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Previous Lecture

Previously..

» Bayesian probabilistic modelling of functions

» Analytical inference of W (mean)
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Contents

Today:

>

'S

Uncertainty over functions (and decomposing uncertainty)
Scaling ideas up (approximate inference)

Scaling up even more (stochastic approximate inference)
Uncertainty in shallow classification models

Stochastic approximate inference in deep NN

Inference in very large deep models

Real-world applications of model uncertainty
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Bayesian deep learning OXFORD

All resources (including these slides): bdl101.ml

e 4

SLIDES DEMO RECAP

Slide decks from the talks Demoes mentioned in the slides A quick recap of useful stuff.

SLIDE DECK 1

SLIDE DE: UNCERTAINTY VISUALISATICN

UNCERTAINTY PLAYGROUND GAUSSIANS RECAP

A4 &

NOTATION MORE STUFF

Notation used in the slides:. OATML
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http://bdl101.ml

Bayesian Deep Learning

Uncertainty over Functions
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Reminder

Model

> prior
P(Wiq) = N(Wiq;0,5%); W eRP

» likelihood
PO W) =TT N n: Y (xn), 02); - Y (x) = WTg(x)

» with ¢(x) a K dim feature vector

Posterior
p(WIX.Y)=N(W; ', ')
Y = (0 20(X)TO(X) + 57 21k) !
=30 20(X)TY
Predictive

P IX* X, Y) = N(y* wTo(x"),?)
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Reminder

Model

> prior
P(Wiq) = N(Wiq;0,5%); W eRP

» likelihood
PO W) =TT N n: Y (xn), 02); - Y (x) = WTg(x)

» with ¢(x) a K dim feature vector

Posterior
p(WIX.Y)=N(W; ', ')
Y = (0 20(X)TO(X) + 57 21k) !
=30 20(X)TY
Predictive

P IX" X, Y) = Ny i To(x7), 0% + o (x") T/ o(x"))
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Decomposing uncertainty

P IX* X, Y) = Ny To(x7),
0% + o(x*) 6 (x"))
Uncertainty has two components:

» 2 — from likelihood
» o(x*)TX'p(x*) — from posterior
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Decomposing uncertainty

P IX* X, Y) = N(y*u'To(x7),
0% + ¢(x*) T'p(x*))
Uncertainty has two components:
> 02 — from likelihood
» &(x*) T/ é(x*) - from posterior
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Aleatoric uncertainty

first term in predictive uncertainty
0% + o(x*) T o (x")

same as likelihood ¢ — obs noise /
corrupting additive noise eg measurement
error

can be found via MLE rather than
assume known in advance (we'll see later)

from Latin aleator ‘dice player’, from alea
‘die’
» roll a pair of dice again and again — will
not reduce uncertainty
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Epistemic uncertainty

» second term in predictive uncertainty o2 + ¢(x*)T X/ ¢(x*)
» uncertainty over function values before noise corruption
= WTg(x")
Varp s x, )] = d(x*) TZ/é(x*)

» high for x* “far away” from the data, even in noiseless case (ie
likelihood noise is zero)

» will diminish given label for x*

» from Ancient Greek episteme ‘knowledge, understanding’

9 of 75



Bayesian Deep Learning = OXFORD

Approximate Inference
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Approximate variational inference

» to evaluate predictive need to invert post cov matrix —a K by K
matrix

» difficult when K is large...
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Approximate variational inference

» to evaluate predictive need to invert post cov matrix —a K by K
matrix

» difficult when K is large...

> instead, let's try to approximate posterior w a simpler dist to allow
easier computations

» in approx inference we approx posterior p(W|X, Y) w a different
dist gg(W) param by theta
» Q also called “variational distribution”
» 0 also called “variational params”
» technique is also known as “variational inference (VI)

» eg q Gaussian w params 6 = {uy, Xy}
» qo(W) = N(W; pvi, Zwi)
» often omit # from subscript to avoid clutter, write g(W) or g
» often swap 6 for u, > back and forth
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Underlying principle of VI

» eg: | have posterior p(W|X, Y) = N(0,1); | give you 2 approx
dists

q1(W):N(171)7 q2(W):N(1071)

» which would you choose?
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» eg: | have posterior p(W|X, Y) = N(0,1); | give you 2 approx
dists

q1(W):N(072)7 qZ(W):N(O?1O)

» which would you choose? and now?
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Underlying principle of VI

» eg: | have posterior p(W|X, Y) = N(0,1); | give you 2 approx
dists

qi1(W) = N(10,1), %(W) = N(0,10)

» which would you choose? and now? ... and now?

» the one that gives best preds?
> will fail: best preds are at yt = pumg, £ =0
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Underlying principle of VI

» eg: | have posterior p(W|X,Y) = N(0,1); | give you 2 approx
dists

qi1(W) = N(10,1), %(W) = N(0,10)

» which would you choose? and now? ... and now?

» the one that gives best preds?
» will fail: best preds are at pt = ume, £ =0

> need some measure of how “similar” dists are to posterior...
» choose a measure of “similarity” between dists D (not necessarily a
distance!)
» then min whatever measure we commit to
» ie if D(qy, posterior) < D(qg, posterior) then the core principle of VI
says that @1 should be chosen over
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Underlying principle of VI

» D(q, posterior) < D(ga, posterior) — g4 should be chosen over
g2

» what if we have two divergences Dy and Ds, one saying to select gy
and the other @7

I a difference to full Bayesian inference... (where there's only one way
of doing things ‘correctly’)

» “from dogmatic Bayes to pragmatic Bayes";

» often choose D that is mathematically convenient
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Underlying principle of VI

» D(gy, posterior) < D(gs, posterior) — g should be chosen over
g2

» what if we have two divergences Dy and Ds, one saying to select gy
and the other @7

I a difference to full Bayesian inference... (where there's only one way
of doing things ‘correctly’)

» “from dogmatic Bayes to pragmatic Bayes";
» often choose D that is mathematically convenient

» eg Kullback Leibler

KL(q, p) = / q(x)log %dx
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KL properties (eg w discrete distributions)

» K dim discrete prob vectors g, p: KL(q, p) = >, gk 109 gk / Pk
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KL properties (eg w discrete distributions)
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K dim discrete prob vectors g, p: KL(q, p) = >, gk 109 qx/ Pk

when the two dists are the same we get exactly 0

when the two dists are different the divergence is positive

KL is not symmetric

if Qk is zero it is ignored in KL

whenever g, > 0 it must be that px > 0 for the KL to be finite

Homework: find examples for all properties; eg

q=1[1/8,3/8,4/8], p=[3/8,4/8,1/8];
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KL for cnts rvs

What if we want to approx cnts rv like W?
» q(x) = N(x; 110, 55), p(X) = N(x; 111, 5%); KL for Gaussians:

KL(q,p) = 1/2(s; %55 + 5, % (111 = 110)? = 1 +log(s7 /7))
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KL for cnts rvs

What if we want to approx cnts rv like W?
» q(x) = N(x; 110, 55), p(X) = N(x; 111, 5%); KL for Gaussians:

KL(q.p) = 1/2(s7%55 + 5711 — 10)% — 1 + log(s7/57))
» nice property: if Xy and X are independent under p and g then
KL(g(X1, X2), p(X1, X2)) = KL(q(X1), p(X1)) + KL(G(X2), p(X2))
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KL for cnts rvs

What if we want to approx cnts rv like W?
> q(x) = N(x; 110, 55), p(X) = N(x; 11, 57); KL for Gaussians:
KL(q,p) = 1/2(s; %55 + 5, % (111 = 110)? = 1 +log(s7 /7))
» nice property: if X; and X5 are independent under p and g then
KL(q(X1, X2), p(X1, X2)) = KL(q(X1), p(X1)) + KL(9(X2), p(X2))
» multivariate diagonal Gaussians (K dims):
write X = [X1 Sy XK]
q(x) = N(X; 110, So)  with Sy = diag([s5, ..., 55x])
p(X) = N(X; 111, S1)  with Sy = diag([s%, ..., S7«])
Then from indep of X1, .., Xk:

KL(q.p) = D 1/2(s 855 + 517 (k= 110k)? = 1 +109(854 /5)
k
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KL for approx inference

» want to approx p(W|X,Y) using some gy(W)

> min

K'—(CIG(W),P(W!X, Y))
wrt 6 (remember def KL(g,p) = [ g(x)log %dx )
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KL for approx inference

KL (q(w), plwiriy))
oo iy

Pl T x) piw)
—
Nylr)
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KL for approx inference

KL (q(w), plwiriy))
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KL for approx inference

KL (q(w), plwiriy))

=8 gw) oy 1%
gﬂf ) @w}v\,
Pl T x) piw)
Nylr)
\\Smwm») (w) PLY 1Y)
RUY 1V ) )
W
T \gw) [P IV 1 (W) ,a5 W) oy A oy plyl) dw
Aty fwix) MW . N
| ¢
2 loy il UL (wi)

= jSﬂ/w)Joj ply ) b <k (g wy o on) <Py 1)
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KL for approx inference
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KL for approx inference

KL (g(w),p(wixiy))
= wl | ‘ﬂ“f
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KL for approx inference

» want to approx p(W|X,Y) using some gy(W)

> min
KL(Qa(W),p(WIX, Y))
wrt @ (remember def KL(g,p) = [ g(x)log %dx )
> log p(Y|X) > [ q(W)log p(Y|X, W)dW — KL(q(W). p(W))
» pops out a bound on evidence for free

» also called “evidence lower bound” (ELBO)
» min KL to posterior = max ELBO
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KL for approx inference

» want to approx p(W/|X,Y) using some gy(W)

> min

KL(%(W),P(WIX, Y))
wrt 6 (remember def KL(g,p) = [ q(x)log %dx )

> log p(Y|X) > [ q(W)log p(Y|X, W)dW — KL(q(W). p(W))
» pops out a bound on evidence for free
» also called “evidence lower bound” (ELBO)
» min KL to posterior = max ELBO

» what does it mean to max ELBO?

> first term: how well we “explain the data”; if possible, q should
put all mass at MLE!

» second term: how close we are to the prior (get simplest g that
can still explain data well); if possible, g should be prior itself!
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KL for approx inference

> max

/ gs(W)log p(¥| X, W)W — KL(gy(W), p(W))

wrt 0
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KL for approx inference

[ (W) 1og p(Y1X, W)W — KL(@(W). p(W)

wrt 0

» which terms can we compute?
» for Gaussian prior and @, can compute KL to prior
» for Gaussian lik can compute expected log lik as well (analytic — try
this at home using tools from earlier!)
» but in more complicated likelihoods (like in classification) can't
eval above...
» for this we'll look at stochastic approximate inference
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Bayesian Deep Learning & OXFORD

Stochastic Approximate
Inference
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Classification NN

Let’s try to do a classification task

» want to get notion of epistemic uncertainty in classification

P p
v N
J% f"’— §
¥

‘J-‘(
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Classification NN

Let’s try to do a classification task
» want to get notion of epistemic uncertainty in classification
» generative story

Nature chose function p(x) : R? — [0,1]¢

v

» p(x) a prob vector as a function of x
» eg p softmax func
» for n = 1..N generate label y, ~ Categorical(p(xn))
~l s ofeun g
.T/—‘
’:"’ | l —\)X
£, DL“)‘

W=x.. )

X e
SaLt-vnw(&): [g-——, jg’-—"‘ ]
= Z ! :
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Classification NN

Let’s try to do a classification task
» want to get notion of epistemic uncertainty in classification
> generative story

Nature chose function p(x) : R? — [0,1]¢

v

» p(x) a prob vector as a function of x
» eg p softmax func
» for n = 1..N generate label y, ~ Categorical(p(xn))
~l 5°r’¢"“""1
.T/—‘
7~ : —_— )
' - | X
), DL“)‘
W=x.. ) & x
Xa c
SaLt—vnw(é): [%—Fy:j ‘-j g.’_f-‘ ]

alg'k.

» encode y, as a one hot vector Y, (eg [0,0,1,0] with C =4

classes and y, = 2)
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Classification NN

Model: For ene =
> likelihood Ve k)
» model prob func by function p(x) with W a Vi,
K by C matrix; then lik is def’d as elem c in ¢
prob vec Walw,, .. Wa]
Krc
p(y = clx, W) = p%(x)c,
DEL \la‘b;h=
_ w
p(Y|X, W)= I;IP (Xn)yr=c E79=
= TTvip"(x) [wgun, -
; i geo]
Dell prob Fua,
Pw(x)::
S obewan v (110)

e
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Classification NN

Model: For emcr <
> likelihood MRS
» model prob func by function p"(x) with Wa
K by C matrix; then lik is def’d as elem c in Fe
prob vec Walw,, .. Wa]
‘Kre
p(y = clx, W) = p"(x)e,
DEL \la‘b;hz
_ w
p(Y|X, W) = I;IP (Xn)yn=c E79=
= Ivir" (x) [wg0d,
n W geo]
» prior over W Del prob Lua
» vectorise W (still write W instead of vec(W)) PY (0=

» same prior as before:

p(W) = N( W;Ock, S2ICK) S obewov [100)
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Classification NN

Model:
» to do predictions
PO X, ¥) = [ Py’ X" W)p(WIX, Y)aW

» need posterior. But product of softmax and Gaussian is not
Gaussian, so can't use tricks from before.. for posterior need
evidence:

p(Y|X) = / TTlv7softmax(F¥ (xn)1, . /¥ (xa)IN(W; 0, s2 1)d W

can't integrate/sum explicitly.. will use VI instead to approx
posterior
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Approx inference in classification NN

[

» For approx inf need log lik of softmax(fi, .., f¢c) = ol o

logp(y = c|x, W) = f. — log(e" + ...+ &)

with [f, ..., fc] the logits vector [w{ ¢(X), .., wlo(x)]
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Approx inference in classification NN

» For approx inf need log lik of softmax(fi, .., f¢c) = [ﬁ, o

logp(y = c|x, W) = f. — log(e" + ...+ &)
with [f, ..., fc] the logits vector [w{ ¢(X), .., wlo(x)]

» then expected log likelihood is

Le)y= > /[fo,, Iog(Ze (xn)e )} (W; py, Ty )dW
Xn,Yn=

B KL(q7 p)

with FY(x)e = w/ 6(x)
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Approx inference in classification NN

eft
[ef1 +_..+efC ’ ]

» For approx inf need log lik of softmax(fi, .., f¢c) =
logp(y = c|x, W) = f. — log(e" + ...+ &)
with [f, ..., fc] the logits vector [w{ ¢(X), .., wlo(x)]

» then expected log likelihood is

L(6) = X; / [fW Xn)c — log <Ze (xn)e )} (W; py, Ty )dW
- KL(q,p)
with FY(x)e = w/ 6(x)

» can't integrate analytically either (log sum exp); need new tools...
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MC integration

Useful tool to estimate expectations

» let p(x) be some dist which is easy to sample from
» let f(x) be some function of x

» assume it to be difficult to eval E := Ep[f(x)]
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MC integration

Useful tool to estimate expectations

» let p(x) be some dist which is easy to sample from
» let f(x) be some function of x

» assume it to be difficult to eval E := Ep[f(x)]

» can use MC integration instead:

> generate Xy, .., X7 ~ p(X)
> estimate £ :=1/T Y, f(%)
» an estimator £ of E is called unbiased if in expectation equals E

» E is an unbiased estimator of E (prove at home!)
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Integral derivative estimation

» We actually need an estimator of the derivative of an integral

> let G(0) be the gradient of L(#); will interchangeably use
» G (grad of L)

» (L(9)) = derivative of L wrt 0

aw W) L(W(0)) = derivative of L wrt W(0)
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Integral derivative estimation

» We actually need an estimator of the derivative of an integral

» let G(6) be the gradient of L(6); will interchangeably use
» G (grad of L)

» (L(9)) = derivative of L wrt 0

aw W) L(W(0)) = derivative of L wrt W(0)

» if had unbiased derivative estimator (i(6) (estimator of G(f)) can
use a stochastic iterative method to optimise L(6):

14
0n+1 — Hn + EG(G)

go in direction of steepest ascent, on average

» this is called stochastic gradient descent (well, ascent here)
» SGD
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Example of integral derivative estimation

> L(n.0) = [(W+ WR)N(W: 1, 02)d W
» can actually eval analytically as L = pu + 02 + 12
» so integral derivative is G(p) = 1 4 2p; will write G(p) := dL/0u
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Example of integral derivative estimation

> L1, 0) = [(W+ W2N(W; j1, 02)d W
» can actually eval analytically as L = pu + 02 + 12
» so integral derivative is G(p) = 1 4 2p; will write G(p) := dL/0u

> Let's try MC integration first — L(W; p,0) = W + W2 with
realisations (numbers) W ~ N (u, 0?), so
Glu) = O(W + W) /0 £ 0

(no pin L)
» but L clearly depends on y;

> eg increasing j increases expectation of L
» doesn't look correct... what's going on?
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Example of integral derivative estimation

> L deps on p through W; Wis actually a function of 1 as well as a
rv € indep of 6:

W ~ N (p, 0?) > W=W(@,e)=p+o& eé~N(0,1)
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Example of integral derivative estimation

> L deps on p through W; Wis actually a function of 1 as well as a
rv € indep of 6:

W ~ N (p, 0?) > W=W(@,e)=p+o& eé~N(0,1)
> then can rewrite L as
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Example of integral derivative estimation

> L deps on p through W; Wis actually a function of 1 as well as a
rv € indep of 6:

W ~ N (p, 0?) > W=W(@,e)=p+o& eé~N(0,1)
> then can rewrite L as
L(p,0,8) = (+ 08) + (u + 08)? = pu + p2 + 2u0é + oé + 02e

and .
G(p) =1+42u+ 20¢

» check: A
Ep(e)[G] =1+ 2,u =G

ie G is an unbiased estimator of G
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Reparametrisation trick

» technique known in literature as the re-parametrisation trick
» also known as a pathwise derivative estimator, infinitesimal
perturbation analysis, and stochastic backpropagation
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Reparametrisation trick

» technique known in literature as the re-parametrisation trick

>

also known as a pathwise derivative estimator, infinitesimal
perturbation analysis, and stochastic backpropagation

> in general:

>

>

>

given func f(W), dist go(W)

want to estimate gradients of L(0) = [ f(W)qo(W)dW

if W can be reparam as W = g(0, €) with € not dependent on 0,
and g is differentiable wrt 0

» then G(6,¢) = '(g(0,¢)) - 09(6,¢)/00

v

.. and plug into a stochastic optimiser
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» technique known in literature as the re-parametrisation trick
» also known as a pathwise derivative estimator, infinitesimal
perturbation analysis, and stochastic backpropagation

> in general:
» given func f(W), dist go(W)
» want to estimate gradients of L(0) = [ f(W)go(W)dW
» if W can be reparam as W = g(0, €) with e not dependent on 0,
and g is differentiable wrt 0
» then G(6,¢) = '(g(0,¢)) - 09(6,¢)/00

.. and plug into a stochastic optimiser
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» eg, for Gaussian q...
> W=9([n,0],€) = p+oe
> 99([u. 0], €)/Op =1 and 99([n, 0], €)/00 = €
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Reparametrisation trick

» technique known in literature as the re-parametrisation trick
» also known as a pathwise derivative estimator, infinitesimal
perturbation analysis, and stochastic backpropagation

> in general:
» given func f(W), dist go(W)
» want to estimate gradients of L(0) = [ f(W)go(W)dW
» if W can be reparam as W = g(0, €) with e not dependent on 0,
and g is differentiable wrt 0
» then G(6,¢) = '(g(0,¢)) - 09(6,¢)/00

.. and plug into a stochastic optimiser

v

» eg, for Gaussian Q...
> W=9([n,0],€) = p+oe
> 09([u,0),€)/0u =1 and 99([u, o, €)/do =€
» so G(¢: ) = P(u+0é) -1 and G(&;0) = /(1 + 0é)e
> with &~ N(0, /)
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Reparametrisation trick

» technique known in literature as the re-parametrisation trick
» also known as a pathwise derivative estimator, infinitesimal
perturbation analysis, and stochastic backpropagation

> in general:
» given func f(W), dist go(W)
» want to estimate gradients of L(0) = [ f(W)go(W)dW
» if W can be reparam as W = g(0, €) with e not dependent on 0,
and g is differentiable wrt 0
» then G(6,¢) = '(g(0,¢)) - 09(6,¢)/00
» .. and plug into a stochastic optimiser
» eg, for Gaussian Q...
> W=9([n,0],€) = p+oe
> 09([u,0),€)/0u =1 and 99([u, o, €)/do =€
» so G(¢: ) = P(u+0é) -1 and G(&;0) = /(1 + 0é)e
> with € ~ N(0, /)
» can substitute in W = ji+ oé& sample | W~ qg(W) then
G(W; ;1) = F(W) and G(W; o) = F(W)(W — p)/o.
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Back to approx inference in classification NN
Remember prev ELBO which we couldn't eval

Loy= > / [fW Xn)c Iog(Zef (Xn>cf)] (W; o1, Zvi ) d W

Xn,Yn=
— KL(g,p)

W vectorised w dim CK by 1, so is juy, and assume Yy, is diagonal w
dim CK by CK
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Remember prev ELBO which we couldn't eval

Loy= > / [fW Xn)c Iog(Zef (Xn%’)] (W; o1, Zvi ) d W

Xn,Yn=
— KL(g,p)

W vectorised w dim CK by 1, so is juy, and assume Yy, is diagonal w
dim CK by CK
» using MC integration
» sample & ~ N(0, Ick)
> write vecW(0,€) = uvi + ZVI €
» reshape vecW to K by C: W(0,¢)
> write f2¢(x) = V(09 (x)
> giving

L(6,¢) = Z 7¢(xp)c — log (Ze (X")c’) —KL(g,p)

Xn,Yn=
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Back to approx inference in classification NN

Remember prev ELBO which we couldn't eval

Loy= > / [fW Xn)c Iog(Zef (Xn%’)] (W; o1, Zvi ) d W

Xn,Yn=
— KL(g,p)

W vectorised w dim CK by 1, so is juy, and assume Yy, is diagonal w
dim CK by CK
» using MC integration
» sample & ~ N(0, Ick)
> write vecW(0,€) = uvi + ZVI €
» reshape vecW to K by C: W(0,¢)
> write f¢(x) = fV(0.9)(x)

> giving
> 4(xn)c — log (Z e X"’c’) — KL(g, p)

Xn,Yn=C

> with Epo[L(0,€)] = L(6), ExolG(9,€)] = G(9)
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Bayesian Deep Learning

Uncertainty in Classification
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Uncertainty in classification NN

Epistemic uncertainty in classification (vs regression)

» finally have tools to get epistemic uncertainty for classification

» but quantifying uncertainty in classification is not as
straightforward as in regression...

Useful tools
I (p)
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Uncertainty in classification NN

Epistemic uncertainty in classification (vs regression)

» finally have tools to get epistemic uncertainty for classification

» but quantifying uncertainty in classification is not as
straightforward as in regression...

» use various measures of uncertainty from the field of Information
Theory, which have different properties

» each capturing different uncertainty desiderata

Useful tools T
p
> Entropy Hp(X) [X] = Eoutcomes xp(X = X) IOg p(X = X)
» high when p is uniform, 0 when one outcome is certain
» Mutual information of rvs X and Y £ TP

MI(X,Y) = Hpx)[X] — Ep(y)[Hox vy [X]]

» “how much information on X we would get if we had observed Y”

33 of 75



Uncertainty in classification NN

A quick overview:

» Predictive Entropy
» entropy of predictive distribution p(y = y*|x*, D)

Hoy+ i pyly*1 == > ply” = clx". D)log p(y” = c|x*, D)

yr=c

34 of 75



Uncertainty in classification NN

A quick overview:

» Predictive Entropy
» entropy of predictive distribution p(y = y*|x*, D)

Hoy+ i pyly*1 == > ply” = clx". D)log p(y” = c|x*, D)

yr=c

» Mutual Information (MI)
» between model params rv W and model output rv y* on input x*

Mi(y*, W|D, x*) = Hp(y- 1x= ) [V "] = Epw D) [Ho(y 1= .w) Y]]

» satisfies
0 < MI[x*] < H[x"]
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Uncertainty in classification NN

Predictive entropy

Hoy-pe )y 1 == ply* = clx", D)log p(y” = c|[x", D)
y*=c
» MC approximation

W,
p(y* = c|x*,D) TZP d

with W, ~ go(W) and p™ (x*) = softmax(f¥ (x*)) m
")
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Uncertainty in classification NN

Predictive entropy

Ho( )y = = > ply™ = ¢[x*, D)log p(y* = c|x", D)
y*=c
» MC approximation

W,
p(y* = c|x*,D) TZP d

with W, ~ go(W) and p™ (x*) = softmax(f¥ (x*)) R
")

» high when predictive is near uniform

» so, high either when we have inherent ambiguity S
eg when a point x has training labels both 0 and 1

for ambiguous input x loss is log p(x) + log(1 — p(x))

cross entropy loss minimiser (=ELBO miximiser) is to predict p = .5
all func draws will go through (.5,.5) (ie high entropy)

'p

vV vy VvYyy

» or when far away from data: eg half draws=1 and half draws=0
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Uncertainty in classification NN

Mutual information
Mi(y*, WD, x*) = Hp(y«|x= p) Y"1 = Epwip)[Ho(y 10 w) Y]]
» MI MC approx (second term)
[ pWID) 3 ply = ol Wlogply” = cix” W)W

yr=c

1 ~ n
~ 3 D, P(x)elogp™(x")e
t,y*=c

with W, ~ go(W)
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Uncertainty in classification NN

Mutual information

Mi(y*, WD, x*) = Hp(y«|x= p) Y"1 = Epwip)[Ho(y 10 w) Y]]
» MI MC approx (second term)

[ pWID) 3 ply = ol Wlogply” = cix” W)W

yr=c

1 A~ N
~ 3 D, P(x)elogp™(x")e
t,y*=c

with W, ~ go(W)

> high only when we are far away from data
» has “second term = first term” if all func draws same for input x
» “second term = 0" when func preds are confident and all over the
place

» ie, capturing only epistemic uncertainty (vs pred ent capturing

epistemic and aleatoric uncertainty)
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Uncertainty in classification NN

~ A

Predictive: p(y" — c[x", D) ~ 13, pM(x*),
MI: MI(y*, WID, x*) = Hpy+\x .0y Y1 = Epewip) [Hp(y+ 1w Y]]
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Bayesian Deep Learning

Stochastic Approximate
Inference in Deep NN
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Summary so far

» Model for regression (D outputs) / classification
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Summary so far

» Model for regression (D outputs) / classification

» ELBO L(6) = [ qo(W)log p(Y|X. W)dW — KL(q, prior)

» log likelihood eg
log p(Y|X, W) = =52 - [lyn — ¥ (x0)| 13 — § log 270

» approx post eg Qp(Wkg) = N(Wig; Mkg, 0oy)
» KL(qg, prior) = ",y 1/2(s720%, + s72mis® — 1 + log(s? /o%,))
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Summary so far

v

v

\4

v

Model for regression (D outputs) / classification

ELBO L(0) = [ go(W)log p(Y|X, W)dW — KL(q, prior)

log likelihood eg

log p(Y|X, W) =

approx post eg

qo(Wid) = N(Wia: Mg, 0'%y)

_217 > llyn — fW(Xn)HS -

% log 2762

» KL(qg, prior) = ",y 1/2(s720%, + s72mis® — 1 + log(s? /o%,))
MC integration:
» sample éq ~ N(0,1) and write Wxg = Miy + Tkaéka, € = {Ekd}

» giving a K by D stochastlc weight matrix: W(0, €)
» write f¢(x) = W(0,8)T¢(x)
> giving

[((9, {é\n}) -

1 €
—5z 2 IYn = P () 1§ -

Xn,Yn

N
> log 27ro®—

1
S IMIB.
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Stochastic VI in deep models

» until now we only did inference over W (last layer weights)

» because doing inference on preceding layers was too challenging
(intractable / non-conjugate)

» but with our new techniques we can easily extend to W, b of all
layers in model (denoted w)
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Stochastic VI in deep models

» until now we only did inference over W (last layer weights)

» because doing inference on preceding layers was too challenging
(intractable / non-conjugate)

» but with our new techniques we can easily extend to W, b of all
layers in model (denoted w)

» these models (where all layers have dists over) are known as
Bayesian neural networks (BNNs)
» X of dim N by Q (and Y of dim N by D)
W' of dim Q by K, b' dim K
W? of dim K by D, b? dim D
¢ elem-wise non-linearity
w={W'" W2 b' b}
f<(x) = o(x" W' + b"YW? + b2
note: could be a deep net with thousands of layers

v
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Stochastic VI in deep models

» until now we only did inference over W (last layer weights)

» because doing inference on preceding layers was too challenging
(intractable / non-conjugate)

» but with our new techniques we can easily extend to W, b of all
layers in model (denoted w)

» these models (where all layers have dists over) are known as

Bayesian neural networks (BNNs)
» X of dim N by Q (and Y of dim N by D)

W' of dim Q by K, b' dim K

W? of dim K by D, b? dim D

¢ elem-wise non-linearity

w={W' w2 bp' p?}

f“(x) = p(x" W' + b") W2 + b2

note: could be a deep net with thousands of layers

» Long history (Hopfield [1987] — LeCun [1991] — MacKay [1992]
— Hinton [1993] — Neal [1995] — Barber and Bishop [1998])
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Stochastic VI in deep models

BNNs
» model
» as before, but swap W', W2, f instead of W and ¥
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BNNs
» model
» as before, but swap W', W2, f* instead of W and fW
» approx inference
> log likelihood — same
> approx post — Gaussians w means {/m,,, M} and stds {0, o7}

KL to prior KL(q(W', W?), p) = KL(q(W"), p) + KL(q(W?),p)
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BNNs
» model
» as before, but swap W', W2, f* instead of W and fW
» approx inference
> log likelihood — same
> approx post — Gaussians w means {/m,,, M} and stds {0, o7}
KL to prior KL(q(W', W2), p) = KL(q(W"), p) + KL(q(W?), p)
> ELBO A
Wak = Mege + 0 i
Wiy = miy + otk
With &l 2, ~ N(0,1) and & = {&}. &2,}
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Stochastic VI in deep models

BNNs

» model

>

as before, but swap W', W2, f* instead of W and fW

> approx inference

>

>

log likelihood — same
approx post — Gaussians w means {m/,, Mz} and stds {o},, o7}
KL to prior KL(q(W', W2), p) = KL(q(W"), p) + KL(q(W?), p)
ELBO A

Wak = Mok + g

Wiy = mig + otk
with &, 2, ~ N(0,1) and & = {¢},. &}
swap f7¢(x) = W(0,&)T¢(x) with

f8(x) = p(xTW'(6,8) + b)Y W2(0, &) + b

and plug into L(#, {&,}).
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Stochastic VI in deep models

BNNs
» model
» as before, but swap W', W2, f* instead of W and fW
» approx inference
> log likelihood — same
> approx post — Gaussians w means {/m,,, M} and stds {0, o7}
KL to prior KL(q(W', W2), p) = KL(q(W"), p) + KL(q(W?), p)
> ELBO )
Wak = Mai + 0exéqu
WEy = miy + ofuéa
with &y, &y ~ N'(0,1) and & = {&}, &}
» swap f¢(x) = W(0,8)T¢(x) with
f8(x) = p(xTW'(6,8) + b)Y W2(0, &) + b
and plug into L(#, {&,}).
» Proposed as MDL from compression literature [Graves, 2011], in
Bayesian modelling known as mean-field variational inference
(MFVI1); Also referred to as Bayes by Backprop [Blundell, 2015].
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Inference in Very Large Deep Models

Issue with above...

» when we use large models we usually use 10s-100s of millions of
params — models as big as can fit on GPU

» when using Gaussian approx we need at least two params for each
NN weight

» doubling num of params... so having to reduce model size by 2!

» can we scale the ideas above to very large models?

(a) Input Image (b) Semantic Segmentation (c) Epistemic Uncertainty
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Bayesian Deep Learning

Inference in Very Large
Deep Models
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Stochastic regularisation as approx inference

Stochastic regularisation

» lots of techniques in deep learning inject noise into large models to
help with regularisation

» eg dropout (but lots of others which mostly work the same)
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Stochastic regularisation as approx inference

Stochastic regularisation

> lots of techniques in deep learning inject noise into large models to
help with regularisation

» eg dropout (but lots of others which mostly work the same)

> at training time, randomly set network
units to zero with prob p (Bern)

> call this “stochastic forward pass”

> at test time multiply each unit by
1/(1 — p) and do not drop

» call this “deterministic forward pass”

» noise is added to units (feature space)

» implemented in every deep learning
framework (from TF/PyTorch to
TensorRT for embedded devices)
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Stochastic VI in deep models

Y
o 4%}*}?35@
»!&!15 *

i,

| ]
£

45 of 75



Feature space noise to weight space

» Can transform noise to param (weight) space
y= (¢ [(xe")M" + b1]€2> M? + b?
= ¢[x(e'M") + b'| (M) + b?
writing W' :=&'M" and W2 := &2M2 gives
J=o(xW'+b")YW2+ b? = 1*(x)
with & = {W', W?}
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Feature space noise to weight space

» Can transform noise to param (weight) space

y= (¢[(xe1)/vl‘ + b1]€2) M? + b?
= ¢[x(e'M") + b'| (M) + b?
writing W' :=&'M" and W2 := &2M2 gives
¥ =o(xW' + b"YW?2 4 b? = £%(x)
with & = {W', W?}

> so at training time dropout samples weights matrices... looks v
familiar!

» let’s see if we can make this connection more formal

» develop approx inf in BNNs with a new approx dist...
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Feature space noise to weight space

» model
> prior - same
» lik - same
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Feature space noise to weight space

» model
> prior - same
> lik - same
» approx inference
» approx dist gy(W') = M'e with eqq = Bernoulli(p') and zero
otherwise, and ¢ = {M', p', M? p*}

1— 1 1— 2
KL(9,p) ~ oy 1M 3= QHI(P' )+~ M| B~ KH(p)-const
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Feature space noise to weight space

» model
> prior - same
> lik - same
» approx inference
» approx dist gy(W') = M'e with eqq = Bernoulli(p') and zero
otherwise, and ¢ = {M', p', M? p*}

1—pf 1 - p?
KL(9,p) ~ oy 1M 3= QHI(P' )+~ M| B~ KH(p)-const
» ELBO
2 . 1 0.,¢, » N L T
L(0,{en}) = T552 Z yn — 75 (Xn)l2 — §|0927TU _2—sg||M |2

Xn,Yn

with f%1(x,) a dropout stochastic forward pass
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Feature space noise to weight space

» model
> prior - same
> lik - same
» approx inference
» approx dist gy(W') = M'e with eqq = Bernoulli(p') and zero
otherwise, and 0 = {M", p', M? p?}

1—pf 1 - p?
KL(9,p) ~ oy 1M 3= QHI(P' )+~ M| B~ KH(p)-const
» ELBO
2 A 1 0,2, > N > 1=p' e
L(0,{én}) = T552 Z yn — 75 (Xn)l2 — 5 log 270 —2—32”’\/’ |2

Xn,Yn

with f%1(x,) a dropout stochastic forward pass
> can rewrite as min obj (multiply by —202/N)

1 ~
J =5 ST 11yn = Gl + XTIM I + X2 1M|3 + const
n

with ¥, = f%é1(x,) and defining \' = 02 152,’\); -
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» This is the standard dropout objective
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» ie any standard NN in which you use dropout, you can view as a
BNN
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Feature space noise to weight space

» This is the standard dropout objective

» ie any standard NN in which you use dropout, you can view as a
BNN

> note: need to tune p as a variational param

» can't diff wrt p (used in Bern in obj; can't use reparam trick..)
> but when you do grid search over p on a validation set, use
L(0,{én}) to select p which max ELBO or validation log predictive

» Can also use continuous relaxation for dropout (see Concrete
Dropout, 2017)
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Feature space noise to weight space

v

v

v

v

This is the standard dropout objective

ie any standard NN in which you use dropout, you can view as a
BNN

note: need to tune p as a variational param
» can't diff wrt p (used in Bern in obj; can't use reparam trick..)
> but when you do grid search over p on a validation set, use
L(0,{én}) to select p which max ELBO or validation log predictive
» Can also use continuous relaxation for dropout (see Concrete
Dropout, 2017)

Example:
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Dropout uncertainty example

Define model and train on data x_train, y_train:

1 | from tensorflow.keras.layers import Input, Dense, Dropou
2 |from tf.keras.regularizers import 12

3

4 |reg = sigmax*2 x (1l-p) / (s**2 * N)

5

6 |inputs = Input (shape=(512,))

7 |x = Dense (1024, activation="relu",

8 kernel_reqgularizer=12 (reqg)) (inputs)

9 |x = Dropout (p) (x, training=True)

10 |x = Dense (1024, activation="relu",

11 kernel_regularizer=12 (reg)) (x)

12 | x = Dropout (p) (x, training=True)

13 |outputs = Dense(l, kernel_regularizer=12(reqg)) (x)
14

15 |model = tf.keras.Model (inputs, outputs)

16 |model.compile(loss="mean_squared_error",

17 optimizer="adam")

18 |model.fit (x_train, y_train)
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Epistemic uncertainty in regression BNNs

Using MC estimators can estimate epistemic uncertainty in BNNs
almost trivially...

» predictive mean

>

* 1 #)
Ep(y*|x*,D)[y ] ~ T-Zf t(X)
t

with @ ~ gp(w).
ie, average multiple stochastic forward passes
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Epistemic uncertainty in regression BNNs

Using MC estimators can estimate epistemic uncertainty in BNNs
almost trivially...

» predictive mean

>

Ep(y+1xm) V'] = T Z
t

with @ ~ gp(w).
ie, average multiple stochastic forward passes

» predictive variance
» again, collect some stochastic forward passes...

Varp(y- jx- o) Y1 = Epy+ 1 ) [(V*)?] = Ep(ye - ) [y T2
2
~ o2 + T Z o (x)? — <? Z f‘ﬁ'(x)>
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Epistemic uncertainty in regression BNNs
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Epistemic uncertainty in regression BNNs

P ffll\'( e VWri PRI

EN\:}*IY*,T})E\:)*2}

25( 5 ‘3"1 plot] x W) &3") R wib) A
E 15t Vo (91 E,, L7

: S(o*‘*;‘“mi)pfwlb)dw

3

ne¥

*s

o *S L0 gw)dw

Mc 2 W,
| ¢ o2
Y o+ _T:;Y— ()

yA
— _ x Iy = G
= \/Np(wx‘, 0~ Em\jnx', mzb J j:!“u""m)[j $

T

2z M’/‘e 2 — A 2
RO L (£ 20 )

51 of 75



Example

Do stochastic forward passes on x_test:

1 |num_MC_samples = 100
2 |[MC_samples = [model.predict (x_test)
3 for _ in range (num_MC_samples) ]

Predictive mean
1|np.mean(MC_samples, axis=0)
Predictive variance

1|sigma**2 + np.var (MC_samples, axis=0)
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How to visualise BNNs?

A useful tool for debugging

» sample from weights w ~ p(w|D) = function sample f“(-)

» evaluate over interval [—10,10]
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How to visualise BNNs?

A useful tool for debugging

>

>

>

sample from weights w ~ p(w|D) = function sample “(+)
evaluate over interval [—10, 10]
eg:

» sample w and def f*(+)

» for each x; in {—10,-9.95,-9.9,...,9.9,9.95,10}

> evaluate y; = f*(x;) and plot (X;, yi)

note: if using dropout inference, use same dropout mask for all
inputs x
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How to visualise BNNs?

A useful tool for debugging

>

>

>

sample from weights w ~ p(w|D) = function sample “(+)
evaluate over interval [—10, 10]
eg:

» sample w and def f*(+)

» for each x; in {—10,-9.95,-9.9,...,9.9,9.95,10}

> evaluate y; = f*(x;) and plot (X;, yi)

note: if using dropout inference, use same dropout mask for all
inputs x

Visualisation: bdl101.ml/vis
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Bayesian Deep Learning

Real-world Applications of
Model Uncertainty
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Small data big models

» we use machine learning to aid experts working
in laborious fields
» automate small parts of the expert’s work

» eg melanoma (cancer) diagnosis based on
lesion images
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Small data big models

» we use machine learning to aid experts working
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Small data big models

» we use machine learning to aid experts working
in laborious fields

» automate small parts of the expert’s work

» eg melanoma (cancer) diagnosis based on
lesion images

» but deep learning often requires large amounts
of labelled data

» increases with the complexity of problem

» complexity of the input data

> eg image inputs require large models

» hundreds of gigabytes in ImageNet

» sometimes can't afford to label huge data...

» eg automating lesion image analysis

» would require expert to spend expensive time
annotating large number of lesion images (for
every cancer type of interest)

» instead, could use active learning
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Principles of active learning

» active learning
» agent chooses which unlabelled data is most informative
» asks external “oracle” (eg human annotator) for a label only for that
» acquisition function: ranks points based on their potential
informativeness
> eg, epistemic uncertainty

Train model on
labelled train set

Add new labelled Evaluate acquisition

function on
points to train set unlabelled pool set

Expert labels pool
points with highest
acquisition value
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_crossentropy",

(loss="categorical

2 |model.

3

optimizer="adam")
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[model.predict (x_test)

x_train

(
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4 |model.fit
5 [MC_sam

(20) ]
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Need uncertainty for classification...



MNIST active learning

model.compile(loss="categorical_crossentropy",
optimizer="adam")

model.fit (x_train, y_train)

MC_samples [model.predict (x_test) for in range(20)]

g b~ W N =

Predictive entropy

* * 1 A *
ply" =cx D)= 5 3 pM(x")e
t

Ho( )y = = > ply™ = ¢|x*, D)log p(y* = c|x", D)

y*=c

1 |expected_p = np.mean (MC_samples, axis=0)
2 |predictive_entropy = —-np.sum(expected_p =*
3 np.log(expected_p), axis=-1)
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MNIST active learning

1]...
2 |model.compile(loss="categorical_crossentropy",
3 optimizer="adam")
4 |model.fit(x_train, y_train)

5 [model .predict (x_test) for in range(20)]

MC_samples
Mutual information (epistemic uncertainty)

* * * 1 A * A *
Mi(y*, WID, x*) = Hoy i pyy'1 = 5 D P (x")elog p™ (x")e
t,y*=c

1 |MC_entropy = np.sum(MC_samples * np.log(MC_samples),
2 axis=-1)

3 |expected_entropy = —-np.mean (MC_entropy, axis=0)

4 'mi = predictive_entropy - expected_entropy
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ctive learning applications

Mela
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Acquisition steps
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Diabetes retinopathy diagnostics

» goal is to detect diabetes, and be able to tell when model is
guessing at random

> used to pre-screen patients, send only patients with high
uncertainty to expert

.layers.Conv2D(initial_conv

.layers.dropout(t, drog
.layers.MaxPooling2D(

.layers.Conv2D(initial_conv

.layers.dropout(t, drojg
.layers.Conv2D(initial_conv

.layers.dropout(t,
Sye MaxPogling
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Quality of uncertainty measures

How to tell if uncertainty is good or bad?

» define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes'/'no’ vs label ‘yes’/‘no’

» each corresponds to one of TP, FP, FN, TN
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Quality of uncertainty measures

How to tell if uncertainty is good or bad?

>

define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes'/'no’ vs label ‘yes’/‘no’

each corresponds to one of TP, FP, FN, TN

TPR and FPR are rates of TP and FP
» TPR = sensitivity = recall = TP / (TP + FN) = 1 - FNR
» TNR = specificity = TN / (TN + FP) =1 - FPR
» FPR=FP / (TN 4 FP) = 1 - specificity

want TPR to be high, FPR to be low

usually given reqs what's the worst we're allowed to perform in
order to deploy system
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Quality of uncertainty measures

How to tell if uncertainty is good or bad?

» define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes'/'no’ vs label ‘yes’/‘no’

» each corresponds to one of TP, FP, FN, TN

» TPR and FPR are rates of TP and FP
» TPR = sensitivity = recall = TP / (TP + FN) = 1 - FNR
» TNR = specificity = TN / (TN + FP) =1 - FPR
» FPR=FP / (TN + FP) = 1 - specificity

» want TPR to be high, FPR to be low

» usually given reqs what's the worst we're allowed to perform in
order to deploy system

» eg TPR=0.7 and FPR=0.1
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Quality of uncertainty measures

» model outputs a predictive prob p(y|x, D); how do we get a
recommendation ‘yes'/‘'no’?

> easiest is to take argmax
» but what if model outputs 0.517 is this a ‘yes'?
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» model outputs a predictive prob p(y|x, D); how do we get a
recommendation ‘yes'/‘'no’?

> easiest is to take argmax
» but what if model outputs 0.517 is this a ‘yes'?

» def a threshold t

» if predictive prob is higher than t then say ‘yes’ otherwise say ‘no’
» for t = 0 says 'yes’ to all, ie FN=TN=0, and model has
TPR=1,FPR=1
» for t = 1 says 'no’ to all, ie TP=FP=0 and model has TPR=0,
FPR=0
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recommendation ‘yes'/‘'no’?

> easiest is to take argmax
» but what if model outputs 0.517 is this a ‘yes'?

» def a threshold t
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Quality of uncertainty measures

» model outputs a predictive prob p(y|x, D); how do we get a
recommendation ‘yes'/‘'no’?

> easiest is to take argmax
» but what if model outputs 0.517 is this a ‘yes'?

» def a threshold t

» if predictive prob is higher than t then say 'yes' otherwise say ‘no’
» for t = 0 says 'yes’ to all, ie FN=TN=0, and model has

TPR=1,FPR=1
» for t = 1 says 'no’ to all, ie TP=FP=0 and model has TPR=0,
FPR=0

» each threshold t gives us a pair (FPR, TPR)
» scatter points for all t (or some discrete steps t)

» this is an ROC plot
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Quality of uncertainty measures
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Quality of uncertainty measures

» ROC shows tradeoff between TPR and FPR
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Quality of uncertainty measures

» ROC shows tradeoff between TPR and FPR
» each point on the plot corresponds to a choice of t which will give
that tradeoff

» aim: find a model which gives highest Area Under Curve (AUC)

> allows for better tradeoffs generally
» but not always

65 of 75



Quality of uncertainty measures

v

v

ROC shows tradeoff between TPR and FPR

each point on the plot corresponds to a choice of t which will give

that tradeoff

v

>

>

aim:

find a model which gives highest Area Under Curve (AUC)

allows for better tradeoffs generally
but not always

» how can we improve AUC? one solution:

>
>

identify patients for which you are guessing at random (uncertain)
select 10% patients you are most uncertain about and remove from
test set (send to expert)

» plot ROC for remaining 90% test set patients
» if uncertainty correlates to patients you were mistaken on, ROC

should improve (higher AUC)
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Quality of uncertainty measures

Send patients to expert diagnosis if model is uncertain

> use some uncertainty metric to refuse to diagnose a patient if
model is uncertain
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Send patients to expert diagnosis if model is uncertain

> use some uncertainty metric to refuse to diagnose a patient if
model is uncertain

» what uncertainty measure?

» MI would be high for far away points but will keep ambiguous
points in test set

» (points for which expert annotation in dataset was noisy)

» expected entropy would be high for both far away inputs (entropy
> MI) and ambiguous inputs
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Quality of uncertainty measures

Send patients to expert diagnosis if model is uncertain

> use some uncertainty metric to refuse to diagnose a patient if
model is uncertain

» what uncertainty measure?

» MI would be high for far away points but will keep ambiguous
points in test set

» (points for which expert annotation in dataset was noisy)

» expected entropy would be high for both far away inputs (entropy
> MI) and ambiguous inputs

> — use expected entropy

» can we improve tradeoff by sending a small number of patients to
an expert in a real-world system?
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Quality of uncertainty measures

sensitivity

90% data retained
B80% data retained
70% data retained
no referral

D.u T T T T T
oo 0z 04 06 0E 10

1 - specificity
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Quality of uncertainty measures

Another measure of uncertainty performance
» plot accuracy as a function of % retained data, as sending more
and more patients to an expert

accuracy under varying retained data rates

— Test

05 06 07 08 09 10
Fraction of data retained
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Quality of uncertainty measures

Another measure of uncertainty performance
» plot accuracy as a function of % retained data, as sending more
and more patients to an expert
» 100% retain data = original accuracy on full dataset
» 10% retain data = accuracy after removing 90% patients with
highest uncertainty

accuracy under varying retained data rates

0.86
— Test

05 06 07 08 09 10
Fraction of data retained

68 of 75
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We'll be looking at semantic segmentation

» input: image in RGB space
» output: image in semantic space

» each pixel is mapped to semantic class (eg road, sky, car,
pedestrian) based on its context (near by pixels)
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Deeplab

» one of the SOTA NNs for semantic segmentation is DeeplLab
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Deeplab

» one of the SOTA NNs for semantic segmentation is DeeplLab

» uses atrous (dilated) convolutions (has ‘holes’)
» widen field of view over the input feature maps without increasing
parameters or pooling

> uses encoder-decoder architectures
» upsampling replicates pixels then applies eg 1x1 conv which doesn't
reduce dim
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Deeplab

» one of the SOTA NNs for semantic segmentation is DeeplLab

» uses atrous (dilated) convolutions (has ‘holes’)

» widen field of view over the input feature maps without increasing
parameters or pooling

» uses encoder-decoder architectures

» upsampling replicates pixels then applies eg 1x1 conv which doesn’t
reduce dim

» can be applied to any base network (‘backbone’) as long as it is
fully convolutional (ie no fully connected layers)
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Backbone

» Popular deep CNNs backbones
» VGG-16
» ResNet101

» Xception
224x224x3 224x224x64

112 x128

@ convolution+ReLU
@ max pooling
@ fully connected+ReLU

) softmax

neurohive.io/
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Backbone

» Popular deep CNNs backbones
» VGG-16
» ResNet101
» Xception

» ResNet
> layer def
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Backbone

» Popular deep CNNs backbones
» VGG-16
» ResNet101
» Xception

» ResNet
> layer def
» solves the issue of “diminishing gradient” in deep nets (bounding
eigenvalues from below)
» can use hundreds of layers - seems to improve results the more
layers you use

> ~ W DFC R
- R %\x}‘w P—WML ()= ww'wtwdy

29w/ wizwwhae
Résworf
Ao /2w Wl liw Wl A ww' Y <y
= ‘\/v[w wlowl, 'JI)
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Xception

We use Xception

» architecture has simplicity of VGG with multiple convolution layers
stacked on top of one another

» Xception modules use skip connections similar to ResNet but

between blocks

» works well empirically

Entry Flow

Middle Flow

Exit Flow

Conv 32, 3x3,
stride=zx? + ReLU
Conv 64, 3x3 + RelU

512 x 512 x 3 mages\

ﬁx 32 x 728 feature maps

3 Middle Flow Xception Modules

ReLU + separable Conv 128,

ReLU + separable Conv 128,
)

e assbls g 2

IMiddle Flow
Xception
Hodule

ReLu + separable conv 725,
33
E

Dropout

ReLy + separable
>

.
| (Rt + separabie conv 255,
e

ReLU + separable conv 250,

w 258,

PR

Unit of (4 Middle Flow
Xception modules + dropout)
repeated 3 more times

32 x 32 x 728 feature maps

32 x 32 x 728 feature mapx

ReLU + Separable Conv 1535,
fey

ReLU + Separable Conv 1535,
fey

ReLU + Separable Conv 2045,
.

16 x 16 x 2048 feature maps
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(0),€3(0)23D)

we have a classification problem with H by W softmax outputs
(categorical variable for each pixel)

model loss: sum of cross entropy (log likelihoods) for each pixel
can use standard tools for uncertainty in classification (per pixel)

and look at epistemic and aleatoric uncertainty maps

(2) Input Image (b) Ground Truth (c) Semantic Segmentation  (d) Aleatoric Uncertsinty  (¢)

pistemic Uncertainty

Fionra 1 Mmalitativa sacnlte af ane mathad an tha CamUid camantic cammantatinn datacat with theas avamala inant imarac  Ohe



More applications

SCIENTIFIC REPg}RTS

QFEN: Leveraglng uncertalnty information
from deep neural networks for
disease detection

hristian Leibig?, Vaneeda Allken?, Murat Segkin Ayhan?, Philipp Berens() & Siegfried Wahl (5%

24 July 2017
+ 1 December 2017
online: 19 December 2017

| Deep learning (DL) has revolutionized the field ofcomputervlslon andimage processing. In medical

© imaging, on DL have b hown to a hi tasks
hat previously required medical experts. However, DL-based solutlons for disease detection have

© been proposed wi toqu antify and control their inty in a decision. In contrast, a

: physician he i bout a case and will i i
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More applications

24 July 2017

Uncertainty-Aware Reinforcement Learning for
Collision Avoidance

Gregory Kahn*, Adam Villaflor*, Vitchyr Pong*, Pieter Abbeel*f, Sergey Levine*
*Berkeley Al Research (BAIR), University of California, Berkeley
TOpenAl

O Abstract—Reinforcement learning can enable complex, adap-

ive behavior to be learned automatically for autonomous robotic
Matforms. However, practical deployment of reinforcement learn-
ng methods must contend with the fact that the training process
tself can be unsafe for the robot. In this paper, we consider
he specific case of a mobile robot learni; an a
»riori unknown environment while avoiding collisions. In order

tra nlng time. However, high-speed collisions, even at tra
d damage the robot. A successful learning method

lDewmb"m”nm therefm'e proceed cautiously, experiencing only low-speed

online: 19 Decenvollisions until it gains confidence.

is end, we present an
incertainty-aware model-based learning algorithm that estimates
he probability of collision together with a statistical estimate
i uncertainty. By formulating an uncertainty-dependent cost
unction, we show that the algorithm naturally chooses to proceed
autiously in unfamiliar environments, and increases the velocity
f the robot in settings where it has high confidence. Our
redictive model is based on bootstrapped neural networks

Fig. 1: Uncertainty-aware collision prediction model for collision av
ance: A quadrotor and an RC car are tasked with navigating in an unknc
environment. How should the robots navigate while avoiding collisions?
propose a model-based reinforcement learning approach in which the rc
leams a collision prediction model by experiencing collisions at low sp
which is unlikely to damage the vehicle. We formulate a velocity-depenc
collision cost that uses collision prediction estimates and their associs
uncertainties to enable the robot to only experience safe collisions dus
training while still approaching the desired task performance.

catastrophic) collsions during rining. The robot can overco

nnnnnnnnnn [, s




More applications

Uncnﬂn;nf‘r Asvsiara Dainfarramant T anrnina far

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the version available on IEEE Xplore.

Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban

OA Af;';ﬂt{*‘}:i: Remote Sensing Images Using Deep Convolutional Neural Networks
ive behavior
latforms. Howe:
ng methods mus
tself can be un: X . . .
he specific case Michael Kampffmeyer®, Arnt-Bgrre Salberg” and Robert Jenssen’
riori unknown
° It?:ir:i collision “Machine Learning @ UiT Lab, UiT-The Arctic University of Norway

Alulyatis e, could dam “Norwegian Computing Center
1 December 201 Tnust therefore p
online: 19 Decenvollisions until it

ncertainty-awar

he probability «

Jf uncertainty. 1 Abstract Remote sensing imagery is often characterized by com-
unction, we shov plex data properties in the form of heterogeneity and class
autiously in unf e propose a deep Comvolutional Neural Network — imbalance, as well as overlapping class-conditional distri-
A the ;robot WLCNN) for land cover mapping in remote sensing images,  butions [6]. Together, these aspects constitute severe chal-
dictive mOd€ith a focus on urban areas. In remote sensing, class im-  lenges for creating land cover maps or detecting and local-
balance represents often a problem for tasks like land cover  izing objects, producing a high degree of uncertainty in ob-
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More applications

I ncnﬂn;nf‘r Axtrara Dainfarcamant T anrnina fas
e o PN NPT Vision Foundation.
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o lean callion Uncertainties in Parameters Norway
24July 2017 ;:::":“"ﬁfz‘:;[
¢ Decomber 20 st thereore Estimated with Neural
online: 19 Decenvollisions until it
ncertainty-awar . .
Be probabley Networks: Application t0 Strong | . cumceised by com.
‘unction, we shoy . . . tm of heterogeneity and class
awionsiyinunt e ppose — (Gravitational Lensing sping class-conditional ditr-
If the robot incyyy) ) jand ispects constitute severe chal-
sredictive mode "
DN with a focus on 12 @ r maps or detecting and local-
salance represes -@Urence Perreault Levasseur g h degree of uncertainty in ob-

Yashar D. Hezaveh'23 (), and

Risa H. Wechslerl? @
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What you should be able to do now

>

>

v

use uncertainty in regression correctly
perform predictions in simple probabilistic models efficiently
use Bayesian modelling in complex ML models (eg classification)

use uncertainty (both epistemic and aleatoric) in real world models

extend VI correctly to complex models
> try to extend to new likelihoods like Laplace
> try to extend to multiple outputs: categorical and continuous
outputs

do deep learning with small amounts of data
» do try this at home!

evaluate whether your uncertainty makes sense

(somewhat) understand how huge deep vision systems work
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