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This Lecture

• In this lecture we will we show how the foundational methods introduced 
in the last lecture are not sufficient for inference in high dimensions 

• Particular topics: 

- The Curse of Dimensionality

- Markov Chain Monte Carlo (MCMC)

- Variational Inference 



The Curse of 
Dimensionality



The Curse of Dimensionality (1)

• The curse of dimensionality is a tendency of modeling and numerical 
procedures to get substantially harder as the dimensionality increases, often 
at an exponential rate

• If not managed properly, it can cripple the performance of inference methods 

• It is the main reason the two methods discussed so far, rejection sampling and 
importance sampling, are in practice only used for very low dimensional 
problems 

• At its core, it stems from an increase of the size (in an informal sense) of a 
problem as the dimensionality increases 



The Curse of Dimensionality (2)

• Imagine calculating an expectation over a 
discrete distribution of dimension 𝐷, where 
each dimension has 𝐾 possible values 

• The cost of enumerating all the possible 
combinations scales as 𝐾! (exponential in 
𝐷); even for modest values for 𝐾 and 𝐷 this 
will be prohibitively large 

• The same problem occurs in continuous 
spaces: think about splitting the space into 
blocks, we have to reason about all the 
blocks to reason about the problem *Image Credit: Bishop, Section 1.4 



Example: Rejection Sampling From a Sphere 

• Consider rejection sampling from a 𝐷-dimensional hypersphere with radius 𝑟
using the tightest possible enclosing box: 

𝑃!""#$% =
𝑉&$'#(#
𝑉")*#

=
𝜋
2

+ 1
𝐷/2 !

• 𝐷 = 2, 10, 20, and 100 gives 𝑃!""#$%
values of 0.79, 2.5×10,-, 2.5×10,.,
and 1.9×10,/0, respectively 

• OK in low dimensions, but infeasible 
in higher dimensions 



Curse of Dimensionality: Importance/Rejection Sampling

• For both importance sampling and rejection sampling we use a proposal 
𝑞(𝜃) as an approximation of the target 𝑝(𝜃|𝐷)

• As the dimension increases, it quickly becomes much harder to find good 
approximations 

• The performance of both methods typically diminishes exponentially as the 
dimension increases 



Typical Sets 

• Consider representing an isotropic 
Gaussian in polar coordinates. The 
marginal density of the radius changes 
with dimension

• In high dimensions, the posterior mass 
concentrates in a thin strip away from 
the mode known as the typical set

• This means that, not only is the mass 
concentrated to a small proportion of 
the space in high dimensions, the 
geometry of this space can be quite 
complicated

𝑟



How Can We Overcome The Curse of Dimensionality? 

• As we showed with the typical sets, the area of significant posterior is usually 
only a small proportion of the overall space 

• To overcome the curse, we thus need to use methods which exploit structure of 
the posterior to only search this small subset of the overall space 

• All successful inference algorithms make some implicit assumptions into the 
structure and then try to exploit this 

- MCMC methods exploit local moves to try and stick within the typical set (thereby 
also implicitly assuming there are not multiple modes) 

- Variational methods assume independences between different dimensions that 
allow large problems to be broken into multiple smaller problems 



Markov Chain Monte 
Carlo (MCMC)



The Markov Property 

• In a Markovian system each state is independent 
of all the previous states given the last state, i.e. 

𝑝 𝜃" 𝜃#, . . . , 𝜃"$# = 𝑝 𝜃" 𝜃"$#

The system transitions based only on its current 
state. 

• MCMC main idea: generate every sample 𝜃"
based on the previous sample 𝜃"$#

• E.g., random walk
*Image source: 
https://mathematica.stackexchange.com/question
s/111839/random-walk-in-limited-range



Defining a Markov Chain 

• All the Markov chains we will deal with are homogeneous

• This means that each time step has the same transition dynamic: 

𝑝 Θ!"# = 𝜃′ Θ! = 𝜃) = 𝑝 Θ! = 𝜃′ Θ!$# = 𝜃)

• In such situations, 𝑝 Θ!"# = 𝜃′ 𝜃! = 𝜃) is typically known as a transition 
kernel, also written as 𝑇 𝜃′ ← 𝜃

• The distribution of any homogeneous Markov chain is fully defined by a 
combination of an initial distribution 𝑝(𝜃) and the transition kernel
𝑇 𝜃′ ← 𝜃



Markov Chain Monte Carlo (MCMC) 

• MCMC methods are one of the most ubiquitous approaches for Bayesian 
inference and sampling from target distributions more generally 

• The key is to construct a valid Markov chain that produces sample from the 
target distribution 

• They circumvent the curse of dimensionality by exploiting local moves 

- They have a hill–climbing effect until they reach the typical set 

- They then move around the typical set using local moves

- They tend to fail spectacularly in the presence of multi–modality 



Convergence of a Markov Chain (1) 

• To use a Markov chain for consistent inference, we need it to be able to 
produce an infinite series of samples that converge to our posterior: 

lim
%→'

1
𝑁 2
!()

%

𝕀(Θ* = 𝜃) = 𝑝 𝜃 𝒟)

where 𝑀 is a number of burn–in samples that we discard from the start of 
the chain

• In most cases, a core condition for this to hold is that the distribution of 
individual samples converge to the target for all possible starting points: 

lim
%→'

𝑝(Θ% = 𝜃′|Θ# = 𝜃) = 𝑝(𝜃′|𝒟) for all  ∀𝜃, 𝜃′



Convergence of a Markov Chain (2) 

• Ensuring that the chain converges to the target distribution for all possible 
initializations has two requirements 

1. 𝑝(𝜃|𝒟) must be the stationary distribution of the chain, such that if 
𝑝(Θ! = 𝜃) = 𝑝(𝜃|𝒟) then 𝑝(Θ!"# = 𝜃) = 𝑝(𝜃|𝒟). This is satisfied if: 

7𝑇(𝜃′ ← 𝜃) 8 𝑝(𝜃|𝒟)𝑑𝜃 = 𝑝(𝜃′|𝒟)

where we see that the target is invariant to the application of the 
transition kernel. 

2. The Markov chain must be ergodic. This means that all possible 
starting points converge to this distribution.



Ergodicity 

• Ergodicity itself has two requirements. The chain must be: 

1. Irreducible, i.e., all points with non-zero probability can be reached in a 
finite number of steps 

2. Aperiodic, i.e., no states can only be reached at certain periods of time 

• These requirements for these to be satisfied are very mild for commonly used 
Markov chains, but are beyond the scope of the course

• Optional homework: figure out how we can get the stationary distribution 
from the transition kernel when θ is discrete 

- Hint: start by defining the transition kernel as a matrix 



Detailed Balance 

• A sufficient condition used for constructing 
valid Markov chains is to ensure that the 
chain satisfies detailed balance: 

𝑇 𝜃% ← 𝜃 , 𝑝 𝜃 𝒟 = 𝑇 𝜃 ← 𝜃′ , 𝑝 𝜃′ 𝒟

Chains that satisfy detailed balance are 
known as reversible

• Detailed balance ⟹ Stationarity

• Hence, construct MCMC samplers by using 
detailed balance to construct a valid 
transition kernel

* Image Credit: Iain Murray 



Metropolis Hastings (MH) 

• MH is one of the simplest and most widely used MCMC methods

• Given an unnormalized target 𝑝(𝜃|𝒟) (hereafter 𝑝 𝜃 ≡ 𝑝(𝜃,𝒟) for simplicity), a 
starting point 𝜃#, and a proposal 𝑞 𝜃% 𝜃 , the MH algorithm repeatedly applies 
the following steps ad infinitum 

1. Propose a new point 𝜃′ ∼ 𝑞(𝜃′|𝜃) (where 𝜃 is the sample in the previous time step) 

2. Accept the new sample 𝜃′ with probability 

𝑃"##$%& = min 1, ' (! )* 𝜃 𝜃+
'(())* 𝜃+ 𝜃

3. If the new sample is rejected, accept the previous sample 𝜃′ (i.e., repeat 𝜃′ in  this 
time step) 

4. Go back to 1 



Metropolis Hastings (MH) (2) 

• For example, we can choose a symmetric 
proposal 𝑞 𝜃′ 𝜃 , such that 

𝑞 𝜃 𝜃+ = 𝑞 𝜃′ 𝜃

(e.g., let 𝑞 𝜃′ 𝜃 = 𝒩(𝜃, 1)). We can simplify 
the acceptance probability as:

𝑃"##$%& = min 1, ' (!

' (

• Intuitively, always accept 𝜃+ if 𝑝 𝜃+ ≥ 𝑝 𝜃 . 

Otherwise, accept 𝜃+ with probability ' (!

' (

𝜃𝜃′

symmetric proposal



Metropolis Hastings (MH) (2) 

• For example, we can choose a symmetric 
proposal 𝑞 𝜃′ 𝜃 , such that 

𝑞 𝜃 𝜃+ = 𝑞 𝜃′ 𝜃

(e.g., let 𝑞 𝜃′ 𝜃 = 𝒩(𝜃, 1)). We can simplify 
the acceptance probability as:

𝑃"##$%& = min 1, ' (!

' (

• Intuitively, always accept 𝜃+ if 𝑝 𝜃+ ≥ 𝑝 𝜃 . 

Otherwise, accept 𝜃+ with probability ' (!

' (

- Hill–climbing effect 

𝑝 𝜃

𝜃𝜃′

𝑝 𝜃1 > 𝑝(𝜃)

Accept 𝜃1



Metropolis Hastings (MH) (2) 

• For example, we can choose a symmetric 
proposal 𝑞 𝜃′ 𝜃 , such that 

𝑞 𝜃 𝜃+ = 𝑞 𝜃′ 𝜃

(e.g., let 𝑞 𝜃′ 𝜃 = 𝒩(𝜃, 1)). We can simplify 
the acceptance probability as:

𝑃"##$%& = min 1, ' (!

' (

• Intuitively, always accept 𝜃+ if 𝑝 𝜃+ ≥ 𝑝 𝜃 . 

Otherwise, accept 𝜃+ with probability ' (!

' (

𝑝 𝜃

𝜃 𝜃′

𝑝 𝜃1 < 𝑝(𝜃)
Accept 𝜃1 with 

probability 𝑝(𝜃′)/𝑝(𝜃)



Metropolis Hastings (MH) (2) 

• For example, we can choose a symmetric 
proposal 𝑞 𝜃′ 𝜃 , such that 
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the acceptance probability as:

𝑃"##$%& = min 1, ' (!
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Otherwise, accept 𝜃+ with probability ' (!

' (

𝑝 𝜃

𝜃𝜃′



Metropolis Hastings (MH) (2) 

• For example, we can choose a symmetric 
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𝑞 𝜃 𝜃+ = 𝑞 𝜃′ 𝜃

(e.g., let 𝑞 𝜃′ 𝜃 = 𝒩(𝜃, 1)). We can simplify 
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• Intuitively, always accept 𝜃+ if 𝑝 𝜃+ ≥ 𝑝 𝜃 . 

Otherwise, accept 𝜃+ with probability ' (!
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𝑝 𝜃

𝜃𝜃′



Metropolis Hastings (MH) (2) 

• For example, we can choose a symmetric 
proposal 𝑞 𝜃′ 𝜃 , such that 

𝑞 𝜃 𝜃+ = 𝑞 𝜃′ 𝜃

(e.g., let 𝑞 𝜃′ 𝜃 = 𝒩(𝜃, 1)). We can simplify 
the acceptance probability as:

𝑃"##$%& = min 1, ' (!

' (

• Intuitively, always accept 𝜃+ if 𝑝 𝜃+ ≥ 𝑝 𝜃 . 

Otherwise, accept 𝜃+ with probability ' (!

' (

𝑝 𝜃

𝜃 𝜃′



Metropolis Hastings (MH) (3) 

• This produces an infinite sequence of samples 
𝜃2, 𝜃3, … , 𝜃4, … that converge to 𝑝(𝜃) and from which 
we can construct a Monte Carlo estimator

𝑝(𝜃) ≈
1
𝑁
6
456

7

𝕀(Θ4 = 𝜃)

where we start with sample 𝑀 to burn-in the chain 

• Unlike rejection/importance sampling, the samples are 
correlated and produce biased estimates for finite 𝑁

• The key though is that the proposal 𝑞(𝜃′|𝜃) depends on 
the current position allowing us to make local moves 

𝑝 𝜃

An infinite sequence of 
samples can be generated

☞MCMC Demo: 
https://chi-feng.github.io/mcmc-
demo/app.html?algorithm=RandomWal
kMH&target=banana 



More Advanced MCMC Methods 

• There are loads of more advanced MCMC methods. 

• Two that are particularly prominent ones that you should be able to quickly pick 
up given what you have already learned are: 

- Gibbs sampling (see the notes)

- Hamiltonian Monte Carlo: 
https://arxiv.org/pdf/1206.1901.pdf?fname=cm&font=TypeI

Demo: https://chi-feng.github.io/mcmc-
demo/app.html?algorithm=HamiltonianMC&target=donut 

https://arxiv.org/pdf/1206.1901.pdf?fname=cm&font=TypeI
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=HamiltonianMC&target=donut


Pros and Cons of MCMC Methods

.Pros.
• Able to work in high dimensions due to 

making local moves 
• No requirement to have normalized 

target 
• Consistent in the limit of running the 

chain for an infinitely long time 
• Do not require as finely tuned 

proposals as importance sampling or 
rejection sampling 

• Surprisingly effective for a huge range 
of problems 

.Cons.
• Produce biased estimates for finite sample sizes 

due to correlation between samples 
• Diagnostics can be very difficult 

• Typically struggle to deal with multiple modes

• Proposal still quite important: chain can mix 
very slowly if the proposal is not good 

• Can be difficult to parallelize
• Deriving theoretical results is more difficult than 

previous approaches 

• Produces no marginal likelihood estimate 
• Typically far slower to converge than the 

variational methods we introduce next 



Variational Inference



Variational Inference (VI)

• Another class of ubiquitously used approaches for Bayesian inference wherein we 
try to learn an approximation to 𝑝(𝜃|𝒟)

• Key idea: reformulate the inference problem to an optimization, find a best 
distribution to approximate 𝑝(𝜃|𝒟) from a set of candidate distributions

- The candidate distributions are from a parameterized variational family
𝑞)(𝜃), 𝜑 ∈ Φ. (For example, 𝜑 are the weights in a neural network.)

- Then finding the 𝜑∗ ∈ Φ that gives the “best” approximation based on the 
Kullback–Leibler (KL) divergence KL(𝑞 ∥ 𝑝): 

𝜑∗ = argmin+∈- KL 𝑞+ 𝜃 ∥ 𝑝 𝜃 𝒟



KL Divergence

• The KL divergence measures how similar two distributions 𝑝(𝑥) and 𝑞(𝑥) are to 
one another (intuitively, the distance between them). It is defined as 

KL 𝑞 ∥ 𝑝 = ;𝑞 𝑥 , log
𝑞(𝑥)
𝑝(𝑥)

𝑑𝑥 = 𝔼+~-(+) log
𝑞 𝑥
𝑝 𝑥

• Important properties: 

- KL 𝑞 ∥ 𝑝 ≥ 0 for any 𝑝 and 𝑞

- KL 𝑞 ∥ 𝑝 = 0 if and only if 𝑝 𝑥 = 𝑞(𝑥) for all 𝑥

- In general, KL 𝑞 ∥ 𝑝 ≠ KL 𝑝 ∥ 𝑞



Variational Inference (VI)

• We cannot work directly with            
KL(𝑞.(𝜃) ∥ 𝑝(𝜃|𝒟)) because we don’t 
know the posterior density 

• We note that the marginal likelihood 𝑝(𝒟) is 
independent of our variational parameters 𝜑
to work with the joint instead (see the right)

• We work with KL(𝑞.(𝜃) ∥ 𝑝(𝜃|𝒟)) rather 

than KL 𝑝 𝜃 𝒟 ∥ 𝑞. 𝜃 because the 
latter is doubly intractable 



The ELBO (1) 

• We can equivalently think about the optimization problem in VI as the 
maximization 

𝜑∗ = argmax)∈1 ℒ(𝜑),
where

ℒ 𝜑 ≔ 𝔼2~-! log
𝑝 𝜃,𝒟
𝑞) 𝜃

= log 𝑝 𝒟 − KL 𝑞) ∥ 𝑝 , 𝒟

is known as the Evidence Lower BOund (ELBO). ℒ 𝜑 is a lower bound on 
the log evidence, i.e., we have ℒ 𝜑 ≥ log 𝑝 𝒟 . It is also sometimes known 
as the variational free energy 



Example: Gaussian with Unknown Mean and Variance 

𝜃



Example: Gaussian with Unknown Mean and Variance 



Example: Gaussian with Unknown Mean and Variance 
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Example: Gaussian with Unknown Mean and Variance 



Example: Gaussian with Unknown Mean and Variance 



Pros and Cons of Variational Methods 

.Pros.
• Typically more efficient than MCMC 

approaches, particularly in high dimensions 
once we exploit the stochastic variational 
approaches introduced in the next lecture 

• Can often provided effective inference for 
models where MCMC methods have 
impractically slow convergence 

• Though it is an approximation for the density, 
we can also sample directly from our 
variational distribution to calculate Monte 
Carlo estimates if needed 

• Allows simultaneous optimization of model 
parameters

.Cons.
• But it produces (potentially very) biased 

estimates and requires strong structural 
assumptions to be made about the form of the 
posterior 

• Unlike MCMC methods, this bias stays even in the 
limit of large computation 

• Often requires substantial tailoring to a particular 
problem 

• Very difficult to estimate how much error there is 
in the approximation: subsequent estimates can 
be unreliable, particular in their uncertainty 

• Tends to underestimate the variance of the 
posterior due to mode–seeking nature of reverse 
KL, particularly if using a mean field assumption 



Variational 
Auto–Encoders



Variational Auto–Encoders (VAEs) (1)



Variational Auto–Encoders (VAEs) (2) 



Further Reading (1)
• The lecture notes give extra information on the curse of dimensionality and 

MCMC methods 

• Iain Murray on MCMC https://www.youtube.com/watch?v=_v4Eb09qp7Q 

• Chapters 21, 22, and 23 of K P Murphy. Machine learning: a probabilistic 
perspective. 2012 

• David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Variational inference: A 
review for statisticians”. In: Journal of the American statistical Association 
(2017) 

• NeurIPS tutorial on variational inference that accompanies the previous paper: 
https://www.youtube.com/watch?v=ogdv_6dbvVQ 

https://www.youtube.com/watch?v=_v4Eb09qp7Q
https://www.youtube.com/watch?v=ogdv_6dbvVQ


Further Reading (2)
• The are no additional lecture notes for this lecture: you need to go investigate 

for yourself 

• Training VAEs in Pyro: https://pyro.ai/examples/vae.html and 
https://www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s

• Tutorial paper on VAEs: Carl Doersch. “Tutorial on variational autoencoders”. 
In: arXiv preprint arXiv:1606.05908 (2016) 

• Video tutorial on deep generative models by Shakir Mohamed and Danilo 
Rezende https://www.youtube.com/watch?v=JrO5fSskISY

• GANs, one of the main alternatives to VAEs: Ian Goodfellow et al. “Generative 
adversarial nets”. In: Advances in neural information processing systems. 2014 

https://pyro.ai/examples/vae.html
https://www.youtube.com/watch?v=vgFWeEyen6Y&t=1058s
https://www.youtube.com/watch?v=JrO5fSskISY

