9. Stable matching

Design and Analysis of Algorithms

Elias Koutsoupias
(borrowed heavily from Kevin Wayne's presentation)

Hilary Term 2022
Stable matching [KT 1.1]

- Stable matching is a simple game-theoretic algorithmic problem
- Multiple applications
- Nobel Prize to Lloyd Shapley and Alvin Roth, 2012
Goal. Given a set of preferences among hospitals and med-school students, design a self-reinforcing admissions process.

Unstable pair. Hospital h and student s form an unstable pair if both:

- h prefers s to one of its admitted students
- s prefers h to assigned hospital.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest prevents any hospital–student side deal.
Stable matching problem: input

Input: A set of n hospitals H and a set of n students S.

- Each hospital $h \in H$ ranks students
- Each student $s \in S$ ranks hospitals

More concretely, the input is a set of $2n$ permutations of $(1, \ldots, n)$.
Example: input

\(n = 3\)

Hospitals = \{A, B, C\}

Students = \{X, Y, Z\}

Preferences of hospitals (left) and students (right)
A matching M is a set of ordered pairs $h - s$ with $h \in H$ and $s \in S$, such that

- Each hospital $h \in H$ appears in at most one pair of M
- Each student $s \in S$ appears in at most one pair of M

A matching M is perfect if every member of H (and S) is matched, i.e., appears in M.

Definition

Perfect matching
Example: perfect matching

\(n = 3 \)

Hospitals = \(\{A, B, C\} \)

Students = \(\{X, Y, Z\} \)

Preferences of hospitals (left) and students (right)

A perfect matching: \(\{A - Z, B - Y, C - X\} \).
Unstable pair

Definition

Given a perfect matching \(M \), hospital \(h \) and student \(s \) form an unstable pair if both:

- \(h \) prefers \(s \) to matched student
- \(s \) prefers \(h \) to matched hospital.

An unstable pair \(h–s \) could each improve by joint action.
Example: unstable pair

\[n = 3 \]

Hospitals = \{ A, B, C \}

Students = \{ X, Y, Z \}

Preferences of hospitals (left) and students (right)

\begin{array}{c|c|c|c}
 & 1 & 2 & 3 \\
\hline
A & X & Y & Z \\
B & Y & X & Z \\
C & X & Y & Z \\
\end{array}

\begin{array}{c|c|c|c}
 & 1 & 2 & 3 \\
\hline
X & B & A & C \\
Y & A & B & C \\
Z & A & B & C \\
\end{array}

A – Y is an unstable pair.
Stable matching problem

Definition (Stable matching)
A **stable matching** is a perfect matching with no unstable pairs.

Stable matching problem.

Definition (Stable matching problem)
Given the preference lists of n hospitals and n students, find a stable matching (if one exists).

A stable matching \{A – X, B – Y, C – Z\}.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Y</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>
Stable roommate problem

- Do stable matchings always exist?
- Not obvious a priori.

Stable roommate problem:

- $2n$ people; each person ranks others from 1 to $2n-1$
- Assign roommate pairs so that no unstable pairs.

![Table showing roommate preferences]

No perfect matching is stable
Stable roommate problem

No perfect roommate matching is stable

\[A - B, \ C - D \Rightarrow B - C \ \text{is unstable} \]
\[A - C, \ B - D \Rightarrow A - B \ \text{is unstable} \]
\[A - D, \ B - C \Rightarrow A - C \ \text{is unstable} \]

Therefore, stable roommate matchings may not exist.
Gale-Shapley deferred acceptance algorithm

A natural algorithm that guarantees to find a stable matching.

\[\text{Gale-Shapley}(\text{lists of preferences})\]

1. \(M \leftarrow \emptyset \)
2. \(\text{while (some hospital } h \text{ is unmatched and hasn’t proposed to every student)} \)
3. \(s \leftarrow \text{first student on } h\text{’s list to whom } h \text{ has not yet proposed} \)
4. \(\text{if (} s \text{ is unmatched)} \)
5. \(\quad \text{then Add } h-s \text{ to matching } M \)
6. \(\quad \text{else if (} s \text{ prefers } h \text{ to current partner } h' \) \)
7. \(\quad \quad \text{then Replace } h'-s \text{ with } h-s \text{ in matching } M \)
8. \(\quad \quad \text{else } s \text{ rejects } h \)
9. \(\text{return stable matching } M. \)
Running time

- Hospitals propose to students in decreasing order of preference
- Once a student is matched, the student never becomes unmatched; only “trades up.”

Lemma

Algorithm terminates after at most n^2 iterations of While loop.

Proof.

Each time through the While loop, a hospital proposes to a new student. Thus, there are at most n^2 possible proposals. □
Examples with $n(n - 1) + 1$ **steps**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>W</td>
<td>Z</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>W</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>D</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>X</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Y</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>
Proof of correctness

Lemma

The Gale-Shapley algorithm finds a perfect matching.

Proof.

- Suppose, for sake of contradiction, that some hospital h is unmatched upon termination of the Gale–Shapley algorithm.
- Then some student, say s, is unmatched upon termination.
- So s was never proposed to, because once proposed it becomes matched and remains matched thereafter.
- But, h proposes to every student, since h ends up unmatched.
Proof of correctness

Lemma

The matching M returned by the Gale-Shapley algorithm is stable.

Proof.

Consider any pair h–s that is not in M. We show that it is not unstable.

h never proposed to s: Therefore, h prefers its student in M to s.

h proposed to s: Therefore s rejected h at some point, which means that s ended up with a more preferred hospital.

Theorem (Gale–Shapley 1962)

The Gale–Shapley algorithm guarantees to find a stable matching for any problem instance.
Multiple stable matchings

An instance may have multiple stable matchings. For example:
\{A \rightarrow X, B \rightarrow Y, C \rightarrow Z\} and \{A \rightarrow Y, B \rightarrow X, C \rightarrow Z\}
A student s is a **valid partner** for hospital h if there exists any stable matching in which h and s are matched.

For example

- Both X and Y are valid partners for A.
- Both X and Y are valid partners for B.
- Z is the only valid partner for C.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Y</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>
Which stable matching?

Hospital-optimal assignment: Each hospital receives best valid partner.

- Is it a perfect matching?
- Is it stable?

Lemma

The Gale-Shapley algorithm returns the hospital-optimal assignment.

As a corollary, we get that the hospital-optimal assignment is stable.
Which stable matching?

Student-pessimal assignment: Each student receives worst valid partner.

Lemma

The Gale-Shapley algorithm returns the student-pessimal assignment.

As a corollary, we get that the student-pessimal assignment is stable.
Is the Gale-Shapley algorithm truthful? That is, can participants gain by misrepresenting their preferences?

- A hospital cannot get a better solution by lying about their preference
- But a student may gain by lying about their preferences