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The first axiomatisation of set theory by Zermelo [Zer08, §1 1.] in 1908 allowed “Dinge” (objects) that are not

“Mengen” (sets). Such an object 𝑎 — now known as an urelement or an atom — is certainly not the empty set

because it is not a set, yet it does not satisfy

𝑥 ∈ 𝑎

for any 𝑥. On the other hand, 𝑎 may still be an element of a set: for example, we have 𝑎 ∈ {𝑎, {𝑎}}. Let A denote

the collection of all the atoms, and let𝐺 be a group of bijections from A to itself. Then 𝜋 ∈ 𝐺 permutes not only

atoms but also sets with atoms: e.g., writing 𝜋(𝑎) = 𝑎′ and 𝜋(𝑏) = 𝑏′, we get

𝜋 · {𝑎, {𝑏}} = {𝑎′, {𝑏′}}.

A set 𝑋 is called finitely supported if there is a finite 𝑆 ⊆ A such that:

𝜋 · 𝑋 = 𝑋 whenever 𝜋 ∈ 𝐺 fixes every atom in 𝑆.

Intuitively, this asserts that 𝑋 can be described using the finitely many atoms from 𝑆. For instance,

• the sets {𝑎, 𝑏} and A \ {𝑎, 𝑏} can be described by mentioning just the atoms 𝑎 and 𝑏;

• the function A × A → A; (𝑎, 𝑏) ↦→ 𝑎 — i.e., the set {((𝑎, 𝑏), 𝑎) | (𝑎, 𝑏) ∈ A × A} ⊆ (A × A) × A —

can be described without mentioning any atoms at all.

A hereditarily finitely supported set is a finitely supported set whose elements are all hereditarily finitely supported.

By working with these sets only we arrive at the permutation model of set theory with atoms, the introduction

of which many attribute to Fraenkel for his 1922 paper “Über den Begriff ‘definit’ und die Unabhängigkeit des

Auswahlaxioms”. Fraenkel proceeded to define a permutation model in which the axiom of choice fails in a dra-

matic manner, namely, for a countable family of pairs [Fra35, p.43]; in the follow-up [Fra37], he attempted to show

that the axiom of choice can still fail even if a weaker version — that is, any family of finite sets admits a choice

function — holds. However a mistake was noted by Mostowski, who managed to give a correct proof in [Mos39,

Korollar 2] by considering, as atoms, the rationals Q with all order-preserving bijections. (And it was not until

1963 that Cohen, via his famed technique of forcing, proved the axiom of choice can fail in a model of set theory

without atoms.) Such classical mathematics was written in very different languages; instead, a modern account of

these permutation models can be found in [Jec73, Chapter 4].

Over sixty years had elapsed when, in computer science, Gabbay and Pitts [GP02] dug up the Fraenkel–

Mostowski model in search of an elegant representation for abstract syntax trees up to𝛼-renaming. The motivating

example they put forward is the untyped 𝜆-calculus, whose terms are either a variable from a countably infinite set

like the naturals N, an application of two terms, or an abstraction of a binding variable away from a term; in other

words, the set Λ of terms is inductively defined by

𝐹 (𝑋) = N ⊎ (𝑋 × 𝑋) ⊎ (N × 𝑋)
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which means that proof by structural induction and definition by structural recursion on Λ are mathematically

founded. Nonetheless we often wish to identify (𝜆𝑥.𝑥𝑦) (𝜆𝑥.𝑥) with (𝜆𝑥′.𝑥′𝑦) (𝜆𝑥.𝑥) and work with Λ/=𝛼, the

terms modulo 𝛼-equivalence. With N as the atoms, the set Λ becomes a set with atoms; a bijection N → N such

as the transposition (𝑥 𝑦) just renames the variables: e.g., (𝑥 𝑦) · (𝜆𝑥.𝑥𝑦) (𝜆𝑥.𝑥) = (𝜆𝑦.𝑦𝑥) (𝜆𝑦.𝑦). Accordingly

the sets in the Gabbay–Pitts rendition of the permutation model are called nominal sets. A first observation is the

equivalence of the following statements for two terms 𝜆𝑎.𝑡 and 𝜆𝑎′.𝑡′:

1) 𝜆𝑎.𝑡 =𝛼 𝜆𝑎
′.𝑡′;

2) (𝑎 𝑏) · 𝑡 =𝛼 (𝑎′ 𝑏) · 𝑡′ for some 𝑏 ∈ N that does not occur (as a binding, free, or bound variable) in 𝑡 or 𝑡′;

3) (𝑎 𝑏) · 𝑡 =𝛼 (𝑎′ 𝑏) · 𝑡′ for any 𝑏 ∈ N which does not occur in 𝑡 or 𝑡′.

Thus we can push the global quotient of Λ by =𝛼 down to a local but inductive quotient. To make this concrete,

we need the definition of the set [N]𝑋 of atom abstractions or name abstractions associated with a set 𝑋 (see [GP02,

Definition 5.4] or [Pit13, Definition 4.4]) where, as basic examples,

• [N]N comprises the equivalence classes 𝑎.𝑎
def

= {(𝑎, 𝑎) | 𝑎 ∈ N} and 𝑏.𝑎
def

= {(𝑏, 𝑎) | 𝑏 ∈ N\{𝑎}}, 𝑎 ∈ N
corresponding to the 𝛼-equivalence classes of 𝜆𝑎.𝑎 and of 𝜆𝑏.𝑎, whilst

• [N] ( [N]N) comprises the equivalence classes {(𝑏, 𝑎.𝑎 | 𝑏 ∈ N} and {(𝑎, 𝑏.𝑎)} for 𝑎 ∈ N, {(𝑐, 𝑏.𝑎 | 𝑐 ∈
N \ {𝑎}} for 𝑎 ∈ N corresponding to the 𝛼-equivalence classes of 𝜆𝑏𝑎.𝑎, 𝜆𝑎𝑏.𝑎, and 𝜆𝑐𝑏.𝑎.

Then Λ/=𝛼 is in bijection with the set Λ𝛼 inductively defined by

𝐹𝛼 (𝑋) = N ⊎ (𝑋 × 𝑋) ⊎ [N]𝑋,

except the latter supports “𝛼-structural” induction and recursion that perfectly match informal proofs involving

“let 𝑎 be fresh”.

The Gabbay–Pitts permutation model was not entirely novel: as explained in [GMM06] and also in [Pit13,

Chapter 6], equivalent forms of nominal sets have been known to the concurrency community as named sets

[MP05], by category theorists as the Schanuel topos, and by model theorists as continuous AutN-sets. The last

perspective easily generalises to other choices of atom structures together with their symmetry groups: (N, =) and

arbitrary bijections are to variable names as (Q, =, <) and monotone bijections are to timestamps. Indeed, sets

with atoms provide a convenient setting for studying languages of data words over an infinite alphabet as well as

the models of computation that recognise them; this approach has been extensively explored by the Warsaw school

beginning with [Boj13]. It is perhaps curious that, like with the axiom of choice almost a century back, the yet

unresolved P versus NP problem can be settled in the presence of atoms, negatively [BKLT13, Theorem III.1].

That marks the end of the historical notes, and here begins the mathematical account. A first step towards

tackling computation theoretic concerns with atoms is to address the possibly infinite sets involved. Consider for

instance [N]N = {𝑎.𝑎}∪{𝑎+ 1.𝑎 | 𝑎 ∈ N} from above, which is infinite but consists of just two orbits —AutN ·
𝑎.𝑎 and AutN · 𝑏.𝑎 — and thus describable in a finite manner. To obtain a precise and robust notion of finitely

presentable sets that are amenable to algorithmic manipulation, we need a sufficiently well-behaved structureA; to

spell the model-theoretic desiderata out, we consider a countably infinite, homogeneous, oligomorphic structure

over a finite relational signature that has no algebraicity and admits least finite supports. Although such terms are

explained in ample detail in textbooks like [Hod93, Chapters 4–7] and [Kir19, Part V], many more have made the

effort to introduce them in an approachable and self-contained manner; drawing on [Cam90, Chapter 2] [Mac11,

§2–4] [Eva13, §1–2] [Boj19, Chapter 7], [Bod21, Chapters 2–4] I shall attempt to do the same.
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1 The atoms structure

Fix a signatureR of relation symbols 𝑅0, 𝑅1, . . . of arities 𝑛0, 𝑛1, . . . ; anR-structure (A,R) is a domainA together

with interpretations𝑅A
𝑖
⊆ A𝑛𝑖 , where we always assume𝑅0 is the binary symbol= interpreted as {(𝑎, 𝑎) | 𝑎 ∈ A}.

We fix a countably infinite A throughout. Also, by A we will mean both the structure and the domain.

Every subset 𝐴 ⊆ A automatically defines a new R-structure with interpretations 𝑅𝐴
𝑖

def

= 𝑅A
𝑖
∩ 𝐴𝑛𝑖 ; by a

substructure of A we simply mean a subset of A. When 𝐴 is finite, we more specifically write 𝐴 ⊆fin A. A function

𝑓 : 𝐴→ 𝐵 between two R-structures is an embedding if

∀(𝑎1, . . . , 𝑎𝑛𝑖 ) ∈ 𝐴𝑛𝑖 : (𝑎1, . . . , 𝑎𝑛𝑖 ) ∈ 𝑅𝐴𝑖 ⇐⇒ ( 𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑛𝑖 )) ∈ 𝑅𝐵𝑖

for every 𝑖. In particular any embedding is always injective, and if it is moreover surjective we call it an isomorphism.

We call an isomorphism mapping A into A an automorphism; all the automorphisms form a group, which we

denote by AutA.

1.1 Homogeneity

Definition 1.1
A is homogeneous if every isomorphism between 𝐴, 𝐵 ⊆fin A extends to an automorphism ofA. That is, given

any isomorphism 𝑓 : 𝐴→ 𝐵, there exists some 𝜋 ∈ AutA such that 𝜋 |𝐴 = 𝑓 .

Example 1.2 The equality atoms (N, =) is homogeneous: we can first extend 𝑓 to a finite bijection 𝐴∪ 𝐴′ →
𝐴 ∪ 𝐴′

since (𝐴 ∪ 𝐴′) \ 𝐴 has the same number of elements as (𝐴 ∪ 𝐴′) \ 𝑓 (𝐴), then to an automorphism

of N by mapping N \ (𝐴 ∪ 𝐴′) identically. A more commonly used name is the countable pure set.

So are the ordered atoms (Q, =, <), i.e., the countable dense linear ordering without endpoints: we can

extend the monotone 𝑓 to a piecewise linear, monotone bijection Q → Q.

We adopt Fraïssé’s quaint terminology [Fra74] [Fra00, §10.2.1] of calling the collectionKof finiteR-structures,

each of which isomorphic to some finite substructure of A, the âge of A. Observe that

1) K is closed under taking substructures and isomorphic images;

2) K has countably many isomorphism classes, as there are only countably many finite substructures of A;

3) K satisfies the amalgamation property — i.e., for every 𝐴′ ⊆ 𝐴 ∈ K, 𝐵 ∈ K and embedding 𝑓 : 𝐴′ → 𝐵,

there is some𝐶 ∈ K together with embeddings 𝑔 : 𝐵 → 𝐶, ℎ : 𝐴→ 𝐶 such that 𝑔 ◦ 𝑓 = ℎ|𝐴′ making

𝑔(𝐵) ∪ ℎ(𝐴)

𝐵 𝐴

𝐴′

𝑔 ℎ

𝑓
⊆

commute — provided that A is homogeneous: extend 𝑓 to some 𝜋 ∈ AutA and put𝐶
def

= 𝐵 ∪ 𝜋(𝐴).

There is a converse to this. Call a collection K of finite R-structures that satisfies the properties 1), 2), and 3) an

amalgamation class.
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Theorem 1.3 ([Fra54, Théorème VI])
If K is an amalgamation class, then

i) we can construct a countable homogeneous R-structure FLimK whose âge is precisely K, and
ii) any another countable homogeneous R-structure that also has âge K is isomorphic to FLimK.

We shall call FLimK the Fraïssé limit. The homogeneous condition in ii) cannot be dropped: (Z, =, <) and (Q,=
, <) are different order types yet share the same âge of all finite total orders, because no 𝜋 ∈ AutZ extends the

isomorphism 0 ↦→ 0, 1 ↦→ 2. This is also why Q, rather than Z, is the domain of the ordered atoms.

Example 1.4 An amalgamation class K is said to be strong if in 3) one can moreover choose𝐶, 𝑔, ℎ in a way

that 𝑔(𝐵) ∩ ℎ(𝐴) coincides with (𝑔 ◦ 𝑓 ) (𝐴′) = ℎ(𝐴′).

a) The âge of the equality atoms is a strong amalgamation class: let 𝐶
def

= {(0, 𝑏) | 𝑏 ∈ 𝐵 \ 𝑓 (𝐴′)} ∪
{(1, 𝑎) | 𝑎 ∈ 𝐴} be the amalgam, and put

𝑔 : 𝑏 ∈ 𝐵 \ 𝑓 (𝐴′) ↦→ (0, 𝑏), ℎ : 𝑎 ∈ 𝐴 ↦→ (1, 𝑎).
𝑓 (𝑎′) ∈ 𝑓 (𝐴′) ↦→ (1, 𝑎′);

On the other hand, consider (N,=, 𝑂) where the unary predicate symbol𝑂 has interpretation𝑂N =

{0}. This is a homogeneous structure whose âge consists of all finite sets with at most one element

for which 𝑂 holds, which fails to be a strong amalgamation class: any amalgam of the substructures

{0} ⊇ ∅ ⊆ {0, 1} must identify the two 0’s, which certainly will not be in the image of ∅.

b) Consider the signature =,∼ for graphs. The collection K∼ of all loopless finite undirected graphs is a

strong amalgamation class: with𝐶 as above, one can check that the interpretation

∼𝐶 def

=

{(
𝑔(𝑏), 𝑔(𝑏′)

)
| 𝑏, 𝑏′ ∈ 𝐵 \ 𝑓 (𝐴′), (𝑏, 𝑏′) ∈ ∼𝐵

}
∪
{(
𝑔(𝑏), 𝑔( 𝑓 (𝑎′)) = ℎ(𝑎′)

)
| 𝑏 ∈ 𝐵 \ 𝑓 (𝐴′), 𝑎′ ∈ 𝐴′, (𝑏, 𝑓 (𝑎′)) ∈ ∼𝐵

}
∪
{(
𝑔( 𝑓 (𝑎′)) = ℎ(𝑎′), 𝑔(𝑏)

)
| 𝑏 ∈ 𝐵 \ 𝑓 (𝐴′), 𝑎′ ∈ 𝐴′, ( 𝑓 (𝑎′), 𝑏) ∈ ∼𝐵

}
∪
{(
ℎ(𝑎1), ℎ(𝑎2)

)
| 𝑎1, 𝑎2 ∈ 𝐴, (𝑎1, 𝑎2) ∈ ∼𝐴

}
imposes just enough relations to make 𝑔 and ℎ embeddings. Then FLimK∼ is the Rado graph [Rad64,

Theorem 1], which we also refer to as the graph atoms.

Now consider the subcollection K𝐾𝑛 ̸↩→∼ of those graphs in K∼ into which the complete graph 𝐾𝑛 on

𝑛 ≥ 3 vertices does not embed. The above construction shows that K𝐾𝑛 ̸↩→∼ is a strong amalgamation

class as well. To see that, note an 𝑛-clique in the amalgam 𝐶 = 𝑔(𝐵) ∪ ℎ(𝐴) cannot have vertices in

both 𝑔(𝐵) and ℎ(𝐴) \ ℎ(𝐴′) due to the lack of edges; so the 𝑛-clique must be entirely contained in

ℎ(𝐴) or else in 𝑔(𝐵), which is impossible as neither 𝐴 nor 𝐵 contains an 𝑛-clique. The Fraïssé limit

FLimK𝐾𝑛 ̸↩→∼ is known as the Henson 𝐾𝑛-free graph [Hen71, Theorem 2.3].

Lastly, let the cardinalities 1 ≤ 𝑚, 𝑛 ≤ ℵ0 be such that 𝑚 × 𝑛 = ℵ0 and consider the disjoint union⊎
𝑚 𝐾𝑛 of complete graphs. Its âge is an amalgamation class, which is strong if and only if 𝑛 ∈ {1,ℵ0}.

(Note that

⊎
ℵ0

𝐾1 and

⊎
1
𝐾ℵ0

are graph complements; they are just the equality atoms augmented

with a constant binary predicate.) In fact, every countably infinite homogeneous graph is isomorphic

to

⊎
𝑚 𝐾𝑛, FLimK𝐾𝑛 ̸↩→∼ , FLimK∼ or their graph complements [LW80].
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c) Change the signature to=,→ and letK→ be the collection of all loopless finite directed graphs without

double edges, or digraphs for short. Then, replacing∼ by→ in the construction above, we see thatK→
is a strong amalgamation class.

Again we can forbid certain subgraphs. Call 𝐷 ∈ K→ a tournament if precisely one of 𝑥 → 𝑦 or

𝑦 → 𝑥 holds for any two distinct vertices 𝑥 ≠ 𝑦 of 𝐷; then the subcollection K
𝐷 ̸↩→
→ of digraphs

not embedding the tournament 𝐷 forms a strong amalgamation class by the same argument. More

generally, if 𝐷1, 𝐷2, . . . are all tournaments then

⋂
𝑛∈𝐼 K

𝐷𝑛 ̸↩→
→ is a strong amalgamation class given

any 𝐼 ⊆ N. By choosing the 𝐷𝑛’s so that 𝐷𝑛 does not embed into 𝐷𝑛′ for 𝑛 ≠ 𝑛′, we may ensure⋂
𝑛∈𝐼 K

𝐷𝑛 ̸↩→
→ ≠

⋂
𝑛′∈𝐼 ′ K

𝐷𝑛′ ̸↩→
→ whenever 𝐼, 𝐼 ′ ⊆ N are distinct. Thus

{FLim(
⋂
𝑛∈𝐼

K
𝐷𝑛 ̸↩→
→ ) | 𝐼 ⊆ N}

is an uncountable family of non-isomorphic homogeneous directed graphs, known as the Henson di-
graphs [Hen72, Theorem 2.4].

Actually the tournaments themselves form a strong amalgamation class Ktourn

→ : when constructing the

amalgam 𝐶 = 𝑔(𝐵) ∪ ℎ(𝐴) we have to additionally include edges from each vertex of 𝑔(𝐵 \ 𝑓 (𝐴′))
to each vertex of ℎ(𝐴 \ 𝐴′). The Fraïssé limit FLimKtourn

→ is called the random tournament.

d) Finally, consider the signature =, <. The collection Ktotal

< of finite total strict orders is a strong amalga-

mation class: on the set𝐶 = 𝑔(𝐵) ∪ ℎ(𝐴) impose

<𝐶
def

=

{(
𝑔(𝑏), 𝑔(𝑏′)

)
| 𝑏, 𝑏′ ∈ 𝐵 \ 𝑓 (𝐴′), (𝑏, 𝑏′) ∈ <𝐵

}
∪
{(
𝑔(𝑏), 𝑔( 𝑓 (𝑎′)) = ℎ(𝑎′)

)
| 𝑏 ∈ 𝐵 \ 𝑓 (𝐴′), 𝑎′ ∈ 𝐴′, (𝑏, 𝑓 (𝑎′)) ∈ <𝐵

}
∪
{(
𝑔(𝑏), ℎ(𝑎)

)
| 𝑏 ∈ 𝐵 \ 𝑓 (𝐴′), 𝑎 ∈ 𝐴 \ 𝐴′, �𝑎′ ∈ 𝐴′

: (𝑎, 𝑎′) ∈ <𝐴 ∧ ( 𝑓 (𝑎′), 𝑏) ∈ <𝐵
}

∪
{(
ℎ(𝑎′) = 𝑔( 𝑓 (𝑎′)), 𝑔(𝑏)

)
| 𝑎′ ∈ 𝐴′, 𝑏 ∈ 𝐵 \ 𝑓 (𝐴′), ( 𝑓 (𝑎′), 𝑏) ∈ <𝐵

}
∪
{(
ℎ(𝑎), 𝑔(𝑏)

)
| 𝑎 ∈ 𝐴 \ 𝐴′, 𝑏 ∈ 𝐵 \ 𝑓 (𝐴′), ∃𝑎′ ∈ 𝐴′

: (𝑎, 𝑎′) ∈ <𝐴 ∧ ( 𝑓 (𝑎′), 𝑏) ∈ <𝐵
}

∪
{(
ℎ(𝑎1), ℎ(𝑎2)

)
| 𝑎1, 𝑎2 ∈ 𝐴, (𝑎1, 𝑎2) ∈ <𝐴

}
.

Essentially we first make 𝑔 and ℎ order embeddings before making the rather arbitrary decision that,

where possible, anything in the image of 𝑔 should be smaller than anything in the image of ℎ. One can

check that <𝐶 is total, asymmetric, and transitive so long as 𝑔(𝐵) ∩ ℎ(𝐴) = 𝑔( 𝑓 (𝐴′)) = ℎ(𝐴′). Of

course FLimKtotal

< is the ordered atoms up to isomorphism.

We have actually established the following: let K be a strong amalgamation class over a signature R

which does not already contain the symbol <, and consider the collection K< of finite R, <-structures

obtained by adding all possible total orders to all R-structures in K; then K< is a strong amalgamation

class — first form the amalgam over R, and prescribe the total order < as above. We call FLimK< the

generically ordered version of FLimK.

1.2 Oligomorphicity

We will give four definitions — the first three model-theoretic, the last group-theoretic — and prove that they are

all equivalent.
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1.2.1 Theories and models

In our first-order relational framework, the R-formulae are given by the grammar

𝜙, 𝜓, · · · ::= ⊤ | 𝑅𝑖 (𝑥1, . . . , 𝑥𝑛𝑖 ) | ¬𝜙 | 𝜙 ∧ 𝜓 | ∃𝑥𝜙

where =, 𝑅1, 𝑅2, . . . are the relation symbols of R. We define shorthands ⊥, 𝑥1 𝑅𝑖 𝑥2, 𝜙∨𝜓, 𝜙 → 𝜓, 𝜙 ↔ 𝜓, and

∀𝜙 in the standard way. By writing 𝜙(𝑥1, . . . , 𝑥𝑛) we mean the free variables of 𝜙 are amongst 𝑥1, . . . , 𝑥𝑛; if 𝑛 = 0

we call 𝜙 an R-sentence. Given an R-structure B and elements 𝑏1, . . . , 𝑏𝑛 ∈ B, the formula 𝜙 substituted with

𝑏𝑖 for 𝑥𝑖 either holds or does not; we write B |= 𝜙(𝑏1, . . . , 𝑏𝑛) or B ̸ |= 𝜙(𝑏1, . . . , 𝑏𝑛) respectively. In particular,

an R-sentence either holds in B or does not. The collection of the sentences that do hold is called the theory of
B and written Th(B). Conversely, given a collection 𝑇 of R-sentences, we can ask for an R-structure B in which

every 𝜙 ∈ 𝑇 holds; such a structure satisfying 𝑇 ⊆ Th(B) is called a model of 𝑇 . When 𝑇 = Th(A), the model B
moreover satisfies Th(A) = Th(B).

Obviously the countably infinite A that we fixed is itself a model of Th(A). However, a known limitation

of first-order theories is that we cannot control the size of other infinite models: by the upward Löwenheim–

Skolem Theorem, there exist models of Th(A) of arbitrarily large cardinalities. We declare ourselves as countablists

and announce that uncountable models are meaningless anyway: we want to effectively represent elements in the

domain and compute which relations hold between them. Restricting our attention to countably infinite models,

we may demand the following.

Definition 1.5
Th(A) is ℵ0-categorical (or𝜔-categorical) if any countably infinite model A′

of Th(A) is isomorphic to A.

1.2.2 Definable subsets

Definition 1.6
Let 𝐵 ⊆ A be a subset. A 𝐵-definable subset of A𝑛 is one of the form

{(𝑎1, . . . , 𝑎𝑛) ∈ A𝑛 : A |= 𝜙(𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑘)}

where 𝜙(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑘) is an R-formula and 𝑏1, . . . , 𝑏𝑘 are constants from 𝐵; implicitly assuming

an enumeration of the free variables, we denote this set by 𝜙[A𝑛, 𝑏1, . . . , 𝑏𝑘]. We also define

• the model-theoretic algebraic closure ACL(𝐵) as the union of finite 𝐵-definable subsets of A, as well as

• the model-theoretic definable closure DCL(𝐵) as the union of singleton 𝐵-definable subsets of A.

Assume 𝐵 = ∅ and fix variables 𝑥1, 𝑥2, · · · . Given two formulae 𝜙(𝑥1, . . . , 𝑥𝑛) and 𝜓(𝑥1, . . . , 𝑥𝑛), let us write

𝜙 ≡Th(A) 𝜓 if

A |= ∀𝑥1 · · · ∀𝑥𝑛
(
𝜙(𝑥1, . . . , 𝑥𝑛) → 𝜓(𝑥1, . . . , 𝑥𝑛)

)
;

then we have 𝜙[A𝑛] = 𝜓 [A𝑛] precisely when 𝜙 ≡Th(A) 𝜓. Moreover, notice that

𝜙[A𝑛] ∪ 𝜓 [A𝑛] = (𝜙 ∨ 𝜓) [A𝑛], A𝑛 \ 𝜙[A𝑛] = (¬𝜙) [A𝑛],
𝜙[A𝑛] ∩ 𝜓 [A𝑛] = (𝜙 ∧ 𝜓) [A𝑛] .

Hence the ≡Th(A) -equivalence classes of R-formulae in the free variables 𝑥1, . . . , 𝑥𝑛 together with ∨,∧,¬ form a

Boolean algebra, the 𝑛th Lindenbaum algebra; so do the ∅-definable subsets of A𝑛, and the two are isomorphic.
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1.2.3 Types

In the other direction, given constants 𝑎1, . . . , 𝑎𝑛 ∈ A we can consider the R-formulae that they satisfy:

tpA (𝑎1, . . . , 𝑎𝑛)
def

= {𝜙(𝑥1, . . . , 𝑥𝑛) : A |= 𝜙(𝑎1, . . . , 𝑎𝑛)}

is what model theorists call the 𝑛-type of 𝑎1, . . . , 𝑎𝑛 (whereas the types for type theorists are what model theorists

call sorts). More generally, an 𝑛-type of Th(A) is a collection of R-formulae equal to some tpC (𝑐1, . . . , 𝑐𝑛) where

𝜄 : A → C is an elementary embedding, i.e., an embedding satisfying

A |= 𝜓(𝑏1, . . . , 𝑏𝑘) ⇐⇒ C |= 𝜓(𝜄(𝑏1), . . . , 𝜄(𝑏𝑘))

for any R-formula 𝜓(𝑥1, . . . , 𝑥𝑘) and elements 𝑏1, . . . , 𝑏𝑘 ∈ A; in that case the first-order sentences cannot tell A
and C apart: we have Th(A) = Th(C). Now if

tpC (𝑐1, . . . , 𝑐𝑛) = tpA (𝑎1, . . . , 𝑎𝑛)

for some 𝑎𝑖 ∈ A, we say the 𝑎𝑖 ’s realise the 𝑛-type in A; otherwise A omits it. Certainly tpC (𝜄(𝑎1), . . . , 𝜄(𝑎𝑛)) is

realised by the 𝑎𝑖 ’s in A.

Definition 1.7
An 𝑛-type tpC (𝑐1, . . . , 𝑐𝑛) is principal or isolated if it contains some 𝜒(𝑥1, . . . , 𝑥𝑛) such that

C |= ∀𝑥1 · · · ∀𝑥𝑛
(
𝜒(𝑥1, . . . , 𝑥𝑛) → 𝜙(𝑥1, . . . , 𝑥𝑛)

)
for every 𝜙 ∈ tpC (𝑐1, . . . , 𝑐𝑛). We also call 𝜒 a principal formula for the 𝑛-type.

A principal 𝑛-type is always realised in A: the sentence ∃𝑐1 · · · ∃𝑐𝑛𝜒(𝑐1, . . . , 𝑐𝑛) belongs to Th(C) = Th(A),

so A |= 𝜒(𝑎1, . . . , 𝑎𝑛) for some 𝑎𝑖 ∈ A and thus tpA (𝑎1, . . . , 𝑎𝑛) contains tpC (𝑐1, . . . , 𝑐𝑛). But evidently

tpA (𝑎) ⊇ tpC (𝑐) =⇒ tpA (𝑎) = tpC (𝑐)

because A |= 𝜙(𝑎) means A ̸ |= ¬𝜙(𝑎), so C ̸ |= ¬𝜙(𝑐) which means C |= 𝜙(𝑐).

1.2.4 Orbits

We cover one last definition, this time without mentioning model theory at all.

Definition 1.8
Let 𝑛 ∈ N. The group AutA acts on the set A𝑛 via

𝜋 · (𝑎1, . . . , 𝑎𝑛) = (𝜋(𝑎1), . . . , 𝜋(𝑎𝑛));

we have id · 𝑎 = 𝑎 and (𝜏 ◦ 𝜋) · 𝑎 = 𝜏 · (𝜋 · 𝑎) for all 𝑎 ∈ A𝑛 and 𝜏, 𝜋 ∈ AutA. The AutA-orbit of 𝑎 ∈ A𝑛 is

AutA · 𝑎 def

= {𝜋 · 𝑎 | 𝜋 ∈ AutA};

the distinctAutA-orbits form a (possibly infinite) partition ofA𝑛. We callA oligomorphic underAutA ifA𝑛

contains finitely only many distinct AutA-orbits for every 𝑛 ∈ N.
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Given 𝐵 ⊆ A, letAutA/𝐵 denote the subgroup {𝜋 ∈ AutA | ∀𝑏 ∈ 𝐵 : 𝜋(𝑏) = 𝑏} which by restriction

acts on A𝑛. À la Galois, we also define

• the group-theoretic algebraic closure acl(𝐵) as the union of finite AutA/𝐵-orbits in A, as well as

• the model-theoretic definable closure dcl(𝐵) as the union of singleton AutA/𝐵-orbits in A.

Notice that (Z, =, <) fails to be oligomorphic: the pairs (0, 0), (0, 1), (0, 2), · · · ∈ Z2
all lie in different orbits

under AutZ = {𝑥 ↦→ 𝑥 + 𝑑 | 𝑑 ∈ Z}.

Now let us draw some connections to model theory.

Remark 1.9 Given any 𝜋 ∈ AutA, for any R-formula 𝜙 and elements 𝑎 ∈ A𝑛 we have

A |= 𝜙(𝑎1, . . . , 𝑎𝑛) ⇐⇒ A |= 𝜙(𝜋(𝑎1), . . . , 𝜋(𝑎𝑛));

indeed every automorphism of A is an elementary embedding. Consequently

a) tpA (𝑎) = tpA (𝜋 · 𝑎), so every element in the same AutA-orbit of A𝑛 shares the same 𝑛-type;

a’) in particular, if 𝑏 ∈ AutA · 𝑎 then 𝑎1 ↦→ 𝑏1, . . . , 𝑎𝑛 ↦→ 𝑏𝑛 is an isomorphism.

b) every 𝐵-definable subset 𝑋 ⊆ A𝑛 is invariant under the action of AutA/𝐵, i.e., 𝑋 is a union of

AutA/𝐵-orbits;

c) ACL(𝐵) ⊇ acl(𝐵) and DCL(𝐵) ⊇ dcl(𝐵).

The point is that oligomorphicity provides converses to a), b), and c), as we shall soon see, whereas homogeneity

provides the converse to a’).

1.2.5 The four-way equivalence

We are now ready to prove the equivalence of all four notions above, at the heart of which is the following technique

often attributed to Cantor.

Lemma 1.10 (the back-and-forth method) Suppose that for every𝑚 ∈ N, every𝑚-type of Th(A) is principal.
LetB be a countable model of Th(A) where tpA (𝑎1, . . . , 𝑎𝑛) = tpB (𝑏1, . . . , 𝑏𝑛) for some 𝑎𝑖 ∈ A, 𝑏 𝑗 ∈ B. Then
there is an isomorphism 𝑓 : A → B mapping 𝑎1 ↦→ 𝑏1, . . . , 𝑎𝑛 ↦→ 𝑏𝑛.

Proof. We inductively construct two sequences 𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1, . . . and 𝑏1, . . . , 𝑏𝑛, 𝑏𝑛+1, . . . enumerating A
and B such that

tpA (𝑎1, . . . , 𝑎𝑛+𝑖) = tpB (𝑏1, . . . , 𝑏𝑛+𝑖)

for all 𝑖 ≥ 0. If 𝑖+1 is odd, choose 𝑏𝑛+𝑖+1 ∈ B\{𝑏1, . . . , 𝑏𝑛+𝑖} and consider the (𝑛+𝑖+1)-type of 𝑏1, . . . , 𝑏𝑛+𝑖 , 𝑏𝑛+𝑖+1.

By assumption it contains a principal formula 𝜒, and ∃𝑥𝑛+𝑖+1𝜒(𝑥1, . . . , 𝑥𝑛+𝑖 , 𝑥𝑛+𝑖+1) belongs to tpB (𝑏1, . . . , 𝑏𝑛);

by the inductive hypothesis, A |= ∃𝑥𝑛+𝑖+1𝜒(𝑎1, . . . , 𝑎𝑛+𝑖 , 𝑥𝑛+𝑖+1) so 𝑎1, . . . , 𝑎𝑛+𝑖 , 𝑎𝑛+𝑖+1 satisfies 𝜒 and hence

realises tpB (𝑏1, . . . , 𝑏𝑛+𝑖 , 𝑏𝑛+𝑖+1) for some 𝑎𝑛+𝑖+1 ∈ A. Symmetrically, going forth if 𝑖 + 1 is even, choose 𝑎𝑛+𝑖+1 in

A \ {𝑎1, . . . , 𝑎𝑛+𝑖} and find 𝑏𝑛+𝑖+1 ∈ B that helps realise the same (𝑛 + 𝑖 + 1)-type.

Now 𝑓 : 𝑎 𝑗 ↦→ 𝑏 𝑗 is a well-defined function: the formula 𝑥 𝑗 = 𝑥 𝑗′ is in tpA (𝑎1, . . . , 𝑎𝑛+𝑖) precisely when

𝑎 𝑗 = 𝑎 𝑗′ , and symmetrically 𝑥 𝑗 = 𝑥 𝑗′ is in tpB (𝑏1, . . . , 𝑏𝑛+𝑖) precisely when 𝑏 𝑗 = 𝑏 𝑗′ ; but the two types are

equal, which furthermore ensures that 𝑓 preserves and reflects all relations. Hence we have an embedding which

by construction is surjective; that is, we have an isomorphism.
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The characterisations below are widely ascribed to Ryll-Nardzewski, though parts were given independently

by him at Warsaw, by Engeler at Zurich, and by Svenonius at Uppsala all in 1959; in particular the group-theoretic

condition is due to Svenonius [Hod93, History and bibliography for §7.3].

Theorem 1.11 (Ryll-Nardzewski, Svenonius, Engeler)
Assume the signature R is finite or countably infinite. Then the following are equivalent:

i) Th(A) is ℵ0-categorical;
ii) for every 𝑛 ∈ N, there are only finitely many ∅-definable subsets of A𝑛;

iii) for every 𝑛 ∈ N, any 𝑛-type of Th(A) is principal;
iv) A is oligomorphic.

Proof. We will prove i) ⇐⇒ iii) =⇒ iv) =⇒ ii) =⇒ iii).

i) ⇒ iii) If tpC (𝑐1, . . . , 𝑐𝑛) is non-principal, then by Vaught’s Omitting Types Theorem there is a countable

modelB of Th(A) that omits it whilst — by the downward Löwenheim–Skolem Theorem — a countably infinite

model C′
of Th(A) realises it; particularly B cannot be isomorphic to C′

. Other than our countablist considera-

tions, this is the only place where we require the cardinality assumption on the signature R.

i) ⇐ iii) This is a direct consequence of Lemma 1.10: start with the empty tuple.

iii) ⇒ iv) Combining Remark 1.9a) with Lemma 1.10, we see that 𝑛-types correspond bijectively toAutA-orbits

ofA𝑛. Now suppose towards a contradiction that the collection of all distinct 𝑛-types {tpC𝑖
(𝑐𝑖) | 𝑖 ∈ 𝐼} is infinite;

pick a principal formula 𝜒𝑖 (𝑥) for each 𝑖. We claim that {¬𝜒𝑖 | 𝑖 ∈ 𝐼} is finitely satisfiable: given ¬𝜒𝑖1 , . . . ,¬𝜒𝑖𝑘
we can find 𝑖′ ∈ 𝐼 \ {𝑖1, . . . , 𝑖𝑘}; since the 𝑛-types are distinct, we necessarily have

C𝑖′ |= ¬𝜒𝑖1 (𝑐𝑖′ ) ∧ · · · ∧ ¬𝜒𝑖𝑘 (𝑐𝑖′ ).

By compactness, there is an 𝑛-type tpC (𝑐) of Th(A) that contains {¬𝜒𝑖 | 𝑖 ∈ 𝐼}; yet tpC (𝑐) ≠ tpC𝑖
(𝑐𝑖) for any 𝑖

as the latter contains 𝜒𝑖 , which is the desired contradiction. We conclude that A must be oligomorphic.

iv) ⇒ ii) Suppose there are 𝑘 distinct AutA-orbits of A𝑛. As we noted in Remark 1.9b), any ∅-definable subset

of A𝑛 is a union of AutA-orbits; there are only 2
𝑘

of those.

ii) ⇒ iii) Suppose that 𝜙1, . . . , 𝜙𝑝 are representatives of the ≡Th(A) -equivalence classes of the R-formulae in

the free variables 𝑥1, . . . , 𝑥𝑛. Say only 𝜙𝑖1 , . . . , 𝜙𝑖𝑘 appear in the 𝑛-type tpC (𝑐1, . . . , 𝑐𝑛); then their conjunction

𝜙𝑖1 ∧ · · · ∧ 𝜙𝑖𝑘 is a principal formula.

Remark 1.12 Let 𝐵 = {𝑏1, . . . , 𝑏𝑘} ⊆ A be finite. Expand the signature to R𝐵 by adding unary predicates

for each 𝑏 ∈ 𝐵, and interpret A as an R𝐵-structure A𝐵 in the obvious way. Then AutA𝐵 = AutA/𝐵, and

(𝑎1, . . . , 𝑎𝑛) is in the same AutA/𝐵-orbit as (𝑎′
1
, . . . , 𝑎′𝑛) precisely when (𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑘) is in the

same AutA-orbit as (𝑎′
1
, . . . , 𝑎′𝑛, 𝑏1, . . . , 𝑏𝑘). Therefore there are at most as many AutA𝐵-orbits of A𝑛 as

AutA-orbits of A𝑛+𝑘 ; if A is oligomorphic, so is A𝐵. In this case:

a’) Every 𝑛-type of Th(A𝐵) is principal and thus realised in A𝐵, so it follows from Lemma 1.10 that

tpA𝐵
(𝑎1, . . . , 𝑎𝑛) ↦→ AutA/𝐵 · (𝑎1, . . . , 𝑎𝑛)

is a well-defined bijection between 𝑛-types with parameters from 𝐵 and AutA/𝐵-orbits of A𝑛.

10



b’) The AutA/𝐵-orbit of any 𝑎 ∈ A𝑛 is ∅-definable by any principal R𝐵-formula Φ for tpA𝐵
(𝑎). Indeed

Φ[(A𝐵)𝑛] contains 𝑎 and thus its AutA/𝐵-orbit; on the other hand, by Lemma 1.10 we have

A𝐵 |= Φ(𝑏) =⇒ tpA𝐵
(𝑏) = tpA𝐵

(𝑎) =⇒ 𝑏 ∈ AutA/𝐵 · 𝑎.

Furthermore, the AutA/𝐵-orbit of 𝑎 is 𝐵-definable by an R-formula — in Φ(𝑥1, . . . , 𝑥𝑛) replace

every subformula 𝑏𝑖 (𝑦) by 𝑧𝑖 = 𝑦 with 𝑧𝑖 fresh to obtain 𝜙(𝑥1, . . . , 𝑥𝑛, 𝑧1, . . . , 𝑧𝑘), and consider

𝜙[A𝑛, 𝑏1, . . . , 𝑏𝑘] — so in A𝑛, the AutA/𝐵-invariant subsets are precisely the 𝐵-definable ones.

c’) ACL({𝑏1, . . . , 𝑏𝑘}) = acl({𝑏1, . . . , 𝑏𝑘}), DCL({𝑏1, . . . , 𝑏𝑘}) = dcl({𝑏1, . . . , 𝑏𝑘}) and are both

finite.

1.3 Computability

The term “atom” is overloaded.

0) In the introductory historical notes, atoms mean urelements are synonyms in Fraenkel–Mostowski permu-

tation models of sets with atoms.

1) In Example 1.4 we referred to the elements of various Fraïssé limits as atoms.

2) An atom in a partially ordered set is a minimal element that is not the bottom element. We note that prin-

cipal formulae for 𝑛-types (which are ultrafilters) are precisely the atoms in the 𝑛th Lindenbaum algebra.

Accordingly, as an oligomorphic structureA realises only principal (and thus all) types, it is called an atomic

(and saturated) model of Th(A).

3) 𝑅𝑖 (𝑥1, . . . , 𝑥𝑛𝑖 ) is also known as an atomic formula.

0) is the reason why we chose the terminology in 1): we will build sets with equality atoms, ordered atoms, or graph

atoms in the next section. But our homogeneous atoms have a more than coincidental connection with 2) and

3). To see this, recall that the R-structure A admits quantifier elimination if for any R-formula 𝜙(𝑥), there is a

quantifier-free R-formula Φ(𝑥) — i.e., a formula built up from ⊤, the atomic formulae, and logical connectives

— with 𝜙[A𝑛] = Φ[A𝑛]. We can now state two model-theoretic generalities about the countable model A:

(†) Assume A is oligomorphic. Then it is homogeneous if and only if it eliminates quantifiers.

(‡) Assume R = 𝑅0, 𝑅1, . . . , 𝑅𝑟 is finite, so that the quantifier-free formulae in 𝑛 free variables can only define

finitely many distinct subsets of A𝑛. Then A is oligomorphic whenever it is homogeneous or eliminates

quantifiers.

The upshot is that every homogeneous structure of atoms in Example 1.4 is oligomorphic by (‡) and eliminates

quantifiers by (†). We will comment more on these structures below, but first we give two examples that fail to be

homogeneous over a finite relational signature.

1.3.1 Bad: infinite signatures

Example 1.13 (the canonical relational structure) Let R� be the expansion of R by an 𝑛-ary predicate for

each AutA-orbit of A𝑛 for every 𝑛 ∈ N. From A we can naturally define an R�-structure A�, where an

isomorphism 𝑎1 ↦→ 𝑏1, . . . , 𝑎𝑛 ↦→ 𝑏𝑛 means that — tautologically — 𝜋 · 𝑎 = 𝑏 for some 𝜋 ∈ AutA =

AutA�. In other words, any structure can be hardcoded to be homogeneous (and to eliminate quantifiers if

A is oligomorphic) in an infinite language.
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So, in general, we cannot hope for an effective quantifier elimination procedure when the signature of A is

infinite. We can still be more lenient by demanding the existence of a finite relational signature R′
and a homoge-

nous R′
-structure A′

with the same domain as A and with AutA = AutA′
. In the terminology of [Cov90], we

demand that A be homogenisable. Here is an example where we pay the price for insisting on a relational signature.

Example 1.14 (bit strings with XOR) Consider the vector space V2 with basis N over the 2-element field

Z2, which can be regarded as a structure with a unary relation (−) = 0 and a ternary relation (−) + (−) = (−).

Each 𝑣 ∈ V2 is a sequence of0 and 1’s with only finitely many 1’s, so by discarding all the infinitely many trailing

0’s we can identify 𝑣 with a bit string; in this way we can identify vector addition with bitwise XOR.

Note that AutV2 = GL(ℵ0,Z2), and the AutV2-orbit of (𝑣1, . . . , 𝑣𝑛) is determined by the linear rela-

tions that hold between them. It follows that there are at most (2𝑛) (2𝑛 ) orbits and therefore V2 is oligomor-

phic. However V2 is not homogeneous: given linearly independent vectors 𝑒1, 𝑒2, 𝑒3, 𝑒4 the map

(𝑒1, 𝑒2, 𝑒3, 𝑒4) ↦→ (𝑒1, 𝑒2, 𝑒3, 𝑒1 + 𝑒2 + 𝑒3)

is an isomorphism — indeed ∃𝑣(𝑥1 + 𝑥2 = 𝑣 ∧ 𝑣 + 𝑥2 = 𝑥3) cannot be expressed without quantifiers in this

language — that clearly cannot extend to an automorphism. Even worse, V2 is not even homogenisable: the

same argument works with 𝑛 + 1 in place of 3 with 𝑛 being the largest arity in the finite signature.

1.3.2 Good: finite signatures

We are able to say something more concrete in a structure A that is homogeneous over a finite relational signature.

Since A is necessarily oligomorphic, every 𝑛-type corresponds to a unique AutA-orbit of A𝑛; by homogeneity,

everyAutA-orbit ofA𝑛 corresponds to a unique labelled isomorphism class (also called isomorphism type or, when

A is (Q, =, <), order type) of substructures with at most 𝑛 elements. Indeed, let 𝑎 = (𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛) ∈ A𝑛.

Given 𝑗1, . . . , 𝑗𝑛𝑖 ∈ {1, . . . , 𝑛 − 1, 𝑛}𝑛𝑖 where 𝑛𝑖 is the arity of the symbol 𝑅𝑖 , put

𝜌𝑖, ( 𝑗1 ,..., 𝑗𝑛𝑖 )
def

=

{
𝑅𝑖 (𝑥 𝑗1 , . . . , 𝑥 𝑗𝑛𝑖 ) if A |= 𝑅𝑖 (𝑎 𝑗1 , . . . , 𝑎 𝑗𝑛𝑖 ),
¬𝑅𝑖 (𝑥 𝑗1 , . . . , 𝑥 𝑗𝑛𝑖 ) if A ̸ |= 𝑅𝑖 (𝑎 𝑗1 , . . . , 𝑎 𝑗𝑛𝑖 );

Φ𝑎 (𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛)
def

=

𝑟∧
𝑖=1

∧
( 𝑗1 ,..., 𝑗𝑛𝑖 ) ∈𝐴𝑛𝑖

𝜌𝑖, ( 𝑗1 ,..., 𝑗𝑛𝑖 )

so that A |= Φ𝑎 (𝑏) precisely when 𝑎1 ↦→ 𝑏1, . . . , 𝑎𝑛−1 ↦→ 𝑏𝑛−1, 𝑎𝑛 ↦→ 𝑏𝑛 is an isomorphism. Then Φ𝑎 turns

out to be a quantifier-free principal formula for tpA (𝑎) and Φ(𝑎1 ,...,𝑎𝑛−1 ,𝑎𝑛 ) [A𝑛] = AutA · (𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛).

But now we know how to eliminate quantifiers explicitly. Observe first that

Φ(𝑎1 ,...,𝑎𝑛−1 ) [A𝑛−1] = AutA · (𝑎1, . . . , 𝑎𝑛−1) = (∃𝑥𝑛Φ(𝑎1 ,...,𝑎𝑛−1 ,𝑎𝑛 ) ) [A𝑛],

and Φ(𝑎1 ,...,𝑎𝑛−1 ) can be obtained from Φ(𝑎1 ,...,𝑎𝑛−1 ,𝑎𝑛 ) by removing from the conjunction any atomic formula or

its negation 𝜌𝑖, ( 𝑗1 ,..., 𝑗𝑛𝑖 ) where some 𝑘 = 1, . . . , 𝑛𝑖 is such that 𝑗𝑘 = 𝑛. Now if 𝜓(𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛) is a quantifier-

free formula and we have a finite decomposition A𝑛 =
⋃
𝑡 AutA · (𝑎 (𝑡 )

1
, . . . , 𝑎

(𝑡 )
𝑛−1, 𝑎

(𝑡 )
𝑛 ), we can work out a

decomposition

𝜓 [A𝑛] = (
∨

𝑡 :A |=𝜓 (𝑎 (𝑡 )
1
,...,𝑎

(𝑡 )
𝑛−1 ,𝑎

(𝑡 )
𝑛 )

Φ(𝑎 (𝑡 )
1
,...,𝑎

(𝑡 )
𝑛−1 ,𝑎

(𝑡 )
𝑛 ) ) [A

𝑛]
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which means that

(∃𝑥𝑛𝜓) [A𝑛−1] = (
∨

𝑡 :A |=𝜓 (𝑎 (𝑡 )
1
,...,𝑎

(𝑡 )
𝑛−1 ,𝑎

(𝑡 )
𝑛 )

∃𝑥𝑛Φ(𝑎 (𝑡 )
1
,...,𝑎

(𝑡 )
𝑛−1 ,𝑎

(𝑡 )
𝑛 ) ) [A

𝑛−1]

= (
∨

𝑡 :A |=𝜓 (𝑎 (𝑡 )
1
,...,𝑎

(𝑡 )
𝑛−1 ,𝑎

(𝑡 )
𝑛 )

Φ
𝑎
(𝑡 )
1
,...,𝑎

(𝑡 )
𝑛−1

) [A𝑛−1] .

Finally, by removing quantifiers from the inside out we can eliminate the quantifiers from any R-formula. In fact,

the following is true:

Theorem 1.15 ([Boj19, Theorem 7.20])
Let R be a finite relational signature. Suppose K is an amalgamation class of finite R-structures such that we
can compute, given any 𝑛 ∈ N, representatives for isomorphism classes of 𝑛-element structures and that there are
only finitely many of them. Then

i) FLimK is homogeneous and oligomorphic;
ii) its elements can be represented in a finite way;

iii) whetherFLimK |= 𝜙(𝑎1, . . . , 𝑎𝑛) for anR-formula 𝜙(𝑥) and parameters 𝑎 ∈ (FLimK)𝑛 is decidable.

2 Nominal sets

Now that we have settled on the model-theoretic assumptions on the atoms structure A — that it is a countably

infinite, homogeneous, and oligomorphic structure over a finite relational signature which we assume henceforth

— we can start building sets with atoms.

2.1 As hereditarily finitely supported sets with atoms

... out of nothing I have created a strange new

universe.

János Bolyai in an 1823 letter to his father,

referring to his non-Euclidean geometry

One can follow the instruction to the letter by constructing, given a set 𝐴, a cumulative hierarchy

𝑉0 (𝐴)
def

= 𝐴,

𝑉𝛼+1 (𝐴)
def

= 𝑉𝛼 (𝐴) ∪ ℘(𝑉𝛼 (𝐴)),

𝑉𝜆=
⋃

𝛼<𝜆 𝛼≠0
(𝐴) def

=
⋃
𝛼<𝜆

𝑉𝛼 (𝐴)

by transfinite recursion like Zermelo did in [Zer30, p.36] so that

𝑉0 (𝐴) ⊆ 𝑉1 (𝐴) ⊆ · · · ⊆ 𝑉𝜔 ⊆ · · ·

and

⋃
𝛼 𝑉𝛼 (∅) is the classical, so-called von Neumann universe of sets sitting inside the bigger universe

⋃
𝛼 𝑉𝛼 (A)
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of atoms — every 𝑎 ∈ A is empty but not a set — and sets with atoms. Then, because any descending chain of ∈’s

must be finite, one can inductively define a group action of AutA on

⋃
𝛼 𝑉𝛼 (A) by

𝜋 · 𝑎 def

= 𝜋(𝑎),

𝜋 · 𝑋 def

= {𝜋 · 𝑥 | 𝑥 ∈ 𝑋}

for 𝜋 ∈ AutA. Notice that 𝜋 · 𝑥 ∈ 𝜋 · 𝑋 ⇐⇒ 𝑥 ∈ 𝑋 and that 𝜋 · 𝑋 = 𝑌 ⇐⇒ 𝑋 = 𝜋−1 · 𝑌 .

2.1.1 Supports

Here comes the central notion: we say 𝑆 ⊆ A is a support of 𝑋 ∈ ⋃
𝛼 𝑉𝛼 (A) if every 𝜋 ∈ AutA/𝑆 satisfies

𝜋 · 𝑋 = 𝑋 . Observe that 𝑆 supports 𝑋 if and only if

∀𝜏, 𝜋 ∈ AutA : 𝜏 |𝑆 = 𝜋 |𝑆 =⇒ 𝜏 · 𝑋 = 𝜋 · 𝑋.

If 𝑆 can be taken to be finite, we say 𝑋 is finitely supported; if 𝑆 can be taken to be empty, we say 𝑋 is equivariant.
As basic examples, every atom 𝑎 ∈ A = 𝑉0 (A) is supported by {𝑎}, and so are the sets {𝑎} and A \ {𝑎} in𝑉1 (A);

actually, since A is oligomorphic, a subset of the atoms is finitely supported if and only if it is 𝑆-definable for some

𝑆 ⊆fin A. We only want to consider sets that are finitely supported from the ground up. To make this rigorous,

given a property 𝔓 of objects in

⋃
𝛼 𝑉𝛼 (A), we recursively define the collection 𝐻𝔓 of hereditarily 𝔓 sets (with

atoms) by:

∀𝑥 ∈ 𝑋 : 𝑥 is a 𝔓 atom or 𝑥 ∈ 𝐻𝔓
𝑋 is a 𝔓 set

𝑋 ∈ 𝐻𝔓

Abbreviating ‘finitely supported’ as f.s., we arrive at the Fraenkel–Mostowski universe𝐻f.s. which encompasses the

classical universe

⋃
𝛼 𝑉𝛼 (∅) of sets without atoms; of course the equivariant set A is in 𝐻f.s. as well. We shall refer

to the inhabitants of 𝐻f.s. as nominal sets (with atoms).

Like with normal sets, there are many ways to build new nominal sets with atoms from old. What is new is

that if 𝑋 ∈ ⋃
𝛼 𝑉𝛼 (A) is supported by 𝑆𝑋 ⊆fin A, then 𝜋 · 𝑋 is supported by 𝜋 · 𝑆𝑋 ⊆fin A and any superset; so

if 𝑋 ∈ 𝐻f.s. then 𝜋 · 𝑋 ∈ 𝐻f.s. too.

Remark 2.1 (folklore) Let 𝑋,𝑌 ∈ 𝐻f.s.. Then the following sets also live in 𝐻f.s.:

a) the collections

{𝑋,𝑌 }, {𝜋 · 𝑋 | 𝜋 ∈ AutA/𝑆}

where 𝑆 ⊆fin A (and we can even allow 𝑋 and𝑌 to be atoms);

b) the usual set operations

𝑋 ∪ 𝑌, 𝑋 ∩ 𝑌, 𝑋 \ 𝑌, 𝑋 × 𝑌,
⋃

𝑋 ;

c) the finitely supported elements of the power set and of the function set

℘f.s. (𝑋)
def

= {𝑍 ⊆ 𝑋 | 𝑍 is f.s.}, (𝑋 →f.s. 𝑌 )
def

= { 𝑓 | 𝑓 is a f.s.function 𝑋 → 𝑌 };

d) the image of a finitely supported function 𝑓 : 𝑋 → 𝑌 ,

𝑓 (𝑋) = { 𝑓 (𝑥) | 𝑥 ∈ 𝑋};
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e) the equivalence class and the quotient set

[𝑥]∼
def

= {𝑥′ ∈ 𝑋 | 𝑥′ ∼ 𝑥}, 𝑋/∼ def

= {[𝑥]∼ | 𝑥 ∈ 𝑋}

of 𝑋 under a finitely supported equivalence relation ∼.

As is customary in set theory, here (𝑥, 𝑦) ∈ 𝑋 × 𝑌 is defined as the Kuratowski pair

{{𝑥}, {𝑥, 𝑦}},

and a binary relation 𝑅 on 𝑋 × 𝑌 is defined as the subset of pairs

{(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑥 𝑅 𝑦}.

As an equivalence relation ∼ on 𝑋 and a function 𝑓 : 𝑋 → 𝑌 are just binary relations satisfying additional

properties, the action of AutA on 𝐻f.s. prescribes what 𝜋 · ∼, 𝜋 · 𝑓 , and their supports are:

1) the equivalence relation ∼ is supported by 𝑆 ⊆ A precisely if for all 𝜋 ∈ AutA/𝑆 we have

{(𝑥1, 𝑥2) ∈ 𝑋 × 𝑋 | 𝑥1 ∼ 𝑥2} = 𝜋 · {(𝑥1, 𝑥2) ∈ 𝑋 × 𝑋 | 𝑥1 ∼ 𝑥2}
= {(𝜋 · 𝑥1, 𝜋 · 𝑥2) | (𝑥1, 𝑥2) ∈ 𝑋 × 𝑋, 𝑥1 ∼ 𝑥2},

i.e., if we have 𝜋 · 𝑋 = 𝑋 and 𝑥1 ∼ 𝑥2 ⇐⇒ 𝜋 · 𝑥1 ∼ 𝜋 · 𝑥2 for all 𝑥1, 𝑥2 ∈ 𝑋 ;

2) the function 𝑓 is supported by 𝑆 ⊆ A precisely if for all 𝜋 ∈ AutA/𝑆 we have

{(𝑥, 𝑓 (𝑥)) | 𝑥 ∈ 𝑋} = 𝜋 · {(𝑥, 𝑓 (𝑥)) | 𝑥 ∈ 𝑋}
= {(𝜋 · 𝑥, 𝜋 · 𝑓 (𝑥)) | 𝑥 ∈ 𝑋},

i.e., if we have 𝜋 · 𝑋 = 𝑋 , 𝜋 · 𝑓 (𝑋) = 𝑓 (𝑋), and 𝑓 (𝑥) = 𝜋 · 𝑓 (𝜋−1 · 𝑥) for all 𝑥 ∈ 𝑋 .

The seminal Cambridge paper [GP02, §4] and the Warsaw book [Boj19, §3.1] both take this element-oriented,

set-theoretic approach to foundations.

2.1.2 Orbit-finiteness

Let 𝑋 ∈ 𝐻f.s. be a nominal set with atoms. Say 𝑋 is supported by 𝑆 ⊆fin A; then there is a group action ofAutA/𝑆
on 𝑋 , under which 𝑋 is equal to a union of AutA/𝑆-orbits. Even though the orbit

AutA/𝑆 · 𝑥 = {𝜋 · 𝑥 | 𝜋 ∈ AutA/𝑆} ⊆ 𝑋

of 𝑥 ∈ 𝑋 can in general contain infinitely many elements, to describe it we only needed to specify 𝑥 and 𝑆. So by

counting the number of orbits rather than of elements, we obtain a more useful and general notion of finiteness

for sets with atoms. Note that we need not worry about the choice of the support 𝑆.

Definition 2.2 ([Boj13, Lemma 2.2])
Because A is oligomorphic, the two conditions below are equivalent for 𝑋 ∈ 𝐻f.s.:

i) 𝑋 is a finite disjoint union of AutA/𝑆-orbits for some support 𝑆 ⊆fin A of 𝑋 ;

ii) 𝑋 is a finite disjoint union of AutA/𝑆′-orbits for any support 𝑆′ ⊆fin A of 𝑋 .
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If either condition holds, we call 𝑋 orbit-finite.
a

a
Why not ‘finite-orbit’ like in ‘finite-state machines’?

Proof. By definition 𝑋 ∈ 𝐻f.s. admits some finite support 𝑆; that ii) implies i) is obvious. Now assume i) to write

𝑋 =
⋃
𝑖

𝑋𝑖 , 𝑋𝑖
def

= AutA/𝑆 · 𝑥𝑖 ,

and take any other support 𝑆′ ⊆fin A of 𝑋 . Since any 𝑥𝑖 ∈ 𝑋 admits some finite support {𝑎1, . . . , 𝑎𝑛𝑖 }, observe

that {(
𝜋 · (𝑎1, . . . , 𝑎𝑛𝑖 ), 𝜋 · 𝑥𝑖

) ��� 𝜋 ∈ AutA/𝑆
}

is the graph of a well-defined surjective function

𝑓 : AutA/𝑆 · (𝑎1, . . . , 𝑎𝑛𝑖 ) → 𝑋𝑖

that is supported by 𝑆 and hence also by 𝑆 ∪ 𝑆′. But we saw in Remark 1.12 that A𝑛𝑖 is a finite union of distinct

AutA/(𝑆 ∪ 𝑆′)-orbits; so AutA/𝑆 · (𝑎1, . . . , 𝑎𝑛𝑖 ) ⊆ A𝑛𝑖 , which is invariant under AutA/(𝑆 ∪ 𝑆′) ⊆ AutA/𝑆,

is a sub-union of these finitely many orbits — say AutA/𝑆 · (𝑎1, . . . , 𝑛𝑖) =
⋃
𝑗 AutA/(𝑆 ∪ 𝑆′) · 𝑏 𝑗 . Now

𝑋𝑖 = 𝑓

(
AutA/𝑆 · (𝑎1, . . . , 𝑎𝑛𝑖 )

)
= 𝑓

(⋃
𝑗

AutA/(𝑆 ∪ 𝑆′) · 𝑏 𝑗
)
=
⋃
𝑗

AutA/(𝑆 ∪ 𝑆′) · 𝑓 (𝑏 𝑗 ),

which means that 𝑋 =
⋃
𝑖 𝑋𝑖 =

⋃
𝑖

⋃
𝑗 AutA/(𝑆 ∪ 𝑆′) · 𝑓 (𝑏 𝑗 ) is a finite union of AutA/(𝑆 ∪ 𝑆′)-orbits. This

establishes ii):

AutA/(𝑆 ∪ 𝑆′) · 𝑥 ↦→ AutA/𝑆′ · 𝑥, 𝑥 ∈ 𝑋

is a well-defined surjection from the AutA/(𝑆 ∪ 𝑆′)-orbits in 𝑋 onto the AutA/𝑆′-orbits in 𝑋 .

An orbit in 𝑋 is a subset of 𝑋 , so it makes little sense to speak about orbits in an atom; regardless, we also

declare every 𝑎 ∈ A to be orbit-finite. Abbreviating ‘orbit-finite’ as o-f, we obtain the universe 𝐻o-f of hereditarily

orbit-finite sets inside 𝐻f.s.. Again we give two basic examples:

• as the orbit of 𝑥 in a set without atoms is just the singleton {𝑥}, a classical set in 𝐻o-f ∩
⋃
𝛼 𝑉𝛼 (∅) is just a

hereditarily finite set;

• with atoms we have A ∈ 𝐻o-f, and 𝜋 · 𝑋 ∈ 𝐻o-f if 𝑋 ∈ 𝐻o-f.

Compared to Remark 2.1, there are almost as many ways to build new hereditarily orbit-finite sets from old.

Remark 2.3 ([Boj19, Lemma 3.24]) If 𝑋,𝑌 ∈ 𝐻o-f ⊆ 𝐻f.s., then

{𝑋,𝑌 }, {𝜋 · 𝑋 | 𝜋 ∈ AutA/𝑆},

𝑋 ∪ 𝑌, 𝑋 ∩ 𝑌, 𝑋 \ 𝑌, 𝑋 × 𝑌,
⋃

𝑋,

𝑍 ∈ ℘f.s. (𝑋), 𝑓 (𝑋), [𝑥]∼, 𝑋/∼

also live in 𝐻o-f, where 𝑓 and ∼ are finitely supported (and hence orbit-finite).

However ℘f.s. (𝑋) and (𝑋 →f.s. 𝑌 ) are not in general orbit-finite: consider 𝑋 = A and 𝑌 = {∅, {∅}};

finite subsets of A with different numbers of atoms lie in different orbits.
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Like how Ackermann encoded the hereditarily finite sets as natural numbers [Ack37, c) on p.308], the heredi-

tarily orbit-finite sets can be encoded as set-builder expressions [Boj19, Chapter 4] generalising how 𝜙[A𝑛] ⊆ A𝑛 is

represented by the formula 𝜙. The technical specifics are spelt out in [KS16, §2–4] and [MSSKS17, §6] to develop

the Haskell module N𝜆 (https://www.mimuw.edu.pl/~szynwelski/nlambda/), and in [KT17, §4] to

develop the C++ library LOIS (Looping Over Infinite Sets, https://www.mimuw.edu.pl/~erykk/lois/).

2.2 As continuous actions of the automorphism group

Groups, as men, will be known by their actions.

as per https://mathoverflow.net/a/7759/126582,

Guillermo Moreno in a differential geometry class

Previously we built up a big universe𝐻f.s. with an action ofAutA and let every set with atom inherit this action;

the atoms 𝑎 ∈ A and the set brackets were primitives, whilst the actions and supports were derived notions. It is

possible to take a more structuralist perspective which instead places the emphasis on AutA and its actions, as is

done in the Cambridge book [Pit13, Chapter 2] and the seminal Warsaw paper [BKL14, §4].

2.2.1 The Polish group topology

As A is countable, enumerate its elements as 𝑎1, 𝑎2, . . . and consider the following distance function on AutA:

𝑑 (𝜋1, 𝜋2)
def

=

{
0 if 𝜋1 = 𝜋2,

2
−𝑛

otherwise, where 𝑛 = min {𝑖 | 𝜋1 (𝑎𝑖) ≠ 𝜋2 (𝑎𝑖) or 𝜋−1
1
(𝑎𝑖) ≠ 𝜋−12 (𝑎𝑖)}.

ThenAutA becomes a complete metric space: if a sequence 𝜋1, 𝜋2, 𝜋3, . . . is Cauchy then it has a limit 𝜋 ∈ AutA.

We note this metric topology is the same as the subspace topology inherited from the product topology on AA
,

where A is endowed with the discrete topology; the open sets are arbitrary unions of the cosets

𝜏 ◦ AutA/𝑆 = {𝜋 ∈ AutA : 𝜋 |𝑆 = 𝜏 |𝑆}

with 𝜏 ∈ AutA and 𝑆 ⊆fin A. But since there are only countably many different 𝜏 |𝑆 ’s, AutA is a so named Polish
topological space — actually, a Polish topological group: the operations

AutA → AutA AutA × AutA → AutA

𝜋 ↦→ 𝜋−1, (𝜋, 𝜏) ↦→ 𝜋 ◦ 𝜏

are continuous under the above topology; see, e.g., [Hod93, Lemma 4.1.5(a)].

We recall two standard definitions.

0) An AutA-set is nothing but an ordinary set 𝑋 equipped with a group action, that is, a function

AutA × 𝑋 → 𝑋

(𝜋, 𝑥) ↦→ 𝜋 · 𝑥

such that id · 𝑥 = 𝑥 and (𝜋 ◦ 𝜏) · 𝑥 = 𝜋 · (𝜏 · 𝑥) for all 𝑥 ∈ 𝑋 and 𝜋, 𝜏 ∈ AutA.
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1) An equivariant function between two AutA-sets 𝑋,𝑌 is a function 𝑓 : 𝑋 → 𝑌 such that

AutA × 𝑋 𝑋

AutA × 𝑌 𝑌

id× 𝑓 𝑓

commutes, i.e., such that 𝑓 (𝜋 · 𝑥) = 𝜋 · 𝑓 (𝑥) for all 𝜋 ∈ AutA and 𝑥 ∈ 𝑋 .

But observe that the group action is continuous if and only if

(AutA)𝑥
def

= {𝜋 ∈ AutA | 𝜋 · 𝑥 = 𝑥}

is open for every 𝑥 ∈ 𝑋 , i.e., if (AutA)𝑥 contains AutA/𝑆𝑥 for some 𝑆𝑥 ⊆fin A [Hod93, Lemma 4.1.5(b)].

Particularly consider a nominal set with atoms 𝑋 ∈ 𝐻f.s. that is equivariant. Then 𝑋 is certainly an AutA-set,

where the action is moreover continuous: given any 𝑥 ∈ 𝑋 , saying 𝑥 is supported by 𝑆𝑥 ⊆fin A amounts to saying

(AutA)𝑥 ⊇ AutA/𝑆𝑥 — we simply ignore the inner set structure of 𝑥. This motivates the following definition.

Definition 2.4
A nominal AutA-set is an AutA-set 𝑋 whose group action is continuous. The nominal AutA-sets together

with the equivariant functions form a category NomSetAutA.

There is an analogue to Remark 2.1: NomSetAutA has products, coproducts, power objects, exponentials, and

quotient objects. In fact, NomSetAutA is a Cartesian closed category and a Boolean topos [Pit13, Theorems 2.19

and 2.23].

Also, we can reuse the notion of orbit-finiteness from Definition 2.2; where the constructions make sense,

Remark 2.3 still applies. For instance, the following are orbit-finite nominal AutA-sets:

• any finite set 𝑋 , viewed as an AutA-set with the trivial group action 𝜋 · 𝑥 = 𝑥 which is trivially continuous;

• any ∅-definable subset of A𝑛, with the usual oligomorphic action of AutA from Definition 1.8;

• given an open subgroup𝐺 ⊆ AutA, the cosets {𝜏 ◦ 𝐺 | 𝜏 ∈ AutA} with 𝜋 · (𝜏 ◦ 𝐺) def

= (𝜋 ◦ 𝜏) ◦ 𝐺 —

here 𝜏 ◦ 𝐺 = 𝜏′ ◦ 𝐺 if and only if 𝜏−1 ◦ 𝜏′ ∈ 𝐺, and (AutA)𝜏◦𝐺 = 𝜏 ◦ 𝐺 ◦ 𝜏−1.

2.2.2 Interpretations and reducts

In the spirit of the Erlangen program, we can study structures other thanA through their automorphism groups.

Definition 2.5 ([Eva13, Definition 2.4])
Let R′

be another relational signature and A′
an R′

-structure. We say A′
is interpretable in A if there exist

• an ∅-definable subset 𝐷 ⊆ A𝑛,

• an ∅-definable subset 𝐸 ⊆ A2𝑛
that is an equivalence relation on 𝐷,

• and a bijection 𝑓 : 𝐷/𝐸 → A′
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such that for every 𝑘-ary relation symbol 𝑅′
in R′

, the subset

{(𝑎1, . . . , 𝑎𝑘) ∈ 𝐷𝑘 : A′ |= 𝑅′ ( 𝑓 ( [𝑎1]𝐸), . . . , 𝑓 ( [𝑎𝑘]𝐸))} ⊆ A𝑛𝑘

is ∅-definable. Moreover we say A′
is a reduct of A if 𝐷 = A and 𝐸 = {(𝑎, 𝑎) | 𝑎 ∈ 𝐷}.

SupposeA′
is interpretable inA and let𝐷, 𝐸, 𝑓 be as above. Then the quotient𝐷/𝐸 is naturally an orbit-finite

nominal AutA-set, where the equivalence classes are called imaginary elements of A. More importantly

𝜙 : AutA → AutA′

𝜋 ↦→ 𝑓 ◦ (𝜋 · −) ◦ 𝑓 −1

is a continuous group homomorphism satisfying 𝜙(𝜋) · 𝑓 ( [𝑑]𝐸) = 𝑓 ( [𝜋 · 𝑑]𝐸), so that two 𝑘-tuples of 𝐷/𝐸
lie in the same AutA-orbit if and only if their entrywise images under 𝑓 lie in the same 𝜙(AutA)-orbit and a
fortiori also lie in the same orbit under the bigger group AutA′

. But 𝐷/𝐸 has finitely many orbits under AutA,

so ( 𝑓 (𝐷/𝐸))𝑘 = (A′)𝑘 has finitely many orbits under AutA′
given any 𝑘 ∈ N; that is, A′

is oligomorphic under

𝜙(AutA) and AutA′
. When A′

is a reduct of A, the homomorphism 𝜙 is simply the inclusion AutA ⊆ AutA′
.

The converses also hold thanks to our assumptions on A.

Proposition 2.6 ([AZ86, Theorems 1.1 and 1.2]) AsA is countable and oligomorphic over a finite signature,

i) A′ is a reduct of A if and only if AutA ⊆ AutA′;
ii) A′ is interpretable in A if and only if there is a continuous group homomorphism 𝜙 : AutA → AutA′

such that A′ is oligomorphic under 𝜙(AutA).

On the topological group-theoretic side, we have the translation below:

Remark 2.7 ([Hod93, Theorem 4.1.4]) Let A= be the reduct of A where any symbol except = is forgotten;

then AutA= consists of all bijections A → A.

a) A subgroup𝐺 ⊆ AutA= is closed if and only if𝐺 = AutA′
for some R′

-structure with domain A′
;

in the ‘only if’ direction, we can take R′
to be the infinite canonical signature from Example 1.13 with a

relation symbol for each orbit.

b) On the structures with domain A over arbitrary signatures, the relation of being a reduct defines a

preorder. We say A1 and A2 are first-order interdefinable if each is a reduct of the other. It follows from

the results above that reducts of the oligomorphicR-structureA are, up to first-order interdefinability,

in an order-reversing bijection with closed subgroups of AutA= containing AutA.

Conjecture 2.8 ([Tho91, p.177])
As a countable homogeneous structure over a finite relational signature, A only has finitely many reducts up to
first-order interdefinability; i.e., there are only finitely many closed subgroups𝐺 ⊆ AutA= with AutA ⊆ 𝐺 .

The conjecture of Thomas is obviously true for the equality atoms, where AutA ⊆ 𝐺 ⊆ AutA= = AutA does

not leave space for any non-trivial reducts. It has also been confirmed for, amongst a few others:

1) the ordered atoms, with 3 non-trivial reducts up to first-order interdefinability [Cam76, Theorem 6.1];

2) the Rado graph, also with 3 non-trivial reducts up to interdefinability, and the Henson 𝐾𝑛-free graphs,

where all reducts are trivial up to interdefinability [Tho91, Theorems 1 and 2];
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3) the generically ordered Rado graph, with 42 non-trivial reducts up to interdefinability [BPP13, Theorem 1]

subsuming the reducts of the ordered atoms and of the graph atoms; a nice catalogue is supplied in §2.

Apart from its validity in these individual structures, the conjecture very much remains open; the Ramsey-theoretic

technique in 3) employed by Bodirsky and Pinsker et al. is perhaps the most general approach known. Regardless,

these reducts turn out to be homogeneous over a finite relational signature and make a good stock of examples

together the ones from Example 1.2 and Example 1.4.

2.2.3 The (strong) small index property

Sometimes the Polish topology on AutA can be recovered from the abstract group structure alone.

Definition 2.9
The index of a subgroup 𝐺 ⊆ AutA is the size of {𝜋 ◦ 𝐺 | 𝜋 ∈ AutA}. We say 𝐺 is a subgroup of small
index if this size is at most countable, i.e., if there are finitely or countably infinitely many cosets of𝐺 inAutA.

Now

i) A has the small index property (SIP) if every subgroup𝐺 ⊆ AutA of small index is open, i.e., satisfies

AutA/𝑆 ⊆ 𝐺

for some 𝑆 ⊆fin A;

ii) A has the strong small index property (SSIP) if every subgroup𝐺 ⊆ AutA of small index satisfies

AutA/𝑆 ⊆ 𝐺 ⊆ (AutA)𝑆

for some 𝑆 ⊆fin A, where (AutA)𝑆 is the stabiliser of 𝑆 in the AutA-set ℘fin (A)
def

= {𝑇 | 𝑇 ⊆fin A}.

Several remarks are in order.

1) Let 𝑆 = {𝑎1, . . . , 𝑎𝑛} ⊆fin A. Write 𝑠 = (𝑎1, . . . , 𝑎𝑛) ∈ A𝑛; then

AutA/𝑆 = {𝜋 ∈ AutA | ∀𝑠 ∈ 𝑆 : 𝜋(𝑠) = 𝑠} = (AutA)𝑠

is the pointwise stabiliser of 𝑆, and the Orbit-Stabiliser Theorem says

𝜋 ◦ (AutA)𝑠 ↦→ 𝜋 · 𝑠, 𝜋 ∈ AutA

is an isomorphism between the cosets ofAutA𝑠 and the orbitAutA · 𝑠 ⊆ A𝑛, which is certainly countable.

Therefore every AutA/𝑆 is a subgroup of small index; hence so is every open subgroup of AutA.

2) Let 𝑆 and 𝑠 be as above. Compared to AutA/𝑆 = (AutA)𝑠 , the subgroup

(AutA)𝑆 = {𝜋 ∈ AutA | ∀𝑠 ∈ 𝑆 : 𝜋(𝑠) ∈ 𝑆}

is the setwise stabiliser of 𝑆. One can check that (AutA)𝑠 is a normal subgroup of (AutA)𝑆 , and that

(AutA)𝑆/(AutA)𝑠 → Aut 𝑆

𝜋 ◦ (AutA)𝑠 ↦→ 𝜋 |𝑆

is a well-defined injective homomorphism into the finite group Aut 𝑆.
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3) Assume that A has the SIP. If A′
is ℵ0-categorical too and 𝜙 : AutA → AutA′

is a group isomorphism,

then 𝜙 is moreover a homeomorphism [Mac11, Proposition 5.2.2]. By Proposition 2.6b) A is interpretable

in A′
and A′

is interpretable in A, which sets up a sort of homotopy equivalence called bi-interpretability
betweenA andA′

— see [AZ86, Corollary 1.4(ii) and definitions above]. If furthermoreA has the SSIP and

acl({𝑎}) = {𝑎}, acl({𝑎′}) = {𝑎′} for 𝑎 ∈ A, 𝑎′ ∈ A′
, then any group isomorphism 𝜙 : AutA → AutA′

is induced by a bijection 𝑓 : A → A′
[PS17a, Corollary 2]. In other words, with the (S)SIP one may

reconstruct the information lost in the passage

the permutation group (AutA,A) ↦→ the topological group AutA ↦→ the abstract group AutA.

4) Structures with the SSIP include the equality atoms [DNT86, Theorem 1], the ordered atoms [Tru89, Theo-

rem 2.12], the Rado graph, the Henson𝐾𝑛-free graphs, and their directed counterparts [PS17b, Corollary 3].

Such a property is not easy to prove generally: whether even the SIP holds for the random tournament

[Mac11, Question 5.2.7i)] is still a standing question.

We are mainly interested in the ‘strong’ part of the SSIP, which curiously is known better to model theorists as

weak elimination of imaginary elements introduced in [Poi83, §2 except the modern definition uses the algebraic

closure in place of « la clôture rationnelle », i.e., the definable closure]; see also [Hod93, §4.4]. Fortunately, more

intrinsic characterisations exist. Recall first the algebraic closures from Definition 1.8; we note that acl(−) is indeed

a closure operator on finite subsets of the oligomorphic structure A: for 𝐵 ⊆ 𝐶 ⊆fin A, we have

𝐵 ⊆ acl(𝐵) ⊆ acl(𝐶) = acl(acl(𝐶)) ⊆fin A.

We say 𝐵 is algebraically closed if acl(𝐵) = 𝐵.

Definition 2.10
We sayA admits least finite, algebraically closed supports if any of the following equivalent [EH93, Lemma 1.3]

conditions holds.

i) A has weak elimination of imaginaries.

ii) For 𝑆, 𝑇 ⊆fin A algebraically closed, the subgroup of AutA generated by

AutA/𝑆 ∪ AutA/𝑇

coincides with AutA/(𝑆 ∩ 𝑇), where 𝑆 ∩ 𝑇 ⊆fin A is also algebraically closed.

iii) If𝐺 ⊆ AutA is an open subgroup, then there is an algebraically closed SUPP(𝐺) ⊆fin A satisfying

AutA/𝑆 ⊆ 𝐺 ⇐⇒ 𝑆 ⊇ SUPP(𝐺)

for all algebraically closed 𝑆 ⊆fin A — so SUPP(𝐺) is necessarily unique.

iv) If 𝑋 is a nominal AutA-set and 𝑥 ∈ 𝑋 , then

AutA/SUPP 𝑥 ⊆ (AutA)𝑥 ⊆ (AutA)SUPP 𝑥

for some algebraically closed SUPP 𝑥 ⊆fin A — here SUPP 𝑥 also must be unique.

We note that

SUPP : 𝑋 → ℘fin (A)

is an equivariant function: because (AutA)𝜋 ·𝑥 = 𝜋 ◦ (AutA)𝑥 ◦ 𝜋−1 and 𝜋−1 ◦AutA/𝑆 ◦ 𝜋 = AutA/(𝜋−1 · 𝑆),

from iii) we see that SUPP(𝜋 · 𝑥) = 𝜋 · SUPP 𝑥.
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Recall that we already have a sort of equivalence between the open subgroups of AutA and single-orbit nom-

inal AutA-sets: any 𝑥 ∈ 𝑋 ∈ NomSetAutA defines an open subgroup (AutA)𝑥 ⊆ AutA; conversely an open

𝐺 ⊆ AutA gives rise to𝐺 ∈ {𝜏 ◦𝐺 | 𝜏 ∈ AutA} ∈ NomSetAutA with (AutA)𝐺 = 𝐺. The point is that a least

support assumption affords an even more concrete way to represent orbit-finite nominal AutA-sets.

Theorem 2.11 (algebraically closed adaptation of [BKL14, Theorems 9.17 and 10.9])
Suppose A admits least finite algebraically closed supports. (Strictly speaking we do not use the weak elimination
of imaginaries characterisation, so we may drop the oligomorphicity assumption.) Then the full subcategory of
NomSetAutA on single-orbit nominal AutA-sets is equivalent to the category with

• as objects, pairs (𝑆, 𝐻) where 𝑆 ⊆fin A is algebraically closed and 𝐻 ⊆ Aut 𝑆 is a subgroup;
• as morphisms from (𝑆1, 𝐻1) to (𝑆2, 𝐻2), sets of embeddings 𝑆2 → A of the form 𝑖 ◦ 𝐻2 = (𝑖 ◦ ℎ2) ◦ 𝐻2,

where 𝑖 ◦ ℎ2 : 𝑆2 → 𝑆1 is an embedding such that𝐻1 ⊆ (𝑖 ◦ ℎ2) ◦𝐻2 ◦ (𝑖 ◦ ℎ2)−1 for some/any ℎ2 ∈ 𝐻2

where

• the composition of 𝑖 ◦ 𝐻2 followed by 𝑗 ◦ 𝐻3 is given by

𝑖 ◦ ℎ2 ◦ 𝑗 ◦ ℎ3 ◦ 𝐻3 = 𝑖 ◦ 𝑗 ◦ 𝐻3

• and the identity on (𝑆, 𝐻) is given by id ◦ 𝐻 with id : 𝑆 → 𝑆 obviously satisfying 𝐻 ⊆ id ◦ 𝐻 ◦ id−1.

Proof. We exhibit a fully faithful functor ⟦−⟧ from our synthetic category directly to NomSetAutA.

• On objects, we put

⟦𝑆, 𝐻⟧ def

= {𝑠 ◦ 𝐻 | 𝑠 : 𝑆 → A is an embedding}

with the action 𝜋 · (𝑠 ◦ 𝐻) def

= (𝜋 ◦ 𝑠) ◦ 𝐻 for 𝜋 ∈ AutA. Evidently the inclusion map 𝜄𝑆 : 𝑆 → A is in

⟦𝑆, 𝐻⟧; by homogeneity any embedding 𝑠 : 𝑆 → A can be extended to some 𝜋𝑆 ∈ AutA, which means

that 𝜋𝑆 ◦ 𝜄𝑆 = 𝑠 — hence ⟦𝑆, 𝐻⟧ = AutA · (𝜄𝑆 ◦ 𝐻). It is instructive to check that

AutA/𝑆 ⊆ (AutA) 𝜄𝑆◦𝐻 ⊆ (AutA)𝑆 ,

from which one deduces that 𝜋 ·𝑆 is a finite support (and the least such) for 𝜋◦𝜄𝑆◦𝐻 ∈ ⟦𝑆, 𝐻⟧. Particularly,

⟦𝑆, 𝐻⟧ is a single-orbit nominal AutA-set.

• On morphisms, we put

⟦𝑖 ◦ 𝐻2⟧ : ⟦𝑆1, 𝐻1⟧ → ⟦𝑆2, 𝐻2⟧
𝜋 ◦ 𝜄𝑆1 ◦ 𝐻1 ↦→ 𝜋 ◦ 𝜄𝑆1 ◦ 𝑖 ◦ 𝐻2

which is visibly equivariant; it is well-defined as a function because if 𝜋 ◦ 𝜄𝑆1 ◦ 𝐻1 = 𝜋′ ◦ 𝜄𝑆1 ◦ 𝐻1 then

𝜋 ◦ 𝜄𝑆1 = 𝜋′ ◦ 𝜄𝑆1 ◦ ℎ1 for some ℎ1 ∈ 𝐻1 ⊆ 𝑖 ◦ 𝐻2 ◦ 𝑖−1, so

𝜋 ◦ 𝜄𝑆1 ◦ 𝑖 = 𝜋′ ◦ 𝜄𝑆1 ◦ ℎ1 ◦ 𝑖
= 𝜋′ ◦ 𝜄𝑆1 ◦ 𝑖 ◦ ℎ2

for some ℎ2 ∈ 𝐻2 which shows ⟦𝑖 ◦ 𝐻2⟧(𝜋 ◦ 𝜄𝑆1 ◦ 𝐻1) = ⟦𝑖 ◦ 𝐻2⟧(𝜋′ ◦ 𝜄𝑆1 ◦ 𝐻1).

• For functoriality, let 𝑗 : 𝑆3 → 𝑆2 satisfy𝐻2 ⊆ 𝑗 ◦𝐻3 ◦ 𝑗−1 and consider ⟦ 𝑗 ◦𝐻3⟧ : ⟦𝑆2, 𝐻2⟧ → ⟦𝑆3, 𝐻3⟧.

On the one hand, by homogeneity some 𝜏𝑖 ∈ AutA extends 𝑖 : 𝑆2 → 𝑆1 and therefore satisfies 𝜏𝑖 ◦ 𝜄𝑆2 =
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𝜄𝑆1 ◦ 𝑖, so we get

⟦ 𝑗 ◦ 𝐻3⟧ ◦ ⟦𝑖 ◦ 𝐻2⟧ : 𝜋 ◦ 𝜄𝑆1 ◦ 𝐻1 ↦→ 𝜋 ◦ 𝜏𝑖 ◦ 𝜄𝑆2 ◦ 𝑗 ◦ 𝐻3

= 𝜋 ◦ 𝜄𝑆1 ◦ 𝑖 ◦ 𝑗 ◦ 𝐻3.

On the other hand𝐻1 ⊆ 𝑖 ◦𝐻2 ◦ 𝑖−1 ⊆ (𝑖 ◦ 𝑗) ◦𝐻3 ◦ (𝑖 ◦ 𝑗)−1, so ⟦(𝑖 ◦ 𝑗) ◦𝐻3⟧ is indeed a morphism and

also sends 𝜋 ◦ 𝜄𝑆1 ◦ 𝐻1 to 𝜋 ◦ 𝜄𝑆1 ◦ 𝑖 ◦ 𝑗 ◦ 𝐻3. The other requirement that ⟦id⟧ : ⟦𝑆, 𝐻⟧ → ⟦𝑆, 𝐻⟧ is the

identity function is apparent.

• For full faithfulness, observe that an equivariant function 𝑓 : ⟦𝑆1, 𝐻1⟧ = AutA · (𝜄𝑆1 ◦ 𝐻1) → ⟦𝑆2, 𝐻2⟧
in NomSetAutA must be of the form

O 𝑗◦𝐻2
: 𝜋 ◦ 𝜄𝑆1 ◦ 𝐻1 ↦→ 𝜋 ◦ 𝑗 ◦ 𝐻2

where 𝑗 : 𝑆2 → A is an embedding — here 𝑗 ◦ 𝐻2 = 𝑓 (𝜄𝑆1 ◦ 𝐻1). Now O 𝑗◦𝐻2
is well-defined only if

1. 𝑆1 = SUPP(𝜄𝑆1 ◦ 𝐻1) ⊇ SUPP( 𝑗 ◦ 𝐻2) = 𝑗 (𝑆2); and

2. for all ℎ1 ∈ 𝐻1 and 𝜋ℎ1 ∈ AutA extending ℎ1,

𝜋ℎ1 ◦ 𝑗 ◦ 𝐻2 = O 𝑗◦𝐻2
(𝜄𝑆1 ◦ ℎ1 ◦ 𝐻1) = O 𝑗◦𝐻2

(𝜄𝑆1 ◦ 𝐻1) = 𝑗 ◦ 𝐻2,

i.e., ℎ1 ◦ 𝑗 = 𝑗 ◦ ℎ2 for some ℎ2 ∈ 𝐻.

So ⟦−⟧ is full. But any embedding 𝑗 : 𝑆2 → A satisfying 𝑗 (𝑆2) ⊆ 𝑆1 and 𝐻1 ◦ 𝑗 ⊆ 𝑗 ◦ 𝐻2 gives rise to an

equivariant function O 𝑗◦𝐻1
: ⟦𝑆1, 𝐻1⟧ → ⟦𝑆2, 𝐻2⟧, and clearly O 𝑗◦𝐻2

= O 𝑗′◦𝐻2
implies 𝑗 ◦ 𝐻2 = 𝑗 ′ ◦ 𝐻2

by evaluating at 𝜄𝑆1 ◦ 𝐻1; so ⟦−⟧ is faithful.

Finally, take any AutA · 𝑥 ∈ NomSetAutA. By our assumption on A, there is a least finite algebraically closed

support SUPP 𝑥 ⊆fin A of 𝑥. Note that AutA/SUPP 𝑥 is also normal in (AutA)𝑥 ⊆ (AutA)SUPP 𝑥 ; let us write

𝐻 ⊆ Aut(SUPP 𝑥) for the image of the group homomorphism

(AutA)𝑥/(AutA/SUPP 𝑥) → Aut(SUPP 𝑥)
𝜏 ◦ (AutA/SUPP 𝑥) ↦→ 𝜏 |SUPP 𝑥 .

Now consider the map

O𝑥 : ⟦SUPP 𝑥, 𝐻⟧ → AutA · 𝑥
𝜋 ◦ 𝜄SUPP 𝑥 ◦ 𝐻 ↦→ 𝜋 · 𝑥

which is certainly equivariant and surjective; but before that, it is well-defined and injective since

𝜋 ◦ 𝜄SUPP 𝑥 ◦ 𝐻 = 𝜋′ ◦ 𝜄SUPP 𝑥 ◦ 𝐻
⇐⇒ ∃𝜏 ∈ (AutA)𝑥 : 𝜋 ◦ 𝜄SUPP 𝑥 = 𝜋′ ◦ 𝜄SUPP 𝑥 ◦ 𝜏 |SUPP 𝑥
⇐⇒ ∃𝜏 ∈ (AutA)𝑥 ,∀𝑠 ∈ SUPP 𝑥 : 𝜋(𝑠) = (𝜋′ ◦ 𝜏) (𝑠)
⇐⇒ (𝜋′)−1 ◦ 𝜋 ∈ (AutA)𝑥
⇐⇒ 𝜋 · 𝑥 = 𝜋′ · 𝑥.

We conclude that O𝑥 is an isomorphism in NomSetAutA and that an arbitrary single-orbit nominal AutA-set

AutA · 𝑥 is in the essential image of ⟦−⟧ (whose free coproduct completion is NomSetAutA at any rate).

Such an orbit-by-orbit representation has been adopted in [BBKL12, §10] for a prototype of N𝜆, and more

recently in [VMR22, §5.4] to implement a C++ library Ons (Ordered Nominal Sets, https://github.com
/davidv1992/ONS) as well as a Haskell library Ons-Hs (https://github.com/Jaxan/ons-hs). The
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main disadvantage compared to the set-builder notations based on first-order formulae is that to represent the

straightforwardly defined set ⊤[A𝑛] = A𝑛, we need to represent each of the

𝑛! + (𝑛 − 1)! + · · · + 2! + 1!

orbits for the ordered atoms and still as many orbits as the 𝑛th Bell number for the equality atoms. Indeed,

[KLOT14, §5] reports that “only very rudimentary programs could be evaluated in reasonable time” with the orbit-

based predecessor to N𝜆. Nonetheless, when working with orbits in

⊎
𝐼 A

𝑛
with 𝑛 very small (𝑛 ≤ 3), even if the

orbit count is big Ons(-Hs) can significantly outperform LOIS and N𝜆; see [VMR22, Table 2] for a comparison

of the running times.

2.3 As sheaves on an âge

(Die Mathematiker sind eine Art Franzosen ...)

Mathematicians are like Frenchmen: whatever

you say to them they translate into their own

language, and forthwith it is something entirely

different.

Johann Goethe [Goe88, 1279. on p.247]

Finally, it is possible too to take supports as the primitive notion and derive the action of AutA. I learnt

this approach from the notes [Kli11a; Kli11b] which are in turn inspired by [Joh02, Example 2.1.11(h)]; I mainly

paraphrase what is written there while likely including too many proofs and details.

To begin with, we turn the âge of A into a category Â:

0) the objects are the finite substructures (i.e., finite subsets) of A, and

1) the morphisms Â(𝐶, 𝐷) between𝐶, 𝐷 ⊆fin A are embeddings of𝐶 into 𝐷.

The homogeneity assumption means every 𝑖 ∈ Â(𝐶, 𝐷) can be extended to some �̂� ∈ AutA.

Definition 2.12
A presheaf 𝑆 is just a functor Â → Set. We say 𝑆 is a sheaf if the sheaf condition

𝐶 𝑆𝐶 1

𝐷 𝑆𝐷

𝐸 𝑆𝐸

𝑖 𝑆𝑖

𝑥

𝑦

𝑗 𝑘 𝑆 𝑗𝑆𝑘

∀𝑖,∀𝑦 :
(
∀𝐸, 𝑗 , 𝑘 : 𝑗 ◦ 𝑖 = 𝑘 ◦ 𝑖 =⇒ 𝑆 𝑗 (𝑦) = 𝑆𝑘 (𝑦)

)
=⇒ ∃!𝑥 : 𝑆𝑖(𝑥) = 𝑦.

holds. We write PSh(A) and Sh(A) for the categories of presheaves and sheaves with natural transformations.

Note our sheaves are precisely category theorists’ sheaves for the atomic topology on (Â)op
[MM94, Lemma 2 on

p.126 of §III.4], where the Ore condition is satisfied [MM94, Example 2(f) on p.115 of §III.4] precisely because the

amalgamation property is satisfied by the âge of the homogeneous structure A.
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2.3.1 Between nominal sets and presheaves

Definition 2.13
We describe a functor ♯ : NomSetAutA → Sh(A).

0) Given a nominal AutA-set 𝑋 , define 𝑋♯ : Â → Set by:

𝐶 𝑋♯𝐶
def

= {𝑥 ∈ 𝑋 | 𝐶 supports 𝑥}

↦→

𝐷 𝑋♯𝐷
def

= {𝑥 ∈ 𝑋 | 𝐷 supports 𝑥}

𝑖 𝑋♯𝑖 : 𝑥 ↦→ �̂� · 𝑥

One checks that 𝑋♯𝑖 does not depend on the choice of 𝑖 ∈ AutA and indeed maps into 𝑋♯𝐷, that 𝑋♯

is functorial, and that 𝑋♯ satisfies the sheaf condition — 𝑦 is supported by 𝑖(𝐶), so take 𝑥 = �̂�−1 · 𝑦.

1) Given an equivariant function

𝑋 𝑌
𝑓

between nominal AutA-sets, one easily checks that

𝑋♯𝐶 𝑌 ♯𝐶

𝑋♯𝐷 𝑌 ♯𝐷

𝑓
♯

𝐶
:𝑥 ↦→ 𝑓 (𝑥 )

𝑋♯𝑖 𝑌 ♯𝑖

𝑓
♯

𝐷
:𝑥 ↦→ 𝑓 (𝑥 )

commutes and the horizontal functions are well-defined for any 𝐶, 𝐷 ⊆fin A. So the family 𝑓
♯
• is a

natural transformation 𝑋♯ ⇒ 𝑌 ♯, and the functoriality of ♯ is immediate.

Definition 2.14
Now we describe a functor ♭ : PSh(A) → NomSetAutA.

0) Let 𝑆 : Â → Set be a functor. Consider the wide subcategory Â⊆ of Â with only the inclusions

𝜄𝐷⊇𝐶 : 𝐶 → 𝐷 as morphisms; note Â⊆ is thin and filtered. Let 𝐼⊆ : Â⊆ ↩→ Â denote the inclusion

functor, and define the quotient set

colim 𝑆𝐼⊆ � 𝑆
♭ def

=

( ∐
𝐶⊆finA

𝑆𝐶

)
/∼

where (𝐶 ⊆fin A, 𝑥 ∈ 𝑆𝐶) ∼ (𝐷 ⊆fin A, 𝑦 ∈ 𝑆𝐷) if and only if 𝑆𝜄𝐸⊇𝐶 (𝑥) = 𝑆𝜄𝐸⊇𝐷 (𝑦) in 𝑆𝐸 for

some 𝐸 ⊆fin A that contains𝐶 ∪ 𝐷.

Now given 𝜋 ∈ AutA, put

𝜋 · [𝐶, 𝑥]∼
def

= [𝜋 · 𝐶, 𝑆𝜋 |𝐶 (𝑥)]∼.

• This is well-defined because if 𝐸 ⊇ 𝐶, then 𝜋 |𝐶 : 𝐶 → 𝜋 · 𝐶 and 𝜋 |𝐸 : 𝐸 → 𝜋 · 𝐸 satisfy

𝜄𝜋 ·𝐸⊇𝜋 ·𝐶 ◦ 𝜋 |𝐶 𝜄 = 𝜋𝐸 ◦ 𝜄𝐸⊇𝐶 . (Here we also co-restrict a restriction to its image.)
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• It defines a group action because (𝜏 ◦ 𝜋) |𝐶 = 𝜏 |𝜋 ·𝐶 ◦ 𝜋 |𝐶 .

• The resulting AutA-set 𝑆♭ is nominal: each [𝐶, 𝑥]∼ is supported by𝐶.

1) Let 𝛼 : 𝑆 ⇒ 𝑇 be a natural transformation. We define

𝛼♭ : 𝑆♭ → 𝑇♭

[𝐶, 𝑥]∼ ↦→ [𝐶, 𝛼𝐶 (𝑥)]∼;

then

• 𝛼♭ is well-defined: this follows from the naturality of 𝛼;

• 𝛼♭ is equivariant: we check that

𝛼♭ (𝜋 · [𝐶, 𝑥]∼) = 𝛼♭ ( [𝜋 · 𝐶, 𝑆𝜋 |𝐶 (𝑥)]∼)
= [𝜋 · 𝐶, (𝛼𝜋 ·𝐶 ◦ 𝑆𝜋 |𝐶 ) (𝑥)]∼
= [𝜋 · 𝐶, (𝑇𝜋 |𝐶 ◦ 𝛼𝐶 ) (𝑥)])∼
= 𝜋 · [𝐶, 𝛼𝐶 (𝑥)]∼ = 𝜋 · 𝛼♭ ( [𝐶, 𝑥]∼).

So 𝛼♭ is a morphism in NomSetAutA. Again, the functoriality of ♭ is immediate.

Let us be pedantic and write ♭ for the composite Sh(A) ↩→ PSh(A) ♭−→ NomSetAutA.

Lemma 2.15 Given any nominal AutA-set 𝑋 ,

𝜂𝑋 : 𝑋 → (𝑋♯)♭

𝑥 ↦→ [𝐶𝑥 , 𝑥]∼, where𝐶𝑥 is any support of 𝑥

defines an equivariant bijection. Furthermore this isomorphism is natural in 𝑋 .

Proof. The nominal AutA-set (𝑋♯)♭ has

{(𝐶, 𝑥) | 𝐶 ⊆fin A supports 𝑥 ∈ 𝑋}/∼

as its underlying set, where (𝐶, 𝑥) ∼ (𝐷, 𝑦) if and only if 𝑥 = 𝑦, and is equipped with the action

𝜋 · [𝐶, 𝑥]∼ = [𝜋 · 𝐶, 𝜋 · 𝑥]∼.

It follows that 𝜂𝑋 is well-defined, equivariant, and bijective.

For the naturality of 𝜂•, let 𝑓 : 𝑋 → 𝑌 be an equivariant function between nominal AutA-sets; we see that

𝑋 (𝑋♯)♭

𝑌 (𝑌 ♯)♭

𝜂𝑋

𝑓 ( 𝑓 ♯ )♭ :[𝐶,𝑥 ]∼ ↦→[𝐶, 𝑓 (𝑥 ) ]∼

𝜂𝑌

commutes as desired.

Lemma 2.16 Given any sheaf 𝑆 ∈ Sh(A),

𝜀𝑆 : (𝑆♭)♯ ⇒ 𝑆
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𝜀𝑆,𝐶 : (𝑆♭)♯𝐶 → 𝑆𝐶

[𝐶, 𝑥]∼ ↦→ 𝑥

defines a natural (in𝐶) isomorphism between sheaves. Furthermore this isomorphism is natural in 𝑆.

Proof. The sheaf (𝑆♭)♯ assigns

• to each𝐶 ⊆fin A, the set {[𝐷 ⊆fin A, 𝑦 ∈ 𝑆𝐷]∼ | ∀𝜋 ∈ AutA/𝐶 : [𝐷, 𝑦]∼ = [𝜋 · 𝐷, 𝑆𝜋 |𝐷 (𝑦)]∼}, and

• to each embedding 𝑙 : 𝐶 → 𝐹, the function [𝐷, 𝑦]∼ ↦→ [̂𝑙 · 𝐷, 𝑆�̂� |𝐷 (𝑦)]∼.

But we can say more about an element [𝐷, 𝑦]∼ supported by𝐶 now that 𝑆 is a sheaf. Firstly, we have (𝐷, 𝑦) ∼
(𝐶 ∪ 𝐷, 𝑆𝜄𝐶∪𝐷⊇𝐷 (𝑦))

def

= (𝐷′, 𝑦′). Now let 𝑗 , 𝑘 : 𝐷′ → 𝐸 be embeddings satisfying 𝑗 ◦ 𝜄𝐷′⊇𝐶 = 𝑘 ◦ 𝜄𝐷′⊇𝐶 ;

we wish to show 𝑆 𝑗 (𝑦′) = 𝑆𝑘 (𝑦′). Well, because �̂� , �̂� ∈ AutA satisfy �̂� |𝐶 = �̂� |𝐶 , the support assumption gives

[ �̂� · 𝐷′, 𝑆 �̂� |𝐷′ (𝑦′)]∼ = [ �̂� · 𝐷′, 𝑆�̂� |𝐷′ (𝑦′)]∼.

Since 𝐸 ⊇ 𝑗 (𝐷′) = �̂� · 𝐷′
and 𝑗 = 𝜄𝐸⊇ 𝑗 (𝐷′ ) ◦ �̂� |𝐷′ , we also know ( �̂� · 𝐷′, 𝑆 �̂� |𝐷′ (𝑦′)) ∼ (𝐸, 𝑆 𝑗 (𝑦′)) by the

definition of ∼; similarly ( �̂� · 𝐷′, 𝑆�̂� |𝐷′ (𝑦′)) ∼ (𝐸, 𝑆𝑘 (𝑦′)), so by transitivity we obtain

(𝐸, 𝑆 𝑗 (𝑦′)) ∼ (𝐸, 𝑆𝑘 (𝑦′))

in 𝑆♭. We are done: by the definition of ∼, there is some 𝐹 ⊇ 𝐸 such that 𝑆𝜄𝐹⊇𝐸 (𝑆 𝑗 (𝑦′)) = 𝑆𝜄𝐹⊇𝐸 (𝑆𝑘 (𝑦′)); the

uniqueness in the sheaf condition forces 𝑆 𝑗 (𝑦′) = 𝑆𝑘 (𝑦′). We conclude by applying the sheaf condition again,

this time using the existence: 𝑦′ = 𝑆𝜄𝐷′⊇𝐶 (𝑥) for some 𝑥 ∈ 𝑆𝐶, and therefore

[𝐷, 𝑦]∼ = [𝐷′, 𝑦′]∼ = [𝐶, 𝑥]∼.

Conversely, for any 𝑥 ∈ 𝑆𝐶 the element [𝐶, 𝑥]∼ in 𝑆♭ is supported by𝐶, and we have (𝐶, 𝑥) ∼ (𝐶, 𝑥′) if and only

if 𝑥 = 𝑥′ by the sheaf condition yet again. All in all, 𝜀𝑆,𝐶 is a well-defined bijection of sets.

Next we check the naturality of 𝜀𝑆,•: given an embedding 𝑙 : 𝐶 → 𝐹, we want

(𝑆♭)♯𝐶 𝑆𝐶

(𝑆♭)♯𝐹 𝑆𝐹

𝜀𝑆,𝐶

(𝑆♭ )♯𝑙:[𝐶,𝑥 ]∼ ↦→[ �̂� ·𝐶,𝑆�̂� |𝐶 (𝑥 ) ]∼ 𝑆𝑙

𝜀𝑆,𝐹

to commute. Our wish is granted: 𝑆𝑙 (𝑥) = (𝑆𝜄𝐹⊇𝑙 (𝐶 ) ◦ 𝑆�̂� |𝐶 ) (𝑥) indeed.

Finally, we verify the naturality of 𝜀•. To this end, let 𝛼 : 𝑆 ⇒ 𝑇 be a natural transformation and let𝐶 ⊆fin A.

Then the component of (𝛼♭)♯ at𝐶 is

[𝐶, 𝑥]∼ ∈ (𝑆♭)♯𝐶 ↦→ 𝛼♭ ( [𝐶, 𝑥]∼) = [𝐶, 𝛼𝐶 (𝑥)]∼ ∈ (𝑇♭)♯𝐶.

We conclude that (𝛼𝐶 ◦ 𝜀𝑆,𝐶 ) ( [𝐶, 𝑥]∼) = 𝛼𝐶 (𝑥) = (𝜀𝑇,𝐶 ◦ (𝛼♭)♯
𝐶
) ( [𝐶, 𝑥]∼) and that 𝛼 ◦ 𝜀𝑆 = 𝜀𝑇 ◦ (𝛼♭)♯.

Theorem 2.17
Sh(A) and NomSetAutA are equivalent as categories.

Proof. (♯, ♭, 𝜂•, 𝜀•) is an adjoint equivalence.
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2.3.2 The sheaf condition versus preserving pullbacks

When A is the equality atoms Sh(A) is the Schanuel topos, whose objects are perhaps more easily known as the

pullback-preserving functors Â → Set [Joh02, Example 2.1.11(h)]. For a general A, the âge category Â also has

pullbacks: given embeddings 𝑖 : 𝐶 → 𝐸 and 𝑗 : 𝐷 → 𝐸 ,

𝐶

𝐵 𝑃
def

= 𝑖(𝐶) ∩ 𝑗 (𝐷) 𝐸

𝐷

𝑖

𝑘

𝑙

𝑝 ↦→𝑖−1 (𝑝)

⌟

𝑝 ↦→ 𝑗−1 (𝑝) 𝑗

(2.18)

is a pullback square — if 𝑖 ◦ 𝑘 = 𝑗 ◦ 𝑙 then

(𝑖 ◦ 𝑘) (𝐵) ⊆ 𝑖(𝐶),
(𝑖 ◦ 𝑘) (𝐵) = ( 𝑗 ◦ 𝑙) (𝐵) ⊆ 𝑗 (𝐷)

so 𝑏 ↦→ (𝑖 ◦ 𝑘) (𝑏) is a mediating morphism 𝐵 → 𝑃 which is easily seen to be unique. In general, however, no

containment relation holds between the pullback-preserving functors in PSh(A) and the sheaves in Sh(A).

Theorem 2.19
The following conditions are equivalent in the countable homogeneous structure A.

i) The âge of A is a strong amalgamation class — see Example 1.4.
ii) A has no algebraicity, i.e.,

∀𝐶 ⊆fin A : acl(𝐶) = 𝐶

— see Definition 1.8 and Remark 1.12c’) for why we want to assume ℵ0-categoricity.
iii) A has trivial definable closure (or is “fungible” as in [BKL14, Definition 9.6]), i.e.,

∀𝐶 ⊆fin A : dcl(𝐶) = 𝐶.

iv) Every pullback-preserving functor 𝑆 : Â → Set is a sheaf.

Proof. i) ⇔ ii) is explained well in [Cam90, §2.7]. Also, ii) ⇒ iii) is obvious since

𝐶 ⊆ dcl(𝐶) ⊆ acl(𝐶).

For ii) ⇐ iii) let 𝑑 ∈ acl(𝐶) so that AutA/𝐶 · 𝑑 is finite, say with the elements 𝑑1, . . . , 𝑑𝑛−1, 𝑑𝑛 = 𝑑. Then

AutA/(𝐶 ∪ {𝑑1, . . . , 𝑑𝑛−1}) · 𝑑 = {𝑑}

which entails that 𝑑 ∈ dcl(𝐶 ∪ {𝑑1, . . . , 𝑑𝑛−1}) = 𝐶 ∪ {𝑑1, . . . , 𝑑𝑛−1} and hence that 𝑑 ∈ 𝐶.

Now we will show iii)⇐ iv), so assume iv). Notice that the inclusion functor 𝐼 : Â ↩→ Set preserves pullbacks,

so 𝐼 is a sheaf. Let𝐶 ⊆fin A and take 𝑑 ∈ A \ 𝐶; the sheaf condition for 𝑆 = 𝐼 and 𝑖 = 𝜄𝐶∪{𝑑}⊇𝐶 says that

∀𝑦 ∈ 𝐶 ∪ {𝑑} :
(
∀𝐸,∀𝐶 ∪ {𝑑}

𝑗 ,𝑘
−−→ 𝐸 : 𝑗 |𝐶 = 𝑘 |𝐶 =⇒ 𝑗 (𝑦) = 𝑘 (𝑦)

)
=⇒ 𝑦 ∈ 𝐶.

When 𝑦 = 𝑑 ∉ 𝐶, we see that there are 𝑗 , 𝑘 : 𝐶 ∪ {𝑑} → 𝐸 such that 𝑗 |𝐶 = 𝑘 |𝐶 but 𝑗 (𝑑) ≠ 𝑘 (𝑑). It follows

that ( �̂�−1 ◦ �̂�) · 𝑑 and 𝑑 are distinct elements of AutA/𝐶 · 𝑑, so 𝑑 ∉ dcl(𝐶) and thus dcl(𝐶) ⊆ 𝐶.
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Finally, we tackle iii) ⇒ iv). Suppose that 𝑆 ∈ PSh(A) preserves pullbacks. To check the sheaf condition, let

𝑖 : 𝐶 → 𝐷 and let 𝑦 ∈ 𝑆𝐷 be such that

∀𝐸,∀𝐷
𝑗 ,𝑘
−−→ 𝐸 : 𝑗 ◦ 𝑖 = 𝑘 ◦ 𝑖 =⇒ 𝑆 𝑗 (𝑦) = 𝑆𝑘 (𝑦);

in the end we wish to establish 𝑆𝑖(𝑥) = 𝑦 for a unique 𝑥 ∈ 𝑆𝐶. Enumerate the elements of𝐷 \ 𝑖(𝐶) as 𝑑1, . . . , 𝑑𝑛;

using the assumption on the decidable closure, we will cook up 𝑑′
1
, . . . , 𝑑′𝑛 and 𝑘 so that

𝐶 𝐷

𝐷 𝐷 ∪ {𝑑′
1
, . . . , 𝑑′𝑛}

𝑖

𝑖

⌟
𝜄𝐷∪{𝑑′

1
,...,𝑑′𝑛 }⊇𝐷

𝑘

is a pullback square. We do so inductively: having picked distinct 𝑑′
1
, . . . , 𝑑′𝛼, . . . , 𝑑

′
𝑚 ∈ A \ 𝐷 such that

𝑑𝛼 ≠ 𝑑′𝛼 = 𝜋𝛼 · 𝑑𝛼 ∈ AutA/(𝐷 ∪ {𝑑′
1
, . . . , 𝑑′𝛼−1} \ {𝑑𝛼}) · 𝑑𝛼,

we can continue pick 𝑑′𝑚+1 ∉ 𝐷 ∪ {𝑑′
1
, . . . , 𝑑′𝑚} because 𝑑𝑚+1 ∉ dcl(𝐷 ∪ {𝑑′

1
, . . . , 𝑑′𝑚} \ {𝑑𝑚+1}). Once we are

done, put 𝑘 = (𝜋𝑛 ◦ · · · ◦ 𝜋2 ◦ 𝜋1) |𝐷 so that

𝑒 ∈ 𝑖(𝐶) ↦→ (𝜋𝑛 ◦ · · · ◦ 𝜋2) (𝑒) = · · · = 𝑒
𝑑𝛼 ↦→ (𝜋𝑛 ◦ · · · ◦ 𝜋𝛼) (𝑑𝛼) = · · · = 𝑑′𝛼

making the square commute; to see that𝐶 is a pullback, notice the mediating morphism𝐶 → 𝑖(𝐶) from (2.18) is

an isomorphism. Now 𝑆 preserves pullbacks, and 𝑃 = {(𝑥1, 𝑥2) ∈ 𝑆𝐷 × 𝑆𝐷 | 𝑆𝑘 (𝑥1) = 𝑆𝜄𝐷∪{𝑑′
1
,...,𝑑′𝑛 }⊇𝐷 (𝑥2)}

with the two projections is a pullback in Set: so

𝑃

𝑆𝐶 𝑆𝐷

𝑆𝐷 𝑆(𝐷 ∪ {𝑑′
1
, . . . , 𝑑′𝑛})

𝑓
𝑝2

𝑝1

𝑆𝑖

𝑆𝑖

⌟
𝑆 𝜄𝐷∪{𝑑′

1
,...,𝑑′𝑛 }⊇𝐷

𝑆𝑘

where the mediating morphism 𝑓 : 𝑃 → 𝑆𝐶 is a bijection. But by our assumption on 𝑦 ∈ 𝑆𝐷 we know that

(𝑦, 𝑦) ∈ 𝑃, so 𝑓 (𝑦, 𝑦) is the unique 𝑥 ∈ 𝑆𝐶 satisfying 𝑆𝑖(𝑥) = 𝑦 that we hoped for.

Example 2.20 (structures with and without algebraicity) It is unsurprising that an algebraic structure

like (the canonical homogeneous expansion of) Example 1.14 “has algebraicity”: we have

acl({𝑒1, 𝑒2}) = {0, 𝑒1, 𝑒2, 𝑒1 + 𝑒2}

where 𝑒1, 𝑒2 ∈ V2 are linearly independent. More trivially, the expansion by constantsA𝐵 in Remark 1.12 also

“has algebraicity”: we always have

𝑏 ∈ dcl(𝐶)

whenever 𝑏 ∈ 𝐵. A less evident example is the disjoint union of complete graphs A =
⊎
𝑚 𝐾𝑛 when 𝑛 > 1

is finite. There, given two distinct vertices 𝑥, 𝑦 ∈ 𝐾𝑛, making 𝜋 ∈ AutA fix the vertex (𝑖, 𝑥) ∈ A also forces

𝜋(𝑖, 𝑦) to be from the finite vertex set

{(𝑖, 𝑦′) | 𝑦′ ∈ 𝐾𝑛, 𝑦′ ≠ 𝑥}
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— so the singleton {(𝑖, 𝑥)} ⊆ A already fails to be algebraically closed.

Nonetheless any other relational structure from Example 1.4 has no algebraicity, because their âge is a

strong amalgamation class.

It remains to study when 𝑆 ∈ Sh(A) preserves pullbacks.

Theorem 2.21
i) If 𝑆 ∈ Sh(A) preserves pullbacks, then 𝑆♭ ∈ NomSetAutA has least finite supports with respect to set

inclusion.
ii) If 𝑋 ∈ NomSetAutA has least finite supports with respect to inclusion, then 𝑋♯ preserves pullbacks.

Now ♭ : Sh(A) ⇄ NomSetAutA : ♯ is an equivalence by Theorem 2.17; therefore the following conditions are
equivalent:

I) every sheaf preserves pullbacks;
II) A admits least finite supports.

Proof. Assume 𝑆 ∈ Sh(A) preserves pullbacks. Let [𝐵, 𝑤]∼ ∈ 𝑆♭. Suppose that 𝐶, 𝐷 ⊆fin A both support

[𝐵, 𝑤]∼; recall from the proof of Lemma 2.16 that we then have

(𝐶, 𝑥) ∼ (𝐵, 𝑤) ∼ (𝐷, 𝑦),

which means that some 𝐸 ⊇ 𝐶∪𝐷 satisfies 𝑆𝜄𝐸⊇𝐶 (𝑥) = 𝑆𝜄𝐸⊇𝐷 (𝑦). Form the pullback square of inclusions in Â,

map it to Set under 𝑆, and form the pullback 𝑃 = {(𝑥𝑐, 𝑦𝑑) ∈ 𝑆𝐶 × 𝑆𝐷 | 𝑆𝜄𝐸⊇𝑐 (𝑥𝑐) = 𝑆𝜄𝐸⊇𝑐 (𝑦𝑑)} ∋ (𝑥, 𝑦):

𝑃

𝐶 ∩ 𝐷 𝐶 𝑆(𝐶 ∩ 𝐷) 𝑆𝐶

𝐷 𝐸 𝑆𝐷 𝑆𝐸

𝑓
𝑝1

𝑝2

𝜄𝐶⊇𝐶∩𝐷

𝜄𝐶⊇𝐶∩𝐷

⌟

𝜄𝐸⊇𝐶

𝑆 𝜄𝐶⊇𝐶∩𝐷

𝑆 𝜄𝐶⊇𝐶∩𝐷

⌟

𝑆 𝜄𝐸⊇𝐶

𝜄𝐸⊇𝐷 𝑆 𝜄𝐸⊇𝐷

Since 𝑆 preserves pullbacks, there is a bijection 𝑓 such that 𝑧
def

= 𝑓 (𝑥, 𝑦) ∈ 𝑆(𝐶 ∩ 𝐷) satisfies 𝑆𝜄𝐶⊇𝐶∩𝐷 (𝑧) = 𝑥;

therefore (𝐶 ∩ 𝐷, 𝑧) ∼ (𝐶, 𝑥) ∼ (𝐵, 𝑤), showing that [𝐵, 𝑤]∼ is supported by𝐶 ∩ 𝐷. At last,

supp[𝐵, 𝑤]∼
def

=
⋂

{𝐹 ⊆fin A | 𝐹 supports [𝐵, 𝑤]∼} =
⋂

{𝐹 ⊆ 𝐵 ⊆fin A | 𝐹 supports [𝐵, 𝑤]∼}

is a finite, non-empty intersection of finite supports for [𝐵, 𝑤]∼; as we argued above, supp[𝐵, 𝑤]∼ is a genuine

finite support of [𝐵, 𝑤]∼ and is by construction the least such.

Now assume that 𝑋 ∈ NomSetAutA admits least finite supports. Then 𝑋♯ maps a pullback square in Â like

so:

𝐶 𝑋♯𝐶

𝑃 𝐸 𝑋♯𝑃 𝑋♯𝐸

𝐷 𝑋♯𝐷

𝑖 𝑋♯𝑖=�̂� · (−)𝑝 ↦→𝑖−1 (𝑝)

⌟

𝑝 ↦→ 𝑗−1 (𝑝)

�̂�−1 · (−)

�̂�−1 · (−)𝑗 𝑋♯ 𝑗= �̂� · (−)
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where 𝑃 = 𝑖(𝐶) ∩ 𝑗 (𝐷) and

𝑋♯𝑃 = {𝑧 ∈ 𝑋 | 𝑖(𝐶) ∩ 𝑗 (𝐷) supports 𝑧}
⊆ {𝑧 ∈ 𝑋 | 𝑖(𝐶) supports 𝑧, 𝑗 (𝐷) supports 𝑧}
= {𝑧 ∈ 𝑋 | 𝐶 supports �̂�−1 · 𝑧, 𝐷 supports �̂�−1 · 𝑧}
= {𝑧 ∈ 𝑋 | �̂�−1 · 𝑧 ∈ 𝑋♯𝐶, �̂�−1 · 𝑧 ∈ 𝑋♯𝐷}

where the ⊆ on the second line is in fact an equality, as finite supports are closed under intersection by assumption.

Since

{(𝑥, 𝑦) | 𝑥 ∈ 𝑋♯𝐶, 𝑦 ∈ 𝑋♯𝐷, �̂� · 𝑥 = �̂� · 𝑦}

with the two projections defines a pullback in Set, it is clear that (𝑥, 𝑦) ↦→ �̂� · 𝑥 = �̂� · 𝑦 ∈ 𝑋♯𝑃 is an isomorphism

of pullback cones.

Note we did not specify that the supports are algebraically closed. This is intentional.

Definition 2.22
We sayAadmits least finite supports if any of the following equivalent conditions [BKL14, Theorem 9.3] holds.

By ⟨𝑋⟩ ⊆ AutA we mean the subgroup generated by an arbitrary subset 𝑋 ⊆ AutA.

i) For all 𝐸 ⊆fin A and for all distinct 𝑐, 𝑑 ∈ A \ 𝐸 ,

𝐺𝐸 · 𝑐 ⊆ ⟨𝐺𝐸∪{𝑐} ∪ 𝐺𝐸∪{𝑑}⟩ · 𝑐.

ii) For 𝑆, 𝑇 ⊆fin A, the subgroup

⟨AutA/𝑆 ∪ AutA/𝑇⟩

coincides with AutA/(𝑆 ∩ 𝑇).

iii) If𝐺 ⊆ AutA is an open subgroup, then there is a unique supp(𝐺) ⊆fin A satisfying

AutA/𝑆 ⊆ 𝐺 ⇐⇒ 𝑆 ⊇ supp(𝐺)

for all 𝑆 ⊆fin A.

iv) If 𝑋 is a nominal AutA-set and 𝑥 ∈ 𝑋 , then there is a unique supp 𝑥 ⊆fin A satisfying

AutA/𝑆 ⊆ (AutA)𝑥 ⇐⇒ 𝑆 ⊇ supp 𝑥

for all 𝑆 ⊆fin A.

This is a stronger assumption on A compared to Definition 2.10 — compare ii) or iii) here with the ones there.

Now assume that A admits least finite supports, and let 𝑥 ∈ 𝑋 ∈ NomSetAutA. Notice that supp 𝑥 ⊆fin A
satisfies

AutA/supp 𝑥 ⊆ (AutA)𝑥 ⊆ (AutA)supp 𝑥 .

To see the second containment, observe that supp : 𝑋 → ℘fin (A) is still an equivariant function; so 𝜋 ∈ (AutA)𝑥
implies 𝜋 · supp 𝑥 = supp(𝜋 · 𝑥) = supp 𝑥, i.e., 𝜋 fixes supp 𝑥 setwise. One can then go back to Theorem 2.11 and

prove another representation theorem for nominal orbits, where instead of requiring 𝑆 ⊆fin A to be algebraically

closed we impose the rather fiddly property that

∀𝑎 ∈ 𝑆 : 𝑎 ∉ dcl(𝑆 \ {𝑎}),
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as was originally done in [BKL14, see Lemma 9.8(1) and Theorem 9.17].

Let us continue by considering acl(supp 𝑥) ⊇ supp 𝑥. As passing to stabiliser subgroups is inclusion-reversing,

we obtain

AutA/acl(supp 𝑥) ⊆ AutA/supp 𝑥 ⊆ (AutA)𝑥 ⊆ (AutA)supp 𝑥 = (AutA)acl(supp 𝑥 ) .

To see the last left-to-right containment this time, take 𝜋 ∈ (AutA)supp 𝑥 and suppose 𝑎 ∈ acl(supp 𝑥) — that is,

suppose AutA/supp 𝑥 · 𝑎 is finite; then

AutA/supp 𝑥 · (𝜋 · 𝑎)
= AutA/(𝜋 · supp 𝑥) · (𝜋 · 𝑎)
= (𝜋 ◦ AutA/supp 𝑥 ◦ 𝜋−1) · (𝜋 · 𝑎)
= 𝜋 · (AutA/supp 𝑥 · 𝑎)

is finite too, so 𝜋 · 𝑎 ∈ acl(supp 𝑥). This proves that 𝜋 fixes acl(supp 𝑥) as well — the setwise stabiliser only sees

the algebraic closure. Of course acl(supp 𝑥) is still finite becauseA is oligomorphic; so Definition 2.10 says SUPP 𝑥

exists and

SUPP 𝑥 = acl(supp 𝑥)

quite conveniently.

Example 2.23 (structures with and without least supports)

a) One can directly show the equality atoms [GP02, Proposition 3.4], the ordered atoms, and the graph

atoms [BKL14, Corollary 9.5 and Example 10.4] admit least finite supports and therefore also least finite,

algebraically closed supports. Obviously this is not saying very much in a structure with no algebraicity,

where the two notions agree. As we mentioned before Definition 2.10, the SSIP is equivalent to the SIP

together with weak elimination of imaginaries; so the Henson graphs with forbidden subgraphs —

directed or undirected — are also examples of structures with both kinds of least supports.

b) An innocent example where the two notions start to differ is N5, the equality atoms with a constant

5 ∈ N fixed. Here one can still straightforwardly use the criterion i) of Definition 2.22 to show that

supp 𝑥 and thus SUPP 𝑥 always exist, with the caveat that

SUPP 𝑥 = supp 𝑥 ∪ {5} ⊋ supp 𝑥.

c) Now consider A =
⊎
𝑚 𝐾𝑛 where 𝑚, 𝑛 ≥ 2 and 𝑚 × 𝑛 = ℵ0. Then AutA is the wreath product

𝑆𝑛 ≀𝑚 𝑆𝑚 — that is, the set (𝑆𝑛)𝑚 × 𝑆𝑚 with the operation(
(𝜌 𝑗 ) 𝑗∈𝑚, 𝜏

)
≪

(
(𝜎𝑗 ) 𝑗∈𝑚, 𝜋

)
def

=

(
(𝜌 𝑗 ◦ 𝜎𝜏−1 ( 𝑗 ) ) 𝑗∈𝑚, 𝜏 ◦ 𝜋

)
acting on A via (

(𝜎𝑗 ) 𝑗∈𝑚, 𝜋
)
· ( 𝑗 ′, 𝑖′) def

= (𝜋( 𝑗 ′), 𝜎𝜋 ( 𝑗′ ) (𝑖′)).

But𝑚 can also be an AutA-set if we simply put(
(𝜎𝑗 ) 𝑗∈𝑚, 𝜋

)
· 𝑗 ′ def

= 𝜋( 𝑗 ′).

Here 𝑗 ′ ∈ 𝑚 is supported by the singletons {( 𝑗 ′, 1)}, {( 𝑗 ′, 2)} ⊆fin { 𝑗 ′} × 𝐾𝑛 ⊆ A, but not by their

intersection {} unless 𝑚 = 1. Therefore A does not admit least finite supports, though {( 𝑗 ′, 1)} and

{( 𝑗 ′, 2)} are both minimal supports.
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If we restrict ourselves to algebraically closed supports, when 𝑛 is finite the algebraicity saves us: we have

acl({( 𝑗 ′, 1)}) = { 𝑗} × 𝐾𝑛 = acl({( 𝑗 ′, 2)}).

When 𝑛 = ℵ0 we run into trouble again: A has no algebraicity, so it fails to admit either kind of least

supports.

We close with two questions.

Question 2.24
How much of [MM94, §III.9], [GMM06, §3], and [CKM10, Criterion 4.1 and Theorem 4.12]’s wheel did we
reinvent, and how well did we do?

Question 2.25
Consider presheaves valued in Mon or VectQ instead of Set. What can be said about the sheaf condition and
pullback preservation?

Summary. We work in the following setting:

• R is a finite relational signature;

• K is an amalgamation class of finite R-structures;

• A is the Fraïssé limit of K.

Then:

• A is homogeneous;

• AutA acts oligomorphically on A𝑛;

• Th(A) eliminates quantifiers;

• A has no algebraicity if and only if K is a strong amalgamation class;

• A admits least finite supports if K is moreover a free amalgamation class [Con17, Theorem 1.1].

Note that (Q, =, <) admits least finite supports, even though its âge is an amalgamation that is strong but not

free [Mac11, Remark 2.1.5 1.]; it is the generically ordered expansion of (N,=), whose âge is a free amalgamation

class. We can say more: the generically ordered expansion K< of a free amalgamation class K is Ramsey [EHN21,

Theorem 1.3]; equivalently, Aut(FLimK<) is extremely amenable [KPT05, Theorem 4.7]. I do not know why (or

whether) FLimK< eliminates imaginaries in general.

There are more elementary ways to get new nice structures from old: e.g., take reducts, or expand by finitely

many constants. One may need to check for homogeneity over a finite signature and the existence of least alge-

braically finite supports.

Having fixed a structureA, we can build nominal sets out of {} and the atoms 𝑎 ∈ A alone; we can and should

view them as continuous AutA-sets, and also as sheaves on Â. So we understand orbit-finite nominal sets well

through the lens of set theory, topological group theory, and category theory; we are now ready to study orbit-

finite-dimensional vector spaces.
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