# 9. Stable matching

# **Design and Analysis of Algorithms**

Elias Koutsoupias

(borrowed heavily from Kevin Wayne's presentation)

Hilary Term 2022

- Stable matching is a simple game-theoretic algorithmic problem
- Multiple applications
- Nobel Prize to Lloyd Shapley and Alvin Roth, 2012

**Goal.** Given a set of preferences among hospitals and med-school students, design a self-reinforcing admissions process.

**Unstable pair.** Hospital *h* and student *s* form an unstable pair if both:

- *h* prefers *s* to one of its admitted students
- *s* prefers *h* to assigned hospital.

**Stable assignment.** Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest prevents any hospital-student side deal.

**Input:** A set of n hospitals H and a set of n students S.

- Each hospital  $h \in H$  ranks students
- Each student  $s \in S$  ranks hospitals

More concretely, the input is a set of 2n permutations of  $(1, \ldots, n)$ .

# Example : input

*n* = 3

- Hospitals =  $\{A, B, C\}$
- Students =  $\{X, Y, Z\}$

Preferences of hospitals (left) and students (right)

|   | 1 | 2 | 3 |
|---|---|---|---|
| Α | Х | Υ | Ζ |
| В | Υ | Х | Ζ |
| С | Х | Υ | Ζ |

|   | 1 | 2 | 3 |
|---|---|---|---|
| X | В | А | С |
| Y | А | В | С |
| Ζ | А | В | С |

### Definition

A matching M is a set of ordered pairs h - s with  $h \in H$  and  $s \in S$ , such that

- Each hospital  $h \in H$  appears in at most one pair of M
- Each student  $s \in S$  appears in at most one pair of M

A matching M is perfect if every member of H (and S) is matched, i.e., appears in M.

# **Example : perfect matching**

*n* = 3

 $\mathsf{Hospitals} = \{A, B, C\}$ 

Students = {X, Y, Z}

Preferences of hospitals (left) and students (right)

|   | 1 | 2 | 3 |
|---|---|---|---|
| Α | Х | Υ | Ζ |
| В | Υ | Х | Ζ |
| С | Х | Υ | Ζ |



A perfect matching:  $\{A - Z, B - Y, C - X\}$ .

### Definition

Given a perfect matching M, hospital h and student s form an unstable pair if both:

- *h* prefers *s* to matched student
- *s* prefers *h* to matched hospital.

An unstable pair h-s could each improve by joint action.

# Example : unstable pair

*n* = 3

Hospitals =  $\{A, B, C\}$ 

Students = {X, Y, Z}

Preferences of hospitals (left) and students (right)





A - Y is an unstable pair.

# Stable matching problem

# **Definition (Stable matching)**

A **stable matching** is a perfect matching with no unstable pairs. Stable matching problem.

# Definition (Stable matching problem)

Given the preference lists of n hospitals and n students, find a stable matching (if one exists).

|   | 1 | 2 | 3 |  |
|---|---|---|---|--|
| A | Х | Υ | Ζ |  |
| B | Υ | Х | Ζ |  |
| С | Х | Y | Ζ |  |

|   | 1 | 2 | 3 |
|---|---|---|---|
| X | В | А | С |
| Y | А | В | С |
| Ζ | А | В | С |

A stable matching  $\{A - X, B - Y, C - Z\}$ .

# Stable roommate problem

- Do stable matchings always exist?
- Not obvious a priori.

#### Stable roommate problem:

- 2n people; each person ranks others from 1 to 2n-1
- Assign roommate pairs so that no unstable pairs.



#### No perfect matching is stable

### Stable roomate problem



No perfect roommate matching is stable

A - B,  $C - D \Rightarrow B - C$  is unstable A - C,  $B - D \Rightarrow A - B$  is unstable A - D,  $B - C \Rightarrow A - C$  is unstable

Therefore, stable roommate matchings may not exist.

# Gale-Shapley deferred acceptance algorithm

A natural algorithm that guarantees to find a stable matching.

GALE-SHAPLEY(lists of poreferences)

- 1  $M \leftarrow \emptyset$
- 2 while (some hospital h is unmatched and hasn't proposed to every st
- 3  $s \leftarrow$  first student on h's list to whom h has not yet proposed
- 4 if (s is unmatched)
- 5 **then** Add h-s to matching M
- 6 **else if** (*s* prefers *h* to current partner h')
- 7 **then** Replace h'-s with h-s in matching M
- 8 else *s* rejects *h*
- 9 **return** stable matching *M*.

#### Running time

- Hospitals propose to students in decreasing order of preference
- Once a student is matched, the student never becomes unmatched; only "trades up."

#### Lemma

Algorithm terminates after at most  $n^2$  iterations of While loop.

#### Proof.

Each time through the While loop, a hospital proposes to a new student. Thus, there are at most  $n^2$  possible proposals.

# Examples with n(n-1) + 1 steps



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| A | W | Х | Υ | Ζ |
| В | Х | Y | W | Ζ |
| С | Υ | W | Х | Ζ |
| D | W | Х | Υ | Ζ |

|   | 1 | 2 | 3 |
|---|---|---|---|
| X | В | С | А |
| Y | С | А | В |
| Ζ | А | В | С |

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| W | В | С | D | А |
| X | С | D | А | В |
| Y | D | А | В | С |
| Ζ | А | В | С | D |

#### Lemma

The Gale-Shapley algorithm finds a perfect matching.

#### Proof.

- Suppose, for sake of contradiction, that some hospital *h* is unmatched upon termination of the Gale–Shapley algorithm
- Then some student, say s, is unmatched upon termination
- So *s* was never proposed to, because once proposed it becomes matched and remains matched thereafter
- But, h proposes to every student, since h ends up unmatched

# **Proof of correctness**

#### Lemma

The matching M returned by the Gale-Shapley algorithm is stable.

#### Proof.

Consider any pair h-s that is not in M. We show that it is not unstable.

*h* **never proposed to** *s***:** Therefore, *h* prefers its student in *M* to *s*.

h proposed to s: Therefore s rejected h at some point, which means that s ended up with a more preferred hospital.

#### Theorem (Gale–Shapley 1962)

The Gale–Shapley algorithm guarantees to find a stable matching for any problem instance.

# **Multiple stable matchings**

An instance may have multiple stable matchings. For example:  $\{A - X, B - Y, C - Z\}$  and  $\{A - Y, B - X, C - Z\}$ 

|   | 1 | 2 | 3 |
|---|---|---|---|
| Α | Х | Y | Ζ |
| В | Y | Х | Ζ |
| С | Х | Υ | Ζ |

|   | 1 | 2 | 3 |
|---|---|---|---|
| X | В | А | С |
| Y | А | В | С |
| Ζ | А | В | С |



|   | 1 | 2 | 3 |
|---|---|---|---|
| X | В | А | С |
| Y | А | В | С |
| Ζ | А | В | С |

# Valid partners

A student s is a valid partner for hospital h if there exists any stable matching in which h and s are matched.

For example

- Both X and Y are valid partners for A.
- Both X and Y are valid partners for B.
- Z is the only valid partner for C.

|   | 1 | 2 | 3 |
|---|---|---|---|
| Α | Х | Υ | Ζ |
| В | Υ | Х | Ζ |
| С | Х | Υ | Ζ |

|   | 1 | 2 | 3 |
|---|---|---|---|
| X | В | А | С |
| Y | А | В | С |
| Ζ | А | В | С |

# **Hospital-optimal assignment:** Each hospital receives best valid partner.

- Is it a perfect matching?
- Is it stable?

#### Lemma

The Gale-Shapley algorithm returns the hospital-optimal assignment.

As a corollary, we get that the hospital-optimal assignment is stable.

# **Student-pessimal assignment:** Each student receives worst valid partner.

#### Lemma

The Gale-Shapley algorithm returns the student-pessimal assignment.

As a corollary, we get that the student-pessimal assignment is stable.

# **Is the Gale-Shapley algorithm truthful?** That is, can participants gain by misrepresenting their preferences?

- A hospital cannot get a better solution by lying about their preference
- But a student may gain by lying about their preferences