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How to find the optimal route?
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In many applications, like GoogleMaps, it is important to find the shortest

route from one location to another.

More generally, going from one location to another could have a cost

and it is important to find the route that minimizes the cost.

Graph formulation:

� locations → vertices

� connections between two locations → edges

� cost of going from one location to another → weight on the edge

� route → path

� cost of a route → sum of the weights of the edges on the path.



Shortest paths
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Consider a directed graph G = (V,E) with weight function (or length)

w : E −→ R.

� The weight (or length) of a path p = 〈 v0, v1, · · · , vk 〉 is

w(p) : =
k

∑

i=1

w(vi−1, vi)

I.e. w(p) is the sum of edge weights on path p.

� The shortest-path weight (or length) from vertex u to vertex v is

δ(u, v) : =

{

min{w(p) : p is a path from u to v } if ∃ path from u to v

∞ otherwise

� A shortest path from u to v is a path p such that w(p) = δ(u, v).



Breadth-first search [CLRS 22.2]
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Consider the simplest case: all weights equal to 1.

δ(u, v) = minimum number of edges on a path from u to v, if such a path

exists; otherwise, δ(u, v) = ∞.

Given a source vertex s, breadth-first search (BFS) finds all the vertices

reachable from s and, for each reachable vertex v it finds the shortest-path

length δ(s, v) and a shortest path from s to v.

Input: A graph G = (V,E), either directed or undirected,

and a source vertex s ∈ V .

Output: For each v ∈ V , an integer d[v] and a back pointer π[v], such

that

1. d[v] = δ(s, v)

2. π[v] = u is the predecessor of v on a shortest path from s to v.

If there is no path from s to v, then π[v] = NIL.



Intuitive idea
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Idea: Send a wave out from the source s.

� The wave first hits all vertices 1 edge away from s.

� From there, the wave will then hit all vertices 2 edges away from s.

� When the wave reaches v, we know the distance from s to v.

The shortest path is constructed by keeping track of the vertices

reached by the wave on the way to v.

Data structure implementation: the wave can be implemented by a

first-in-first-out (FIFO) queue Q.

A vertex v is put in the queue when it is reached by the wave,

and it is removed by the queue after all its neighbours are reached.



FIFO queues [CLRS 10.1]
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A FIFO queue is an abstract data structure with three basic operations:

1. ENQUEUE(Q, x): Inserts x at the end of the queue Q.

2. DEQUEUE(Q): Returns and removes the item at the head of the

queue Q.

3. ISEMPTY(Q): Returns whether or not the queue is empty.

In the pseudo code we will use the notation Q = ∅ and Q 6= ∅.

Implementation:

Linked list with an extra “END” pointer to the tail of the list.

The head of the queue corresponds to the head of the linked list.

This makes all operations O(1).



The BFS algorithm [CLRS 22.2]
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BFS(V,E, s)

Input: A directed or undirected graph (V,E), and a source s ∈ V .

Output: For each v ∈ V , d[v] and π[v]
1 d[s] = 0;π[s] = nil // Source can be reached with path of length 0
2 for each u ∈ V − { s } // Mark all other nodes

3 d[u] = ∞ // as not reached yet

4 π[u] = nil

5 Q = ∅ // Initialise Q

6 ENQUEUE(Q, s) // to contain only source s

7 while Q 6= ∅
8 u = DEQUEUE(Q) // Node u is finished

9 for each v ∈ Adj [u]
10 if d[v] = ∞ // If v is reached for the first time.

11 d[v] = d[u] + 1 // record shortest distance,

12 π[v] = u // create backpointer,

13 ENQUEUE(Q, v) // and join queue of unfinished nodes



Running time
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BFS takes O(|V |+ |E|) in total.

� O(|V |) because of the initialization step and of the enqueue/dequeue

operations (each vertex is enqueued/dequeued at most once)

� O(|E|) because we examine the edge (u, v) only when u is dequeued.

Hence every edge is examined at most once

(or at most twice if the graph is undirected and we represent edges as

unordered pairs {u, v}).



Example
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Consider the following graph with source s = A.

B A C

E F D

G H

B A C

E F D

G H

B A C

E F D

G H

First, the wave hits vertices {B,C, F }.

Second, it hits {E,D,G }.

Third, it hits {H }.

At the fourth step, the wave does not discover any new nodes.



The BFS tree
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The BSF tree∗ consists of the vertices reachable from s

and has an edge between u and v iff u = π[v].
Explicitly, the BSF tree is the graph Gπ := (Vπ, Eπ) with

Vπ := {u ∈ V : π[u] 6= NIL} ∪ {s} and Eπ := {(π[u], u) : u ∈ Vπ}.

* note the usual abuse of notation: in math, trees are undirected graphs.

Example (cont’d)

A

B F C

E G D

H

Note: d[v] is the level of v in the BFS tree.

Note: the BFS tree depends on the order

in which adjacent nodes are explored,

for example, if E came before D,

the edge (E,H) would be in the tree

instead of (D,H).



Lower bound on d[v]
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Lemma 1 If d[v] < ∞, there exists a path of length d[v] from s to v.

Proof. By induction on d[v].
Base case. If d[v] = 0, then v must be the source s. Hence, Lemma 1

trivially holds.

Induction step. Suppose that, for every v with d[v] ≤ d0, there exists a

path of length d[v] from s to v. Suppose that v is such that d[v] = d0 + 1.

Then, let u = π[v] be the predecessor of v. By construction

d[v] = d[u] + 1, and therefore d[u] = d0.

Now, the induction hypothesis guarantees that there exists a path of length

d[u] from s to u. Adding the edge (u, v) to this path, we obtain a path of

length d[u] + 1 = d[v] from s to v. �

Corollary 1 (lower bound on d). d[v] ≥ δ(s, v) for every vertex v.



Properties of the queue
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Lemma 2 If u is enqueued before v, then d[u] ≤ d[v]. Furthermore, if

Q = 〈 v1, . . . , vr 〉 is the queue at a given step of BFS, then

d[v1] ≤ d[v2] ≤ · · · ≤ d[vr] ≤ d[v1] + 1.

Proof. By induction on the number of ENQUEUE/DEQUEUE operations.

Base case. For the base case, only vertex s is been enqueued, and Lemma

2 trivially holds.

Induction step. When a vertex u is dequeued, by induction, every vertex v

in the queue has value d[v] ∈ {d[u], d[u] + 1}. And when a neighbor vr of

u is enqueued, it gets a value d[vr] = d[u] + 1.

This shows that

� d[vr] ≥ d[v] for every vertex v enqueued before vr,

� the values in the queue differ by at most 1.



Upper bound on d[v]
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Lemma 3 (upper bound on d). If there exists a path of length l from s to

v, then d[v] ≤ l.

Proof. By induction on l. Base cases. For l = 0, v = s and d[s] = 0. For

l = 1, the path is an edge (s, v), and therefore d[v] = 1.

Induction step. Suppose that Lemma 3 holds for paths of length l ≤ l0,

and suppose that 〈 s, v1, . . . , vl0 , v 〉 is a path of length l0 + 1 from s to v.

By the induction hypothesis, d[vl0 ] ≤ l0. Now, there are three possibilities:

(1) v is enqueued before vl0 is enqueued. Then, Lemma 2 implies

d[v] ≤ d[vl0 ] ≤ l0.

(2) v is enqueued before vl0 is dequeued. Then, Lemma 2 implies

d[v] ≤ d[vl0 ] + 1 ≤ l0 + 1.

(3) v is enqueued after vl0 is dequeued. Then, π[v] = vl0 and

d[v] = d[vl0 ] + 1 = l0 + 1. �



Correctness of BFS
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Theorem 1. d[v] = δ(s, v) for every vertex v ∈ V .

Proof. Suppose that δ(s, v) is finite. The theorem follows directly from

the lemmas.

Suppose that δ(s, v) is infinite. Then, Corollary 1 implies

d[v] ≥ δ(s, v) = ∞. �



Correctness of BFS (cont’d)
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Theorem 2. If 0 < d[v] < ∞, then π[v] is the predecessor of v on a

shortest path from s to v.

Proof. By induction on d[v]. Base case. For d[v] = 1, (s, v) is an edge in

E and, by construction, π[v] = s.

Induction step. Suppose that Theorem 2 holds for every vertex v such that

d[v] ≤ l0. For a vertex w with d[w] = l0 + 1, define vl0 := π[w]. By

construction, d[vl0 ] = d[w]− 1 = (l0 + 1)− 1 = l0.

Hence, Lemma 1 implies that there exists a path 〈 s, v1, . . . , vl0 〉. Adding

the edge (vl0 , w), we obtain the path p = 〈 s, v1, . . . , vl0 , w 〉.
The length of the path is l0 + 1 = d[w]. Hence, Theorem 1 implies that p

is a shortest path from s to w. The predecessor of w in p is vl0 = π[w]. �



DFS vs BFS [DPV 4.2]
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� DFS goes “as far as possible” (depth), while BSF discovers all the

vertices at a certain distance before moving to further vertices.

� In terms of data structures, DFS uses (implicitly or explicitly) a stack

(LIFO=last-in-first-out), while BSF uses a queue

(FIFO=first-in-first-out).

� Both algorithms have linear running time O(|V |+ |E|).



Dijkstra’s Algorithm [CLRS 24.3]
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� Dijkstra’s algorithm solves the Single-Source Shortest Path Problem

for non-negative weights.

� It is essentially a weighted version of breath-first search.

� The algorithm uses a min-priority queue Q (instead of FIFO queue),

with keys given by the shortest-path weight estimates d[v].

� At termination,

– d[v] is equal to the distance from s to v

– the algorithm provides a back-pointer π[v], such that π[v] is the

predecessor of v on a shortest path from s to v, if such path exists,

or π[v] = NIL otherwise.



Pseudocode
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DIJKSTRA(V,E,w, s)

Input: A directed or undirected graph (V,E), s ∈ V , w : E → R≥0.

Output: For each v ∈ V , d[v] and π[v]
1 for each v ∈ V

2 d[v] = ∞
3 π[v] = nil

4 d[s] = 0
5 Q = MAKE-QUEUE(V ) with d[v] as keys

6 while Q 6= ∅
7 u = EXTRACT-MIN(Q) // Shortest route to u known

8 for each vertex v ∈ Adj [u]
9 if d[u] + w(u, v) < d[v] // Shorter route to v via u discovered

10 d[v] = d[u] + w(u, v)
11 π[v] = u

12 DECREASE-KEY(Q, v, d[v])



Example
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n-th iteration Init 1 2 3 4 5
EXTRACT-MIN(Q) A C B E D

(source) d[A] 0 0 0 0 0 0
d[B] ∞ 4 3 3 3 3
d[C] ∞ 2 2 2 2 2
d[D] ∞ ∞ 6 5 5 5
d[E] ∞ ∞ 7 4 4 4

Q 〈A,B,C,D,E〉 〈C,B,D,E〉 〈B,D,E〉 〈E,D〉 〈D〉 〈 〉



Correctness
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Loop invariants for the while loop:

I1. For all v ∈ V , we have d[v] ≥ δ(s, v).

I2. For all v ∈ S := V \Q, we have d[v] = δ(s, v).

Initialisation:

I1. Just before the start of the while loop, d[s] = 0 = δ(s, s)
and d[v] = ∞ for every other vertex v ∈ V , v 6= s.

Hence I1 holds.

I2. Before the start of the while loop S = ∅, so I2 is vacuously true.

Termination: At the end, S = V .

Hence, I2 implies that d[v] = δ(s, v) for all v ∈ V , as required.



Maintenance of I1: d[v] ≥ δ(s, v) ∀v ∈ V
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Suppose that I1 holds before an iteration of the while loop.

We have to show that I1 still holds after the iteration.

For a generic vertex v ∈ V , there are two possibilities:

either d[v] did not change after the iteration, or d[v] changed.

1. If d[v] did not change, then d[v] ≥ δ(s, v) by I1 before the iteration.

2. If d[v] changed, let u be the vertex selected by EXTRACT-MIN in this

iteration of the loop. Then, we have the inequality

d[v] = d[u] + w(u, v)
≥ δ(s, u) + w(u, v) by I1 before the iteration

≥ δ(s, v) ,

where the last inequality holds because δ(s, u) + w(u, v) is the length of a

path from s to v. �

Terminology: δ(s, v) ≤ δ(s, u)+w(u, v) is called the triangle inequality.



Maintenance of I2: d[v] = δ(s, v) , ∀v ∈ S
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Suppose that I2 holds before an iteration of the while loop.

We have to show that I2 still holds after the iteration.

For a generic vertex v ∈ S there are three possibilities:

1. v was in S before the iteration of the while loop.

Then, d[v] = δ(s, v) by I2 before the iteration.

2. v has been added to S in this iteration and there is no path from s to v.

Then, the d-value is d[v] ≥ δ(s, v) = ∞, namely d[v] = ∞.

3. v has been added to S in this iteration and there is a path from s to v.

Then, there is also a shortest path s
p

։ v.

Just before v is added to S, the path p connects a vertex in S

(the source s) with a vertex outside S (vertex v).

Let y be the first vertex along p that is outside S,

and let x be the predecessor of y (by definition, x is in S).

...picture on the next slide.



Maintenance of I2: d[v] = δ(s, v) , ∀v ∈ S (cont’d)
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Ss

x
y

v

p1

p2

Optimal substructure: since s
p1
։ x → y

p2
։ v is a shortest path to v,

s
p1
։ x → y is a shortest path to y.

Since x was in S before the iteration of the while loop,

we have d[x] = δ(s, x) by I2 before the iteration.

Moreover, when x was extracted from Q,

the d-value of y must have been updated by lines 10-11 of the code.

...continue on the next slide.



The convergence property
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Lemma 1 (Convergence property).

Suppose s
p1
։ x → y is a shortest path.

If d[x] = δ(s, x) before lines 10-11 are executed on vertex y,

then d[y] = δ(s, y) after lines 10-11 are executed on vertex y.

After executing lines 10 and 11, we have

d[y] ≤ d[x] + w(x, y) by lines 10-11

= δ(s, x) + w(x, y) by hypothesis

= δ(s, y) because s
p1
։ u → v is a shortest path

By I1, we have d[y] ≥ δ(s, y).
Hence d[y] = δ(s, y). �



Maintenance of I2: d[v] = δ(s, v) , ∀v ∈ S (cont’d)
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Ss

x
y

v

p1

p2

The Convergence Property implies d[y] = δ(s, y) before v is extracted

from Q.

Since y and v were both in Q when v was chosen by EXTRACT-MIN,

we have d[v] ≤ d[y] = δ(s, y) ≤ δ(s, v).

In conclusion, we obtained d[v] ≤ δ(s, v).
Since d[v] ≥ δ(s, v) by I1, we obtained d[v] = δ(s, v).
This proves the validity of I2 after the iteration of the while loop. �



Constructing shortest paths
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Theorem. For v 6= s and d[v] < ∞, π[v] is the predecessor of v on a

shortest path from s to v.

Proof. Let u := π[v], and let s
p

։ u be a shortest path from s to u. At

termination, we have

δ(s, v) = d[v] by I2
= d[u] + w(u, v) because u = π[v]
= δ(s, u) + w(u, v) by I2

(1)

Hence s
p

։ u → v is a shortest path from s to v. �



Running time
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The running time of Dijkstra’s algorithm depends on the implementation

of the min-priority queue. For a min-heap implementation, one has

1. MAKE-QUEUE: O(|V |)

2. EXTRACT-MIN: O(log |V |)

3. DECREASE-KEY: O(log |V |)

MAKE-QUEUE is executed once.

EXTRACT-MIN is executed |V | times.

Since each vertex v ∈ V is added to S exactly once,

each edge in Adj [v] is examined in the for loop exactly once.

Thus there are a total of |E| iterations of the for loop,

and hence a total of at most |E| DECREASE-KEY operations.

Total running time:

O(|V |) +O(|V | log |V |) +O(|E|) +O(|E| log |V |)
= O((|V |+ |E|) log |V |)



Shortest paths in graphs with negative weights
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So far, we assumed that the weight function w : E → R was non-negative,

namely that w(u, v) ≥ 0 for every edge (u, v) ∈ E.

How about graphs where some of the weights are negative?

Problem: negative-weight cycles

B
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〈B,C,B 〉 is a negative-weight cycle: w(B,C) + w(C,B) = −2.

There is no shortest path from source A in this graph!



General graphs: Bellman-Ford Algorithm [CLRS 24.1]
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BELLMAN-FORD(V,E,w, s)

Input: A directed or undirected graph (V,E), s ∈ V , w : E → R.

Output: FALSE, if there exist a negative-weight cycle reachable from s,

otherwise TRUE, and for each v ∈ V , d[v] and π[v].
1 for each v ∈ V

2 d[v] = ∞; π[v] = nil

3 d[s] = 0
4 for i = 1 to |V | − 1 // correctly computes the distances

5 for each edge (u, v) ∈ E // if there is no negative-weight

6 if d[u] + w(u, v) < d[v] // cycle reachable from s

7 d[v] = d[u] + w(u, v); π[v] = u

8 for each edge (u, v) ∈ E // checks for negative-weight cycles

9 if d[u] + w(u, v) < d[v] // reachable from s

10 return FALSE

11 else return TRUE



Running time
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� Initialisation takes Θ(|V |).

� Each of the |V | − 1 iterations of lines 5–7 takes Θ(|E|)

� the for loop of lines 8-11 takes O(|E|).

In total, the running time is Θ(|V ||E|).



Correctness: the case of no negative-weight cycles
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If no negative-weight cycle is reachable from s,

then the shortest paths are well-defined.

Invariant of the for loop 4-7. Before the i-th iteration of the loop,

I1 d[v] ≥ δ(s, v), ∀v ∈ V

I2 for every shortest path 〈 v0, v1, . . . , vk 〉 from v0 = s to vk,

d[vj ] = δ(s, vj), ∀j < i

Initialisation. Before the first iteration, d[s] = 0 = δ(s, s), and

d[v] = ∞ ≥ δ(s, v) for every v ∈ V , v 6= s. Hence, I1 holds.

Moreover, d[v0] = d[s] = 0 = δ(s, s). Hence, I2 holds.

Termination. Termination occurs for i = |V |.
Then, I2 implies d[vj] = δ(s, vj) for all j < |V |. Since there are |V |
vertices in the graph, one has k < |V |, and therefore d[vj ] = δ(s, vj) for

all j < k. Hence, if there is a path from s to v, d[v] = δ(s, v). If there is

no path, δ(s, v) = ∞ and d[v] ≥ δ(s, v) by I1, whence d[v] = δ(s, v).



Maintenance of I1: d[v] ≥ δ(s, v), ∀v ∈ V
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Fact: I1 is maintained also by the internal for loop (lines 5-7).

Indeed, consider the iteration of the internal for loop on the edge (u, v)

� Only the d-value of v can change in this iteration.

For all the other d-values, I1 still holds.

� If v did not change, then I1 still holds.

� If d[v] changed, then d[v] = d[u] + w(u, v).
Hence, one has

d[v] = d[u] + w(u, v)
≥ δ(s, u) + w(u, v) by I1 before the iteration

≥ δ(s, v) .

Since I1 is maintained by the internal for loop 5-7, it is also maintained by

the external for loop 4-7.



Maintenance of I2: d[vj] = δ(s, vj), ∀j < i
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Assume that I2 holds before the i-th iteration of the for loop 4-7.

Fact: For every v ∈ V , the d-value d[v] does not increase after each

iteration of the internal for loop 5-7 (and therefore it does not increase

after each iteration of the external for loop 4-7)

For every j < i, the new d-value d′[vj] is no larger than the old d-value

d[vj ] = δ(s, vj). By I1, this implies d′[vj] = δ(s, vj).

For j = i, consider the iteration of the internal for loop on the edge

(vi−1, vi). After this iteration, one has

d[vi] ≤ d[vi−1] + w(vi−1, vi)
= δ(s, vi−1) + w(vi−1, vi) because I2 holds for all j < i

= δ(s, vi) because 〈 s, v1, . . . , vk 〉 is a shortest path,

whence 〈 s, v1, . . . , vi 〉 is a shortest path

Since the d-values are non-increasing, this bound continues to hold after

other iterations of the internal for loop. Hence, d[vi] = δ(s, vi).



Correctness: the case of negative-weight cycles
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Theorem. If there is a negative-weight cycle reachable from s, then the

for loop 5-7 will return FALSE.

Proof. Suppose that there is a negative weight-cycle reachable from s,

say c = (v1, v2, . . . , vn, vn+1) with vn+1 = v1, and

w(c) :=
∑n

i=1
w(vi, vi+1) < 0.

Fact: we have the inequality

∑n

i=1

[

d[vi] + w(vi, vi+1)
]

=
(

∑n

i=1
d[vi]

)

+ w(c)

<
∑n

i=1
d[vi]

=
∑n

i=1
d[vi+1] .

Since the l.h.s. is strictly smaller than the r.h.s.,

there must exist a vertex vi such that d[vi] + w(vi, vi+1) < d[vi+1].
Hence, the for loop of lines 8-11 will return FALSE upon inspecting the

edge (vi, vi+1). �



Shortest paths in DAGs [CLRS 24.2]
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Idea: Find a topological sort of V . The shortest path from s to v can only

contain intermediate vertices that come before v in the topological sort.

Input: A DAG G = (V,E) with weight w : E → R

and a source vertex s

Output: For each v ∈ V , length d[v] of shortest-path from s to v

1 TOPOLOGICAL-SORT(V,E)
2 for each v ∈ V

3 d[v] = ∞
4 π[v] = nil

5 d[s] = 0
6 for each u ∈ V in topological order

7 for each v ∈ Adj[u]
8 if d[v] > d[u] + w(u, v)
9 d[v] = d[u] + w(u, v)

10 π[v] = u



Running time

DAA 2021-22 6. Paths in Graphs – 36 / 43

1. TOPOLOGICAL-SORT(V,E) takes O(|V |+ |E|) time

2. initialization (lines 2-5) takes Θ(|V |) time

3. line 6 is run one time on each vertex, resulting into a O(|V |) time

4. the for loop of line 7 runs O(|E|) time

Total running time: O(|V |+ |E|)



Correctness
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Invariant of the for loop of lines 6-10.

I1 d[v] ≥ δ(s, v) for all v ∈ V

I2 Let (v1, v2, . . . , vn) be the topological sort.

Before the for loop is executed on vertex vk,

one has d[vi] = δ(s, vi) for every i ≤ k.

Initialisation:

� d[s] = δ(s, s). For v 6= s, d[v] = ∞ ≥ δ(s, v). Hence, I1 holds.

� if v1 = s, d[v1] = 0 = δ(s, s) before the loop starts.

Hence, I2 holds for v1 = s

� if v1 6= s, then there cannot be a path from s to v1.

Hence, δ(s, v1) = ∞ = d[v1] and I2 holds for v1 6= s.

Termination. At termination, I2 yields d[v] = δ(s, v) for every vertex

v ∈ V .

Maintenance of I1: proof as usual (cf. proof in Bellman-Ford algorithm).



Maintenance of I2: d[vi] = δ(s, vi) for every i ≤ k.
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When the for loop is executed on vertex vk, only vertices in Adj[vk] are

affected. That is, only vertices vj with j > k are affected (because of

topological sort). Hence, we only need to consider vertex vk+1.

Let vj be the predecessor of vk+1 on a shortest path from s to vk+1.

By construction, j < k + 1, and therefore d[vj] = δ(s, vj) by I2 before

iteration.

After the for loop 6-10 was executed on vj , one had

d[vk+1] ≤ d[vj] + w(vj , vk+1)
= δ(s, vj) + w(vj , vk+1) by the invariant before iteration

= δ(s, vk+1) .

Since further iterations of the for loop can not increase the d-value, and

since I1 holds, we conclude that d[vk+1] = δ(s, vk+1) after the for loop is

executed on vk.



All-pairs shortest paths [CLRS 25]
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All-pairs shortest paths

Input: A directed graph (V,E) with general weights w : E → R,

and with no negative-weight cycles.

Task: For each pair of vertices u and v, find shortest path from u to v.

Using Single-source algorithms

� Using Bellman-Ford algorithm for each vertex, leads to a O(|V |2|E|)
algorithm, which is O(|V |3) for a sparse graph (|E| = O(|V |)) and

O(|V |4) for a dense graph (|E| = O(|V |2)).

� If there are no negative-weight edges, using Dijkstra’s algorithm leads

to a O((|V |+ |E|) |V | log |V |) algorithm.

Using dynamic programming

� O(|V |3) with the Floyd-Warshall algorithm (next slides).



The Floyd-Warshall algorithm [CLRS 25.2]
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Suppose the vertex-set is { 1, . . . , n } and let

d[i, j; k] =

{

length of shortest path from i to j, all of whose

intermediate nodes are in the interval [1, k]

Initially

d[i, j; 0] =

{

w(i, j) if (i, j) ∈ E

∞ otherwise



Floyd-Warshall algorithm, cont’d
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Suppose that we have calculated d[i, j; k] for every i and j,

and we want to compute d[i, j; k + 1].

Optimal substructure: if s
p1
։ u

p2
։ v is a shortest path, then s

p1
։ u and

u
p2
։ are shortest paths.

Fact: since there are no negative cycles (by assumption),

a shortest path from i to j that uses intermediate vertices in [1, k]
goes through k at most once.

Hence, we have

d[i, j; k + 1] = min
{

d[i, j; k] , d[i, k + 1; k] + d[k + 1, j; k]
}



Pseudocode
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FLOYD-WARSHALL(V,E,w)

1 for i = 1 to |V |
2 for j = 1 to |V |
3 d[i, j; 0] = ∞
4 for each edge (i, j) ∈ E

5 d[i, j; 0] = w(i, j)
6 for k = 0 to |V | − 1
7 for i = 1 to |V |
8 for j = 1 to |V |

9 d[i, j; k + 1] = min
{

d[i, j; k] , d[i, k + 1; k] + d[k + 1, j; k]
}

Running time is O(|V |3).



Summary of Shortest Paths Algorithms
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� Breadth-First-Search solves the single-source shortest path problem

for directed or undirected graphs with unit weight, i.e. where

w(e) = 1 for all e ∈ E in O(|V |+ |E|).

� Dijkstra’s Algorithm solves the single-source shortest-path problem

for directed or undirected graphs with non-negative weights in

O((|V |+ |E|) log |V |).

� The Bellman-Ford Algorithm solves the single-source shortest-path

problem for directed or undirected graphs with arbitrary weights in

O(|V ||E|). In addition, it checks for negative-weight cycles.

� Shortest Paths in DAGs solves the single-source shortest path

problem with arbitrary weights in the case of a directed acyclic

graph in Θ(|V |+ |E|).

� The Floyd-Warshall Algorithm solves the all-pairs shortest path

problem for directed or undirected graphs with no negative-weight

cycles in O(|V |3).
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