Design and Analysis of Algorithms

Part 8

Matroids

Elias Koutsoupias

Hilary Term 2022

8. Matroids – 1 / 15

Matroids [CLRS 16.4]

- □ The theory of matroids is a rich mathematical theory, which is tightly connected to the greedy algorithm. Many, but not all, applications of the greedy algorithm involve a matroid.
- □ Matroids are abstract combinatorial structures that generalize the notion of spanning trees (or spanning forests).

Definition 1 (Matroid). A matroid is a pair (E, \mathcal{I}) , where E is a finite set and \mathcal{I} a family of subsets of E, that satisfies the following two properties **Hereditary property:** If $A \in \mathcal{I}$ and $B \subseteq A$, then $A \in \mathcal{I}$ **Exchange property:** If $A, B \in \mathcal{I}$ and |B| < |A|, there exists $a \in A - B$ such that $B \cup \{a\} \in \mathcal{I}$. The set E is called the **ground set** and the elements of \mathcal{I} are called **independent sets**.

Example of a matroid:

 $E = \{1, 2, 3, 4\}$ $\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}\}$ Due to the hereditary property, a matroid can be defined by the set \mathcal{B} of the *maximal independent sets*. The elements of \mathcal{B} are called *bases*. The following is an immediate consequence of the exchange property.

Lemma 1. All bases of a matroid have the same cardinality.

$$E = \{1, 2, 3, 4\}$$

$$\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}\}$$

$$\mathcal{B} = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}\}$$

We can get an *equivalent definition of matroids* by replacing the exchange property with the following property:

Basis exchange property: If $A, B \in \mathcal{B}$ and $a \in A - B$, then there exists an element $b \in B - A$ such that $(A \cup \{b\}) - \{a\} \in \mathcal{B}$.

or even with the following stronger property:

Double basis exchange property: If $A, B \in \mathcal{B}$ and $a \in A - B$, then there exists an element $b \in B - A$ such that $(A \cup \{b\}) - \{a\} \in \mathcal{B}$ and $(B \cup \{a\}) - \{b\} \in \mathcal{B}$.

One can easily verify the basis exchange property for the example:

$$E = \{1, 2, 3, 4\}$$

$$\mathcal{B} = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}\}$$

Example: graphic matroids

Let G(V, E) be a graph and let \mathcal{I} be the set of spanning forests of the graph. The elements of \mathcal{I} are subsets of edges. Then (E, \mathcal{I}) is a matroid. Such matroids are called *graphic matroids*.

When the graph is connected, the basis set \mathcal{B} is the set of spanning trees of G.

Let's use the basis exchange property to argue that this is a matroid. Consider two distinct spanning trees A and B and some edge $x \in A - B$. If we remove edge x from A, we get two trees L and R. We want to show that there is an edge $y \in B$ with one vertex in L and one vertex in R, so that when we remove x and add y, we get a $(A \cup \{y\}) - \{x\}$, which is a spanning tree because it is connected and has the same number of edges with A.

There is a unique path p in B that connects the two vertices of x. One end vertex of p belongs to L and the other to R, so there must exist an edge $y \in p$ with one vertex in L and one vertex in R.

Example: Fano matroid

The ground set consists of the 7 vertices.

The set of bases consists of every triple of points that do not belong to a line or the circle.

Independent columns of a matrix

Let M be a matrix with entries real numbers. Let E be its sets of columns and \mathcal{I} the subsets of E that are linearly independent. Then (E, \mathcal{I}) is a matroid.

Transversal matroids

Let G(L, R, E) be a bipartite graph. A set M of disjoint edges is called a *matching*. We will say that a set $A \subset L$ is independent if there is a matching with M whose vertices in L is A. If \mathcal{I} denotes the family of independent sets, then (L, \mathcal{I}) is a matroid.

These matroids are called *transversal matroids*.

Weighted matroids

Given a matroid (E, \mathcal{I}) , we can define a *weighted matroid* by associating a positive weight w(x) to each element x of the ground set E.

The weighted matroid problem has

Input: A weighted matroid

Output: An independent set of maximum total weight

Usually the input is given implicitly. For example, a weighted graph defines a weighted graphic matroid. Similarly, a bipartite graph G(L, R, E) with weights on its left part L defines a transversal matroid.

 $\mathbf{GREEDY}(E,\mathcal{I},w)$

- $1 \quad A = \emptyset$
- 2 Sort E in decreasing order by weight w
- 3 for each $x \in E$
- 4 **if** $A \cup \{x\} \in \mathcal{I}$
- 5 $A = A \cup \{x\}$
- 6 return A

Running time: For sorting: $O(n \log n)$ (where n = |E|). For the main loop: O(nf(n)), where f(n) is the time to check $A \cup \{x\} \in \mathcal{I}$. Total time $O(n \log n + nf(n))$.

Greedy and matroids

Theorem 1. For every weighted matroid (E, \mathcal{I}, w) , the Greedy algorithm returns an optimal solution.

Its proof is based on the following lemma.

Lemma 2. At every point during the execution of the Greedy algorithm, there exists an optimal basis B that consists of the current set A and unprocessed elements.

Greedy and matroids

Lemma 3. At every point during the execution of the Greedy algorithm, there exists an optimal basis B that consists of the current set A and unprocessed elements.

Proof. By induction on the number of processed elements. The basis of the induction, when $A = \emptyset$, is trivial. Suppose now that it is true before processing element x.

If x is not added to A or $x \in B$, where B is an optimal basis, there is nothing to prove. Suppose now that $A \cup \{x\} \in \mathcal{I}$ and x is added to A, but $A \cup \{x\}$ is not part of an optimal solution B. By induction, there is an optimal solution B that contains A and unprocessed elements, i.e., elements with weight at most equal to w(x). Let A^* be the final solution produced by the Greedy algorithm. Note that $A + \{x\} \subseteq A^*$.

We apply the double basis exchange property to B, A^* and $x \in A^* - B$: there exists an element in $y \in B - A^*$ such that $B + \{x\} - \{y\} \in \mathcal{I}$. But the weight of this basis differs from the weight of B by $w(x) - w(y) \ge 0$. Therefore $B + \{x\} - \{y\}$ is optimal and contains $A \cup \{x\}$, a contradiction.

Greedy \Rightarrow **matroid**

Theorem 2. Let E be a set and \mathcal{I} a family of its subsets that satisfies the hereditary property. If (E, \mathcal{I}) is not a matroid, there exist weights for which the Greedy algorithm fails to return an optimal solution.

Proof. Since (E, \mathcal{I}) is not a matroid, there exist sets $A, B \in \mathcal{I}$ and $a \in A - B$ such that for every $b \in B - A$: $A + \{b\} - \{a\} \notin \mathcal{I}$. Note, that this implies that A and B differ in at least two elements. Consider the weights, where $\epsilon > 0$ is very small:

$$w(x) = \begin{cases} 1 + \epsilon & x \in (A \cap B) \cup \{a\} \\ 1 & x \in B - A \\ 2\epsilon & x \in A - B - \{a\} \\ \epsilon & \text{otherwise} \end{cases}$$

The Greedy algorithm will return the suboptimal solution A, with weight $w(A) = (|A \cap B| + 1)(1 + \epsilon) + (|A - B| - 1)2\epsilon \approx |A \cap B| + 1$. However, for small ϵ , the optimal solution is B with total weight $w(B) \ge |B|$. For small ϵ , w(B) > w(A), because $|A \cap B| + 1 \le |B| - 1$ since A and B differ in at least two elements. \Box

Partition matroids and matchings

Let G(L, R, E) be a bipartite graph. Let

 $\mathcal{I}_L = \{A \colon A \subseteq E \text{ and no vertex of } L \text{ is in two or more edges of } A\}$

Then (L, \mathcal{I}_L) is a matroid (a partition matroid). We can define similarly the matroid (R, \mathcal{I}_R) . The intersection of the two matroids (L, \mathcal{I}_L) and (R, \mathcal{I}_R) is

 $\mathcal{M} = \{A \colon A \subseteq E \text{ edges of } A \text{ are disjoint}\},\$

which is the set of matchings of the bipartite graph.

The algorithmic problem of finding the *maximum intersection of two matroids* —and its special case of the *maximum matching problem*— can be solved in polynomial time (but we will not discuss it here).

But when we ask for the intersection of three matroids, the problem becomes NP-hard.