection sampling from the same cost
- No need to find a constant scaling to bound the target (i.e. the *C* in rejection sampling)
- Can also be **highly effective** in low dimensions
- Provides an unbiased marginal likelihood estimate by taking the average of the weights

Cons

- Also scales poorly to higher dimensions (more on this next lecture)
- Also requires a carefully designed proposals
- Samples are not exact

Summary

- Bayesian inference is hard!
- Even if we can directly evaluate the posterior (which is rare), this may not be enough to characterize it and estimate expectations
- Monte Carlo methods give us a mechanism of representing distributions through samples
- Rejection sampling samples from an envelope of the target than only takes the samples that fall within it
- Importance sampling samples from a proposal and then assigns weights to the samples to account for them not being from the target

Next lecture: MCMC and variational methods

Further Reading

- The notes quite closely match the lecture with some extra details
- Chapters 1, 2, 7, and 9 of Art Owen's online book on Monte Carlo: <u>https://statweb.stanford.edu/~owen/mc/</u>
- Chapter 23 of K P Murphy. *Machine learning: a probabilistic perspective*. 2012
- M F Bugallo et al. "Adaptive importance sampling: the past, the present, and the future". In: IEEE Signal Processing Magazine (2017)
- David MacKay on Monte Carlo methods
 <u>http://videolectures.net/mackay_course_12/</u>