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The first axiomatisation of set theory by Zermelo [Zero8, §11.] in 1908 allowed “Dinge” (objects) that are not
“Mengen” (sets). Such an object a — now known as an urelement or an azom — is certainly not the empty set
because it is not a set, yet it does not satisfy

X€a

for any x. On the other hand, a may still be an element of a set: for example, we have a € {a, {a}}. Let A denote
the collection of all the atoms, and let G be a group of bijections from A to itself. Then 7 € G permutes not only

atoms but also sets with atoms: e.g., writing 7(a) = a’ and n(b) = b’, we get
m-{a,{b}} ={a’, {b"}}.
A set X is called finitely supported if there is a finite S C A such that:
7 - X = X whenever 1 € G fixes every atom in S.

Intuitively, this asserts that X can be described using the finitely many atoms from S. For instance,

* thesets {a, b} and A \ {a, b} can be described by mentioning just the atoms a and b;
* the function A X A — A;(a,b) — a —ie.,theset {((a,b),a) | (a,b) € AXA} C (AXA)XA—

can be described without mentioning any atoms at all.

A bereditarily finitely supported set is a finitely supported set whose elements are all hereditarily finitely supported.
By working with these sets only we arrive at the permutation model of set theory with atoms, the introduction
of which many attribute to Fraenkel for his 1922 paper “Uber den Begriff ‘definit’ und die Unabhingigkeit des
Auswahlaxioms”. Fraenkel proceeded to define a permutation model in which the axiom of choice fails in a dra-
matic manner, namely, for a countable family of pairs [Frass, p.43]; in the follow-up [Fra37], he attempted to show
that the axiom of choice can still fail even if a weaker version — that is, any family of finite sets admits a choice
function — holds. However a mistake was noted by Mostowski, who managed to give a correct proof in [Mos39,
Korollar 2] by considering, as atoms, the rationals Q with all order-preserving bijections. (And it was not until
1963 that Cohen, via his famed technique of forcing, proved the axiom of choice can fail in a model of set theory
without atoms.) Such classical mathematics was written in very different languages; instead, a modern account of

these permutation models can be found in [Jec73, Chapter 4].

Over sixty years had elapsed when, in computer science, Gabbay and Pitts [GPo2] dug up the Fraenkel-
Mostowski model in search of an elegant representation for abstract syntax trees up to @-renaming. The motivating
example they put forward is the untyped A-calculus, whose terms are either a variable from a countably infinite set
like the naturals N, an application of two terms, or an abstraction of a binding variable away from a term; in other

words, the set A of terms is inductively defined by

F(X)=Nuw (X x X)W (N x X)



which means that proof by structural induction and definition by structural recursion on A are mathematically
founded. Nonetheless we often wish to identify (Ax.xy)(Ax.x) with (Ax".x"y)(Ax.x) and work with A /=, the
terms modulo @-equivalence. With N as the atoms, the set A becomes a set with atoms; a bijection N — N such
as the transposition (x y) just renames the variables: e.g., (x ) - (Ax.xy)(Ax.x) = (1y.yx)(Ay.y). Accordingly
the sets in the Gabbay-Pitts rendition of the permutation model are called zominal sets. A first observation is the

equivalence of the following statements for two terms Aa.t and Aa’.t":

1) da.t =4 Ad’.t;
2) (ab)-t=4 (a’ b) -t forsomeb € N that does not occur (as a binding, free, or bound variable) in ¢ or ¢';
3) (ab)-t=4 (a’b)- t'forany b € N which does not occurint ort’.

Thus we can push the global quotient of A by =, down to a local but inductive quotient. To make this concrete,
we need the definition of the set [N] X of atom abstractions or name abstractions associated with a set X (see [GPo2,

Definition 5.4] or [Piti3, Definition 4.4]) where, as basic examples,

* [N]N comprises the equivalence classes a.a &ef {(a,a) | a € N}and b.a def {(b,a) | b e N\{a}},a eN
corresponding to the a-equivalence classes of Aa.a and of 1b.a, whilst

* [N]([N]N) comprises the equivalence classes {(b, a.a | b € N} and {(a,b.a)} fora e N, {(c,b.a | c €
N\ {a}} fora € N corresponding to the a-equivalence classes of Aba.a, Aab.a, and Acb.a.

Then A /=, is in bijection with the set A, inductively defined by
Fa(X) =N @ (X x X) & [N]X,

except the latter supports “a-structural” induction and recursion that perfectly match informal proofs involving
“let a be fresh”.

The Gabbay-Pitts permutation model was not entirely novel: as explained in [GMMo6] and also in [Pit13,
Chapter 6], equivalent forms of nominal sets have been known to the concurrency community as named sets
[MPos], by category theorists as the Schanuel topos, and by model theorists as continuous Aut N-sets. The last
perspective easily generalises to other choices of atom structures together with their symmetry groups: (N, =) and
arbitrary bijections are to variable names as (Q, =, <) and monotone bijections are to timestamps. Indeed, sets
with atoms provide a convenient setting for studying languages of data words over an infinite alphabet as well as
the models of computation that recognise them; this approach has been extensively explored by the Warsaw school
beginning with [Boji3]. It is perhaps curious that, like with the axiom of choice almost a century back, the yet

unresolved P versus NP problem can be settled in the presence of atoms, negatively [BKLT13, Theorem IIL1].

That marks the end of the historical notes, and here begins the mathematical account. A first step towards
tackling computation theoretic concerns with atoms is to address the possibly infinite sets involved. Consider for
instance [N]N = {a.a}U{a+1.a | a € N} from above, which is infinite but consists of just two orbits — Aut N -
a.a and AutN - b.a — and thus describable in a finite manner. To obtain a precise and robust notion of finitely
presentable sets that are amenable to algorithmic manipulation, we need a sufficiently well-behaved structure A; to
spell the model-theoretic desiderata out, we consider a countably infinite, homogeneous, oligomorphic structure
over a finite relational signature that has no algebraicity and admits least finite supports. Although such terms are
explained in ample detail in textbooks like [Hod93, Chapters 4—7] and [Kir19, Part V], many more have made the
effort to introduce them in an approachable and self-contained manner; drawing on [Camgo, Chapter 2] [Macii,

§2—4] [Evar3, §1-2] [Bojig, Chapter 7], [Bod21, Chapters 2—4] I shall attempt to do the same.
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1 The atoms structure

Fix a signature R of relation symbols Ro, R;, . . . of arities 11, 71y, . . . 5 an R-structure (A, R) is a domain A together
with interpretations R;f% C A", where we alwaysassume R,, is the binary symbol = interpreted as {(a, a) | a € A}.
We fix a countably infinite A throughout. Also, by A we will mean both the structure and the domain.

Every subset A C A automatically defines a new R-structure with interpretations RlA def R;& N A™;bya
substructure of A we simply mean a subset of A. When A is finite, we more specifically write A Cin A. A function
f+ A — Bbetween two R-structures is an embedding if

V(ay ... an) € AM i (ay,...,a,) € R} &= (f(a),...,f(an)) € RE

for every i. In particular any embedding is always injective, and if it is moreover surjective we call it an Zsomorphism.
We call an isomorphism mapping A into A an awutomorphism; all the automorphisms form a group, which we
denote by Aut A.

.1  Homogeneity

Definition r.1
Ais homogeneous if every isomorphism between A, B Chin A extends to an automorphism of A. That s, given

any isomorphism f : A — B, there exists some 7 € Aut A such that |4 = f.

Example 1.2 The equality atoms (N, =) is homogeneous: we can first extend f to a finite bijection AUA” —
AU A’ since (AU A’) \ A has the same number of elements as (A U A”) \ f(A), then to an automorphism
of N by mapping N \ (A U A’) identically. A more commonly used name is the countable pure set.

So are the ordered atoms (Q, =, <), i.e., the countable dense linear ordering without endpoints: we can

extend the monotone f to a piecewise linear, monotone bijection Q — Q.

We adopt Fraissé’s quaint terminology [Fra74] [Fraoo, §10.2.1] of calling the collection X of finite R-structures,
each of which isomorphic to some finite substructure of A, the 4ge of A. Observe that

1) X is closed under taking substructures and isomorphic images;

2) X has countably many isomorphism classes, as there are only countably many finite substructures of A;

3) XK satisfies the amalgamation property — ic., forevery A” C A € X, B € X and embedding f : A” — B,
there is some C € K together with embeddings g : B — C,h : A — C such that g o f = h| 4 making

g(B) U h(A)

o IS
g// ~_h

/\
O

commute — provided that A is homogeneous: extend f to some m € Aut A and put C LBy n(A).

There is a converse to this. Call a collection X of finite R-structures that satisfies the properties 1), 2), and 3) an

amalgamation class.



Theorem 1.3 ([Fras4, Théoréme VI])

1K is an amalgamation class, then

1) we can construct a countable homogeneous R-structure FLim X whose dge is precisely XK, and

11) any another countable homogeneous R-structure that also bhas dge X is isomorphic to FLim K.

We shall call FLim X the Fraissé limit. The homogeneous condition in ii) cannot be dropped: (Z, =, <) and (Q, =

, <) are different order types yet share the same 4ge of all finite total orders, because no 7 € AutZ extends the

isomorphism o +— 0,1+ 2. This is also why Q, rather than Z, is the domain of the ordered atoms.

Example 1.4 An amalgamation class X is said to be szrong if in 3) one can moreover choose C, g, h in a way

that g(B) N h(A) coincides with (g o f)(A”) = h(A”).

a) The 4ge of the equality atoms is a strong amalgamation class: let C & {(o,b) | b € B\ f(A")}U

{(1,a) | a € A} be the amalgam, and put

g:beB\ f(A) - (o,b), h:aeAw (1,a).
fla) e f(A) - (La);

On the other hand, consider (N, =, O) where the unary predicate symbol O has interpretation oY =
{o}. This is a homogeneous structure whose 4ge consists of all finite sets with at most one element
for which O holds, which fails to be a strong amalgamation class: any amalgam of the substructures
{0} 2 0 C {o, 1} must identify the two 0’s, which certainly will not be in the image of 0.

Consider the signature =, ~ for graphs. The collection X. of all loopless finite undirected graphs is a

strong amalgamation class: with C as above, one can check that the interpretation

~€ (g (), g(0)) 1,5 € B\ F(A), (b, ') €~
U{(e(b).g(f (@) = h(@)) | b€ B\ f(A).a" € A", (b, f(a)) €~}
U{(e(f(@)) = h@).g(®) | b€ B\ F(A).a € A", (f(a).b) €~}
U{(h(a). h(@,) | @, € A, (a,a) €~}

imposes just enough relations to make g and & embeddings. Then FLim K. is the Rado graph [Rad64,
Theorem 1], which we also refer to as the graph atoms.

Now consider the subcollection KXn#> of those graphs in K. into which the complete graph K, on
n > 3 vertices does not embed. The above construction shows that KX»%> is a strong amalgamation
class as well. To see that, note an n-clique in the amalgam C = g(B) U h(A) cannot have vertices in
both g(B) and h(A) \ h(A’) due to the lack of edges; so the n-clique must be entirely contained in
h(A) or else in g(B), which is impossible as neither A nor B contains an n-clique. The Fraissé limit
FLim KX»% is known as the Henson K, ~free graph [Hen71, Theorem 2.3].

Lastly, let the cardinalities 1 < m,n < N, be such that m x n = X, and consider the disjoint union
(1), K of complete graphs. Its 4ge is an amalgamation class, which is strong if and only if n € {1, N }.
(Note that )y, K; and 4, K, are graph complements; they are just the equality atoms augmented
with a constant binary predicate.) In fact, every countably infinite homogeneous graph is isomorphic
to |4, Ky, FLim KEn?> FLim K. or their graph complements [LW8o].



c) Change the signature to =, — and let X_, be the collection ofall loopless finite directed graphs without
double edges, or digraphs for short. Then, replacing ~ by — in the construction above, we see that X_,

is a strong amalgamation class.

Again we can forbid certain subgraphs. Call D € X_, a tournament if precisely one of x — y or
y — x holds for any two distinct vertices x # y of D; then the subcollection K2 of digraphs
not embedding the tournament D forms a strong amalgamation class by the same argument. More
generally, if Dy, D,, ... are all tournaments then (),,¢; 9(2"7_’ is a strong amalgamation class given
any I C N. By choosing the D,,’s so that D, does not embed into D, for n # n’, we may ensure

Mner KPP 4 Nwer ng""/_' whenever I, I’ C N are distinct. Thus

{FLim(ﬂ KPPy | 1 < N}
nel
is an uncountable family of non-isomorphic homogeneous directed graphs, known as the Henson di-

graphs [Hen72, Theorem 2.4].

Actually the tournaments themselves form a strong amalgamation class K*"™: when constructing the
amalgam C = g(B) U h(A) we have to additionally include edges from each vertex of g(B \ f(A"))

to each vertex of h(A \ A”). The Fraissé limit FLim K™ is called the random tournament.

d) Finally, consider the signature =, <. The collection K?tal of finite total strict orders is a strong amalga-

mation class: on the set C = g(B) U h(A) impose
<€ E(g(6),5(6) 1 5,5 € B\ F(A"), (b,1) € <P
U{(8), 8(F(@)) = h(@)) | b€ BY f(A),a € A, (b, f(a)) € <"
U {(g(b),h(a)) |beB\ f(A),ac A\A",Fa' € A" : (a,a’) e <* A (f(d),b) € <B}
{(a@) = g(f(@)).80)) | a € A b € BY F(A), (f(a). ) € <7}
U{(h(a),g(0)) |ac A\ A b e B\ f(A),3a" € A (a,a) € <A A (f(a), ) € <P
U{(h(a). h(@) | @ as € A, (a,a) € <4},

Essentially we first make g and & order embeddings before making the rather arbitrary decision that,
where possible, anything in the image of g should be smaller than anything in the image of /4. One can
check that <€ is total, asymmetric, and transitive so long as g(B) N h(A) = g(f(A’)) = h(A"). Of

course FLim K% is the ordered atoms up to isomorphism.

We have actually established the following: let X be a strong amalgamation class over a signature R
which does not already contain the symbol <, and consider the collection K. of finite R, <-structures
obtained by adding all possible total orders to all R-structures in X; then K< is a strong amalgamation

class — first form the amalgam over R, and prescribe the total order < as above. We call FLim X« the

generically ordered version of FLim XK.

1.2 Oligomorphicity

We will give four definitions — the first three model-theoretic, the last group-theoretic — and prove that they are

all equivalent.



1.2.1 Theories and models

In our first-order relational framework, the R-formulae are given by the grammar

O, =T | Ri(xy,....xn) | m¢ | oAy | Txg

where=, R, R,, . .. are the relation symbols of R. We define shorthands L, x; R; x,, ¢ Viy, ¢ — ¢, ¢ < i, and
V¢ in the standard way. By writing ¢(x,, . . ., x,) we mean the free variables of ¢ are amongst x,, ..., x,;ifn = o
we call ¢ an R-sentence. Given an R-structure B and elements b, ..., b, € B, the formula ¢ substituted with
b; for x; either holds or does not; we write B |= ¢(by, ..., by) or B [ ¢(by, . . ., by) respectively. In particular,
an R-sentence either holds in B or does not. The collection of the sentences that do hold is called the zheory of
B and written Th(BB). Conversely, given a collection T of R-sentences, we can ask for an R-structure B in which
every ¢ € T holds; such a structure satisfying T C Th(B) is called a model of T. When T = Th(A), the model B
moreover satisfies Th(A) = Th(B).

Obviously the countably infinite A that we fixed is itself a model of Th(A). However, a known limitation
of first-order theories is that we cannot control the size of other infinite models: by the upward Lowenheim—
Skolem Theorem, there exist models of 7h(A) of arbitrarily large cardinalities. We declare ourselves as countablists
and announce that uncountable models are meaningless anyway: we want to effectively represent elements in the
domain and compute which relations hold between them. Restricting our attention to countably infinite models,

we may demand the following.

Definition .5
Th(A) is Ry-categorical (or w-categorical) if any countably infinite model A’ of Th(A) is isomorphic to A.

1.2.2 Definable subsets

Definition 1.6
Let B C A be a subset. A B-definable subset of A" is one of the form

{(ay,...,ay) € A" : AE¢(ay,...,an, by, ...,bK)}

where ¢(xy, ..., X0, Y1, ..., Yk) is an R-formula and by, . . ., by are constants from B; implicitly assuming

an enumeration of the free variables, we denote this set by p[A", by, . . ., bi]. We also define

* the model-theoretic algebraic closure ACL(B) as the union of finite B-definable subsets of A, as well as
* the model-theoretic definable closure DCL(B) as the union of singleton B-definable subsets of A.

Assume B = () and fix variables x;, x,, - - - . Given two formulae ¢ (x,, ..., x,) and ¢ (x4, . . ., x,), let us write

¢ =ma) ¥ if
AEVX - Vxp(p(xe .o xn) = Y (xe, .o, xn));

then we have ¢[A"] = [A"] precisely when ¢ =7,(4) ¥. Moreover, notice that

[A"TUY[A"] = (o V)[A"]. AT\ G[A"] = (=¢)[A"],
P[A"] NY[A"] = (¢ AyY)[A™].

Hence the =17y,(4)-equivalence classes of R-formulae in the free variables x,, . . ., x,, together with V, A, = form a
Boolean algebra, the nth Lindenbanm algebra; so do the 0-definable subsets of A", and the two are isomorphic.



1.2.3 Types

In the other direction, given constants aj, . . . , @, € A we can consider the R-formulae that they satisfy:

9, (@0 an) S (P xa) A Glan ... an)}

is what model theorists call the n-type of a,, . . ., a, (whereas the types for type theorists are what model theorists
call sorts). More generally, an n-type of Th(A) is a collection of R-formulae equal to some £p(c;, . . ., ¢;,) where
t: A — Cis an elementary embedding, i.e., an embedding satisfying

AEyY(,....br) = CEy(b),...,u(br))

for any R-formulay (x,, . .., xx) and elements by, . . ., bx € A;in that case the first-order sentences cannot tell A
and C apart: we have Th(A) = Th(C). Now if

tpo(ch ..., cn) =tpp(ay, ..., an)

for some a; € A, we say the a;’s realise the n-type in A; otherwise A omuts it. Certainly tp(u(a,), . .., t(a,)) is
realised by the ;s in A.

Definition 1.7
An n-type tpe(cy, . . ., ¢p) is principal or isolated if it contains some x (xy, . . ., X;,) such that

C [ Vx, -- -Vxn()((x” s Xn) = d(xy, .. ,xn))

for every ¢ € tp(ci, ..., cn). Wealso call x a principal formula for the n-type.

A principal n-type is always realised in A: the sentence 3¢, - - - e x (¢, . . ., ¢p) belongs to Th(C) = Th(A),
soA | x(ay,...,a,) forsomea; € Aandthusp, (ai,...,a,) contains tp(c,, . . ., cp). Butevidently

tp, (@) 2 tp(c) = 1p,(a) = 1p.(C)

because A | ¢(a) means A = —¢(a), so C [ =¢(c) which means C | ¢(c).

1.2.4 Orbits

We cover one last definition, this time without mentioning model theory at all.

Definition 1.8
Letn € N. The group Aut A acts on the set A" via

- (ay,...,an) = (m(ay),...,n(ay));
wehaveid-@ =dand (tom)-a=71-(r-a)foralla € A" and 7,7 € Aut A. The Aut A-orbitofa € A" is
— def —
AutA -a = {n-a|nmeAutA};

the distinct Aut A-orbits form a (possibly infinite) partition of A". We call A oligomorphic under Aut A if A"
contains finitely only many distinct Aut A-orbits for every n € N.




Given B C A, let Aut A/B denote the subgroup {7 € AutA | Vb € B : 1(b) = b} which by restriction

acts on A”. A la Galois, we also define

* the group-theoretic algebraic closure acl(B) as the union of finite Aut A/B-orbits in A, as well as
* the model-theoretic definable closure dcl(B) as the union of singleton Aut A/B-orbits in A.

Notice that (Z, =, <) fails to be oligomorphic: the pairs (0,0), (0,1), (0,2),- -+ € Z* all lie in different orbits
underAutZ ={x— x+d | d € Z}.

Now let us draw some connections to model theory.

Remark 1.9 Given any 7 € Aut A, for any R-formula ¢ and elements @ € A" we have
AEdlay,....an) = AE¢(n(ay),....n(an));

indeed every automorphism of A is an elementary embedding. Consequently

a) 1p,(a) = tp, (7 - @), so every element in the same Aut A-orbit of A" shares the same n-type;

2’) in particular, ifb € AutA -athena, — b,,...,a, — byisan isomorphism.

b) every B-definable subset X C A" is invariant under the action of AutA/B, ie., X is a union of
Aut A/ B-orbits;

c) ACL(B) 2 ad(B) and DCL(B) 2 dd(B).

The point is that oligomorphicity provides converses to a), b), and ¢), as we shall soon see, whereas homogeneity

provides the converse to a).

1.2.5 The four-way equivalence

‘We are now ready to prove the equivalence of all four notions above, at the heart of which is the following technique
often attributed to Cantor.

Lemma r.1o (the back-and-forth method) Supposethat foreverym € N, every m-typeof Th(A) is principal.
Let B be a countable model of Th(A) wheretp, (ay, . .., an) = tpg(by, ..., by) forsomea; € A, bj € B. Then

there is an isomorphism [ : A — B mappinga, v b, ... ,a, = by
Proor. We inductively construct two sequences dy, . . ., Ap, Gptrs - - - and by, ..., by, by, . .. enumerating A
and B such that

ZPA(aI’ e ’an+i) = ZPB(bD e ’bn+i)

foralli > o. Ifi+risodd, choose bsiss € B\{by, ..., by4i} and consider the (n+i+1)-typeof by, . . ., bysis bpoivi.
By assumption it contains a principal formula y, and Ix,4i40x (X1, - . -, Xpti» Xntiss) belongs to 2pg (by, . . ., by);
by the inductive hypothesis, A | Ixptiwm X (ar, - - -, Qnsis Xnier) SO Qs - . ., Antis Qi satisfies y and hence
realises pg (by, . . ., byyi, byyis) for some ayyiy; € A. Symmetrically, going forth if i + 1 is even, choose a4, in
A\{a,, ..., ansi} and find by4isr € B that helps realise the same (n + i + 1)-type.

Now f : aj > bj is a well-defined function: the formula x; = xj isin #p, (as, ..., ans;) precisely when
aj = aj,and symmetrically x; = xj is in £pg (by, . .., byy;) precisely when b = b j/; but the two types are
equal, which furthermore ensures that f preserves and reflects all relations. Hence we have an embedding which

by construction is surjective; that is, we have an isomorphism. n



The characterisations below are widely ascribed to Ryll-Nardzewski, though parts were given independently
by him at Warsaw, by Engeler at Zurich, and by Svenonius at Uppsala all in 1959; in particular the group-theoretic
condition is due to Svenonius [Hodos3, History and bibliography for §7.3].

Theorem r.1x (Ryll-Nardzewski, Svenonius, Engeler)
Assume the signature R is finite or countably infinite. Then the following are equivalent:

) Th(A) is Ry-categorical;

i1) foreveryn € N, there are only finitely many O-definable subsets of A";
i11) foreveryn € N, any n-type of Th(A) is principal;
iv) A s oligomorphic.

Proor. Wewill provei) & iii) = iv) = ii) = iii).

i) = iii) Ifzpa(cy,...,cp) is non-principal, then by Vaught’s Omitting Types Theorem there is a countable
model B of 7h(A) that omits it whilst — by the downward Léwenheim—Skolem Theorem — a countably infinite
model C’ of Th(A) realises it; particularly B cannot be isomorphic to C’. Other than our countablist considera-

tions, this is the only place where we require the cardinality assumption on the signature R.
i) «<iii) Thisisa direct consequence of Lemma r.10: start with the empty tuple.

iii) = iv) Combining Remark 1.9a) with Lemma 1.10, we see that n-types correspond bijectively to Aut A-orbits
of A". Now suppose towards a contradiction that the collection of all distinct n-types {tpci (¢;) | i € I}isinfinite;
pick a principal formula y; () for each i. We claim that {—y; | i € I} is finitely satisfiable: given = y;,, ..., i,

we can findi” € I'\ {i,, ..., ix}; since the n-types are distinct, we necessarily have

Ci B i (ci) A+ Ay (C).

By compactness, there is an n-type p(¢) of Th(A) that contains {—x; | i € I} yetpo(C) # tpc, (¢;) forany i

as the latter contains y;, which is the desired contradiction. We conclude that A must be oligomorphic.

iv) = ii) Suppose there are k distinct Aut A-orbits of A”. As we noted in Remark 1.9b), any 0-definable subset

of A™ is a union of Aut A-orbits; there are only 2% of those.

ii) = iii) Suppose that ¢y, ..., ¢, are representatives of the =7,(a)-equivalence classes of the R-formulae in
the free variables x, . . ., x,. Say only ¢;, ..., ¢;, appear in the n-type p(cy, ..., ¢,); then their conjunction

@i, A -+ A ¢y, isaprincipal formula. L]

Remark r.x2 Let B = {b,,...,br} C A be finite. Expand the signature to Rz by adding unary predicates
for each b € B, and interpret A as an Rp-structure Ap in the obvious way. Then Aut Ag = AutA/B, and
(ay, ..., ay) isin the same Aut A/B-orbit as (al, ..., a},) precisely when (a,, ..., an, by, ..., by) isin the
same Aut A-orbitas (a], ..., a,, b, ..., by). Therefore there are at most as many Aut A g-orbits of A" as
Aut A-orbits of A"k if A is oligomorphic, so is Ag. In this case:

2’) Every n-type of Th(Ap) is principal and thus realised in A g, so it follows from Lemma 1.10 that
t])AB(aI, ..., ay) > AutA/B - (a,,...,ay)

is a well-defined bijection between n-types with parameters from B and Aut A/ B-orbits of A",
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b’) The Aut A/B-orbitof any a € A" is 0-definable by any principal R g-formula @ for zp Ap (a). Indeed
®[(Ap)"] contains @ and thus its Aut A /B-orbit; on the other hand, by Lemma 1.10 we have

Ag E®() = 1, (b)=1p, (@) = beAuA/B-a.

Furthermore, the Aut A/B-orbit of @ is B-definable by an R-formula — in ®(x,,...,x,) replace
every subformula b;(y) by z; = y with z; fresh to obtain ¢(x,,...,x,, 2, ..., 2xk), and consider
G[A", by, ..., br] —soin A", the Aut A/B-invariant subsets are precisely the B-definable ones.

) ACL({by,...,br}) = ad({b,,...,br}), DCL({b,,...,br}) = dd({b,,...,bi}) and are both
finite.

1.3 Computability

The term “atom” is overloaded.

o) In the introductory historical notes, atoms mean urelements are synonyms in Fraenkel-Mostowski permu-
tation models of sets with atoms.

1) In Example 1.4 we referred to the elements of various Fraissé limits as atoms.

2) An atom in a partially ordered set is 2 minimal element that is not the bottom element. We note that prin-
cipal formulae for n-types (which are ultrafilters) are precisely the atoms in the nth Lindenbaum algebra.
Accordingly, as an oligomorphic structure A realises only principal (and thus all) types, it is called an atomic
(and saturated) model of 7H(A).

3) Ri(xy,...,%y,) is also known as an atomic formula.

0) is the reason why we chose the terminology in 1): we will build sets with equality atoms, ordered atoms, or graph
atoms in the next section. But our homogeneous atoms have a more than coincidental connection with 2) and
3). To see this, recall that the R-structure A admits quantifier elimination if for any R-formula ¢(X), there is a
quantifier-free R-formula ®(X) — i.e., a formula built up from T, the atomic formulae, and logical connectives

— with p[A"] = ®[A"]. We can now state two model-theoretic generalities about the countable model A:

() Assume A is oligomorphic. Then it is homogeneous if and only if it eliminates quantifiers.
() Assume R = R, Ry, ..., R, isfinite, so that the quantifier-free formulae in 1 free variables can only define
finitely many distinct subsets of A”. Then A is oligomorphic whenever it is homogeneous or eliminates

quantifiers.

The upshot is that every homogeneous structure of atoms in Example 1.4 is oligomorphic by () and eliminates
quantifiers by (T). We will comment more on these structures below, but first we give two examples that fail to be

homogeneous over a finite relational signature.

1.3.1 Bad: infinite signatures

Example 1.13 (the canonical relational structure) Let R+ be the expansion of R by an n-ary predicate for
each Aut A-orbit of A" for every n € N. From A we can naturally define an R¢-structure A+, where an
isomorphism a, — b,,...,a, — b, means that — tautologically — 7 - @ = b for some m € AutA =
Aut A+. In other words, any structure can be hardcoded to be homogeneous (and to eliminate quantifiers if

A is oligomorphic) in an infinite language.
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So, in general, we cannot hope for an effective quantifier elimination procedure when the signature of A is
infinite. We can still be more lenient by demanding the existence of a finite relational signature R’ and a homoge-
nous R’-structure A’ with the same domain as A and with Aut A = Aut A’. In the terminology of [Cov9o], we

demand that A be homogenisable. Here is an example where we pay the price for insisting on a relational signature.

Example 1.14 (bit strings with XOR) Consider the vector space V, with basis N over the 2-element field
Z,, which can be regarded as a structure with a unary relation (—) = o and a ternary relation (=) + (=) = (-).
Eachv € V, isasequence of o and r’s with only finitely many r’s, so by discarding all the infinitely many trailing

o’s we can identify v with a bit string; in this way we can identify vector addition with bitwise XOR.

Note that AutV, = GL(N,,Z,), and the Aut V,-orbit of (vi, ..., v,) is determined by the linear rela-
tions that hold between them. It follows that there are at most (2)*") orbits and therefore V, is oligomor-

phic. However V, is not homogeneous: given linearly independent vectors ey, e,, e, e, the map
(en, e, 05,e,) = (e, 65,5, + ¢, + ;)

is an isomorphism — indeed 3v(x; + x, = v A v +x, = x,) cannot be expressed without quantifiers in this
language — that clearly cannot extend to an automorphism. Even worse, V, is not even homogenisable: the

same argument works with 72 + 1in place of 3 with n being the largest arity in the finite signature.

13.2 Good: finite signatures

We are able to say something more concrete in a structure A that is homogeneous over a finite relational signature.
Since A is necessarily oligomorphic, every n-type corresponds to a unique Aut A-orbit of A"; by homogeneity,
every Aut A-orbit of A" corresponds to a unique labelled isomorphism class (also called zZsomorphism type or, when
Ais (Q, =, <), order type) of substructures with at most n elements. Indeed, leta = (a, ..., an-, a) € A"
Given ji, ..., jn; € {1, ...,n —1,n}" where n; is the arity of the symbol R;, put

d_ef Ri(xj‘,...,xjni) ifAlzR,-(aj‘,...,ajni),
ﬁRi(le,. "’xj"i) if A bé R[(ajl, . ..,ajn[);

i) =
def A
€
Dg(Xp, .o Xp, Xn) = /\ /\ Pi,(joseering)
21 (Jorosfing ) EATS

sothat A | @g(Z) precisely when a;, = by, ...,an—, = bp_y, a, — by is an isomorphism. Then ®z turns

out to be a quantifier-free principal formula for p, (@) and @4, . 4, a0 [A"] = AutA - (ay, ..., ay—, an).

But now we know how to eliminate quantifiers explicitly. Observe first that
q)(al,..‘,a,,_,) [An_l] = AutA - (au ey an—l) = (Han)(a.,.“,an_,,an)) [An],

and @, 4,_,) can be obtained from @y, .4, . a,) by removing from the conjunction any atomic formula or
its negation p; (... j,.) Wheresome k =1, ..., n; is such that ji = n. Now if (x,, ..., x,_;, X,) is a quantifier-
1

. . t ¢ t
free formula and we have a finite decomposition A" = [ J; AutA - (al( ), ey af,_)l, afl )), we can work out a
decomposition

ny _ n

VAT =C N R 04

Ay (a®,..a) alf)
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which means that

n—i1 —_ n—i
(Fxp) [A" ] = ( \/ Bn® 0o 40 [A"]
vaky(a ,.ail.a))
=( \/ CI)am ..... a A"
vaky(a ,.ail.a))
Finally, by removing quantifiers from the inside out we can eliminate the quantifiers from any R-formula. In fact,

the following is true:

Theorem r.15 ([Bojig, Theorem 7.20])
Let R be a finite relational signature. Suppose X is an amalgamation class of finite R-structures such that we
can compute, given any n € N, representatives for isomorphism classes of n-element structures and that there are

only finitely many of them. Then
7) FLim X is homogeneous and oligomorphic;

71) its elements can be represented in a finite way;
1iz) whether FLIm X = ¢(ay, . . ., an) foran R-formula ¢ (X) and parametersa € (FLim K)" is decidable.

2 Nominal sets

Now that we have settled on the model-theoretic assumptions on the atoms structure A — that it is a countably
infinite, homogeneous, and oligomorphic structure over a finite relational signature which we assume henceforth

— we can start building sets with atoms.

2.1 As hereditarily finitely supported sets with atoms

... out of nothing I have created a strange new

universe.

Jdnos Bolyai in an 1823 letter to his father,

referring to his non-Euclidean geometry

One can follow the instruction to the letter by constructing, given a set A, a cumulative hierarchy
Vo(4) ¥ 4,
def
Va+I(A) = Va(A) U SO(VQ(A)),

def
V/I:U(K,l a#o(A) = U V(X(A)

a<Ad

by transfinite recursion like Zermelo did in [Zer3o, p.36] so that
Vo(A) CVI(A)C---CV,C -

and U, Va (0) is the classical, so-called von Neumann universe of sets sitting inside the bigger universe |, Vo (A)
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of atoms — every a € A is empty but not a set — and sets with atoms. Then, because any descending chain of €’s

must be finite, one can inductively define a group action of Aut A on | J, Vo (A) by

f
7-a® n(a),

n-Xdzef{Jr-xlxeX}

form € AutA. Noticethatr-x €1+ X & x€ Xandthatn- X =Y & X=n"'.Y.

2.1 Supports

Here comes the central notion: we say S C A is a support of X € (J, Vo(A) if every m1 € AutA/S satisfies
- X = X. Observe that S supports X if and only if

Vi,me AutA:1|s=nls = 7-X=n-X.

If S can be taken to be finite, we say X is finitely supported; if S can be taken to be empty, we say X is equivariant.
As basic examples, every atom a € A = V,(A) is supported by {a}, and so are the sets {a} and A \ {a} in V;(A);
actually, since A is oligomorphic, a subset of the atoms is finitely supported if and only if it is S-definable for some
S Cfn A. We only want to consider sets that are finitely supported from the ground up. To make this rigorous,
given a property B of objects in | J, Vo (A), we recursively define the collection Hy of bereditarily B sets (with

atoms) by:
Vx € X :xisa®Patomorx € Hy

X € Hg

Xisa P set

Abbreviating ‘finitely supported’ as f-s., we arrive at the Fraenkel-Mostowski universe Hy; which encompasses the
classical universe [, Vi (0) of sets without atoms; of course the equivariant set A is in H; as well. We shall refer

to the inhabitants of H; as nominal sets (with atoms).

Like with normal sets, there are many ways to build new nominal sets with atoms from old. What is new is
thatif X € [, Vo (A) is supported by Sx Cg, A, then 7 - X is supported by 7 - Sx Cg, A and any superset; so
it X € Hg, thenw - X € Hy, too.

Remark 2.1 (folklore) Let X,Y € Hy,. Then the following sets also live in Hy, :

a) the collections

{X,Y}, {n-X|neAutA/S}
where S Cg, A (and we can even allow X and Y to be atoms);
b) the usual set operations
XUY, XnY, X\Y, XxVY, Ux;

c) the finitely supported elements of the power set and of the function set

00 (X) ¥z X | Zisfe), (X —p ¥) € {f | fisafsfunction X — Y);

d) the image of a finitely supported function f : X — Y,

JX) ={f(x) | x € X};

14



e) the equivalence class and the quotient set

. € eX | ~x) X/~ E (] |xex)

of X under a finitely supported equivalence relation ~.

As is customary in set theory, here (x, y) € X X Y is defined as the Kuratowski pair
{{o}, {x v}
and a binary relation R on X X Y is defined as the subset of pairs
{(x,y) e XXY | xR y}.

As an equivalence relation ~ on X and a function f : X — Y are just binary relations satisfying additional

properties, the action of Aut A on Hy, prescribes what 7t - ~, 7w - f, and their supports are:

1) the equivalence relation ~ is supported by S C A precisely if for all 7 € Aut A/S we have

{(xnxz) € XXX|x1 "’xz} =7T~{(x1,x2) € XXX|XI "’xz}

= {(ﬂ- C X T 'X;_) | (-xl’-xz) €EX XX, x, Nxz}’

ie,ifwehaver- X =Xandx, ~x, &< n-x;, ~m-x,forallx,x, € X;
2) the function f is supported by S C A precisely if for all 7 € Aut A/S we have

{(, f(0) | x e X}=nm-{(x, f(x)) | x € X}
={(m-x,7- f(x)) | x € X},

ie,ifwehavernr - X =X, - f(X) = f(X),and f(x) =n- f(n™"-x) forallx € X.

The seminal Cambridge paper [GPoz2, §4] and the Warsaw book [Boji9, §3.1] both take this element-oriented,
set-theoretic approach to foundations.

2.1.2  Orbit-finiteness
Let X € Hy, beanominal set with atoms. Say X is supported by § Cg,, A; then there is a group action of Aut A/S
on X, under which X is equal to a union of Aut A /S-orbits. Even though the orbit

AutA/S - x={n-x|meAutA/S} C X

of x € X can in general contain infinitely many elements, to describe it we only needed to specify x and S. So by
counting the number of orbits rather than of elements, we obtain a more useful and general notion of finiteness

for sets with atoms. Note that we need not worry about the choice of the support S.

Definition 2.2 ([Boji3, Lemma 2.2])

Because A is oligomorphic, the two conditions below are equivalent for X € Hy, :

i) X isa finite disjoint union of Aut A/S-orbits for some support S Cg, A of X;
ii) X is a finite disjoint union of Aut A /S’-orbits for any support §* Cz, A of X.
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If either condition holds, we call X orbit-finite.”

“Why not ‘finite-orbit’ like in ‘finite-state machines’

Proor. Bydefinition X € Hy, admits some finite support S; that ii) implies i) is obvious. Now assume i) to write

X = UX[, Xl' dzefAutA/S * Xi,

and take any other support §” Cg, A of X. Since any x; € X admits some finite support {a,, . . ., apn, }, observe
that
{(71’ Ay yan), TX;) | e AutA/S}

is the graph of a well-defined surjective function
fiAutA/S - (ay,....an) = Xi

that is supported by S and hence also by S U §’. But we saw in Remark r.12 that A™ is a finite union of distinct
AutA/(SUS")-orbits; so Aut A/S - (ay, . .., a,,) € A™, whichisinvariant under Aut A/(SUS’) C AutA/S,
is a sub-union of these finitely many orbits — say Aut A/S - (ay, ..., n;) = J; AutA/(SUS’) - E Now

X; = f(AutA/S- (a,.. .,a,,i))

- f(U AutA/(SUS') - b_j) = Jauwa/sus) - £,
J J

which means that X = J; X; = J; U, AutA/(SU S) - f(E) is a finite union of Aut A/(S U §’)-orbits. This
establishes ii):
AutA/(SUS") -x — AutA/S - x, xeX

is a well-defined surjection from the Aut A/(S U §”)-orbits in X onto the Aut A/S’-orbits in X. m

An orbit in X is a subset of X, so it makes little sense to speak about orbits in an atom; regardless, we also
declare every a € A to be orbit-finite. Abbreviating ‘orbit-finite’ as o-f, we obtain the universe H, 7 of hereditarily

orbit-finite sets inside H, . Again we give two basic examples:

* as the orbit of x in a set without atoms is just the singleton {x}, a classical set in H,.y N U4 Vo (0) is justa
hereditarily finite set;
* withatomswe have A € H,pand 7 - X € H,rif X € H, 1.

Compared to Remark 2.1, there are almost as many ways to build new hereditarily orbit-finite sets from old.

Remark 2.3 ([Bojig, Lemma 3.24]) If X,Y € H,r C Hy,, then
{X,Y}, {n-X|nmeAutA/S},
XUY, XnY, X\Y, XxVY, UX,
Zegn(X), fX), [xl., X/~

also live in H, 5, where f and ~ are finitely supported (and hence orbit-finite).

However 97, (X) and (X —p; Y) are not in general orbit-finite: consider X = AandY = {0, {0}};

finite subsets of A with different numbers of atoms lie in different orbits.
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Like how Ackermann encoded the hereditarily finite sets as natural numbers [Ack37, ¢) on p.308], the heredi-
tarily orbit-finite sets can be encoded as sez-builder expressions [Bojig, Chapter 4] generalising how ¢[A"] C A" is
represented by the formula ¢. The technical specifics are spelt out in [KS16, §2—4] and [MSSKS17, §6] to develop
the Haskell module NA (https://www.mimuw.edu.pl/ szynwelski/nlambda/), and in [KT17, §4] to
develop the C++ library LOIS (Looping Over Infinite Sets, https : //www.mimuw.edu.pl/~erykk/lois/).

2.2 As continuous actions of the automorphism group

Groups, as men, will be known by their actions.

asperhttps://mathoverflow.net/a/7759/126582,

Guillermo Moreno in a differential geometry class

Previously we built up a big universe Hy; with an action of Aut A and let every set with atom inherit this action;
the atoms a € A and the set brackets were primitives, whilst the actions and supports were derived notions. It is
possible to take a more structuralist perspective which instead places the emphasis on Aut A and its actions, as is

done in the Cambridge book [Pitr3, Chapter 2] and the seminal Warsaw paper [BKL14, §4].

2.2.1  The Polish group topology
As A is countable, enumerate its elements as @, a,, . . . and consider the following distance function on Aut A:

d(n,m,) =
n

def | O ifﬂl =T,
27" otherwise, where n = min {i | m,(a;) # 7,(a;) orn ' (a;) # 7' (a;)}.

Then Aut A becomes a complete metric space: if a sequence 71y, 7,, 715, . . . is Cauchy thenithasalimitm € Aut A.
We note this metric topology is the same as the subspace topology inherited from the product topology on A®

where A is endowed with the discrete topology; the open sets are arbitrary unions of the cosets
ToAutA/S ={m € AutA : n|s = 7|s}

with 7 € Aut Aand § Cg, A. Butsince there are only countably many different 7|s’s, Aut A is a so named Polish
topological space — actually, a Polish zopological group: the operations

AutA — AutA Aut A X AutA — AutA

Y (m, 1) > ot

are continuous under the above topology; see, e.g., [Hod93, Lemma 4.1.5(a)].
We recall two standard definitions.

o) An Aut A-set is nothing but an ordinary set X equipped with a group action, that is, a function

AutAX X —» X

(myx) > m-x

suchthatid-x =xand (ro71)-x=7m- (7 -x)forallx € Xand 7,7 € Aut A.
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1) An equivariant function between two Aut A-sets X,Y is a function f : X — Y such that
AutAXX —— X
idx f f

AutAXY —— Y

commutes, i.e., such that f(7-x) = - f(x) forallmr € Aut Aandx € X.

But observe that the group action is continuous if and only if
def
(AutA), = {mr e AutA | n-x =x}

is open for every x € X, ie., if (AutA), contains Aut A/Sy for some Sy Cp, A [Hodos, Lemma 4.1.5(b)].
Particularly consider a nominal set with atoms X € Hy, that is equivariant. Then X is certainly an Aut A-set,
where the action is moreover continuous: given any x € X, saying x is supported by Sy Shin A amounts to saying
(AutA)x 2 Aut A/S, — we simply ignore the inner set structure of x. This motivates the following definition.

Definition 2.4
A nominal Aut A-set is an Aut A-set X whose group action is continuous. The nominal Aut A-sets together

with the equivariant functions form a category NomSeta ;. 4.

There is an analogue to Remark 2.1: NomSeta, 4 has products, coproducts, power objects, exponentials, and
quotient objects. In fact, NomSetyy, 4 is a Cartesian closed category and a Boolean topos [Pit13, Theorems 2.19

and 2.23].

Also, we can reuse the notion of orbit-finiteness from Definition 2.2; where the constructions make sense,

Remark 2.3 still applies. For instance, the following are orbit-finite nominal Aut A-sets:

* any finite set X, viewed as an Aut A-set with the trivial group action 7 - x = x which is trivially continuous;

* any (-definable subset of A", with the usual oligomorphic action of Aut A from Definition 1.8;

* given an open subgroup G C Aut A, the cosets {T o G | T € AutA} with 7 - (7 0 G) & (mo1)o G —
hereto G =71"oGifandonlyif 7™ o7’ € G,and (AutA);cg =70 Go1

2.2.2 Interpretations and reducts

In the spirit of the Erlangen program, we can study structures other than A through their automorphism groups.

Definition 2.5 ([Evar3, Definition 2.4])
Let R’ be another relational signature and A" an R’-structure. We say A" is interpretable in A if there exist

¢ an (-definable subset D C A",
* an O-definable subset E C A*" that is an equivalence relation on D,
* and a bijection f : D/E — A’

18



such that for every k-ary relation symbol R’ in R’, the subset

{(@,...,ax) e D* : A" ER (f([@]E)..... f([axlg))} € A™

is O-definable. Moreover we say A’ is a reduct of Aif D = Aand E = {(a,a) | a € D}.

Suppose A’ isinterpretablein A andlet D, E, f be asabove. Then the quotient D/ E is naturally an orbit-finite

nominal Aut A-set, where the equivalence classes are called imaginary elements of A. More importantly

¢ : AutA — Aut A’
m fo(m-—)o f™

is a continuous group homomorphism satisfying ¢ () - f( [dg) = f([n - d]E), so that two k-tuples of D/E
lie in the same Aut A-orbit if and only if their entrywise images under f lie in the same ¢(Aut A)-orbit and 4
fortiori also lie in the same orbit under the bigger group Aut A’. But D /E has finitely many orbits under Aut A,
so (f(D/E))* = (A")* has finitely many orbits under Aut A’ given any k € N; thatis, A’ is oligomorphic under
¢(AutA) and Aut A’. When A is a reduct of A, the homomorphism ¢ is simply the inclusion Aut A C Aut A’.

The converses also hold thanks to our assumptions on A.
Proposition 2.6 ([AZ86, Theorems r.x and 1.2]) As A is countable and oligomorphic over a finite signature,

) A’ is a reduct of A if and only if Aut A C Aut A';
i) A’ is interpretable in A if and only if there is a continuous group homomorphism ¢ : Aut A — Aut A’
such that A’ is oligomorphic under ¢(Aut A).

On the topological group-theoretic side, we have the translation below:

Remark 2.7 ([Hod93, Theorem 4.1.4]) Let A_ be the reduct of A where any symbol except = is forgotten;
then Aut A_ consists of all bijections A — A.

a) A subgroup G C AutA. is closed if and only if G = Aut A’ for some R’-structure with domain A';
in the ‘only if” direction, we can take R to be the infinite canonical signature from Example 1.13 with a

relation symbol for each orbit.

b) On the structures with domain A over arbitrary signatures, the relation of being a reduct defines a
preorder. We say A, and A, are first-order interdefinable if each is a reduct of the other. It follows from
the results above that reducts of the oligomorphic R-structure A are, up to first-order interdefinability,

in an order-reversing bijection with closed subgroups of Aut A— containing Aut A.

Conjecture 2.8 ([Thoor, p.177])
As a countable bomogeneous structure over a finite relational signature, A only bas finitely many reducts up to
Sfirst-order interdefinability; i.e., there are only finitely many closed subgroups G C Aut A- with Aut A C G.

The conjecture of Thomas is obviously true for the equality atoms, where Aut A € G C Aut A- = Aut A does

not leave space for any non-trivial reducts. It has also been confirmed for, amongst a few others:
1) the ordered atoms, with 3 non-trivial reducts up to first-order interdefinability [Cam76, Theorem 6.1];

2) the Rado graph, also with 3 non-trivial reducts up to interdefinability, and the Henson K -free graphs,

where all reducts are trivial up to interdefinability [Thoor, Theorems 1 and 2];
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3) the generically ordered Rado graph, with 42 non-trivial reducts up to interdefinability [BPP13, Theorem 1]

subsuming the reducts of the ordered atoms and of the graph atoms; a nice catalogue is supplied in §2.

Apartfrom its validity in these individual structures, the conjecture very much remains open; the Ramsey-theoretic
technique in 3) employed by Bodirsky and Pinsker et al. is perhaps the most general approach known. Regardless,
these reducts turn out to be homogeneous over a finite relational signature and make a good stock of examples

together the ones from Example 1.2 and Example 1.4.

2.2.3 The (strong) small index property

Sometimes the Polish topology on Aut A can be recovered from the abstract group structure alone.

Definition 2.9

The index of a subgroup G € AutA is the size of {m 0 G | 7 € AutA}. We say G is a subgroup of small
index if this size is at most countable, i.e., if there are finitely or countably infinitely many cosets of G in Aut A.
Now

i) A has the small index property (SIP) if every subgroup G C Aut A of small index is open, i.e., satisfies
AutA/SCG

for some S Cg, A;
ii) A has the strong small index property (SSIP) if every subgroup G € Aut A of small index satisfies

AutA/S C G C (AutA)g

for some S C, A, where (Aut A)g is the stabiliser of S in the Aut A-set 97, (A) df {T|T s A}

Several remarks are in order.
1) LeteS={ay,...,a,} Chin A. Writes = (a,,...,a,) € A"; then
AutA/S ={n € AutA | Vs € S:n(s) = s} = (AutA)s
is the pointwise stabiliser of S, and the Orbit-Stabiliser Theorem says
mo(AutA)z— -7, € AutA

is an isomorphism between the cosets of Aut Az and the orbit Aut A -5 € A", which is certainly countable.

Therefore every Aut A/S is a subgroup of small index; hence so is every open subgroup of Aut A.
2) Let S and s be as above. Compared to Aut A/S = (Aut A)g, the subgroup
(AutA)g = {mr € AutA |Vs e S:n(s) € S}
is the sezwise stabiliser of S. One can check that (Aut A)s is a normal subgroup of (Aut A)g, and that

(AutA)g/(AutA)y — Aut S

mo (AutA)z — 7|s

is a well-defined injective homomorphism into the finite group Aut S.
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3) Assume that A has the SIP. If A’ is N,-categorical too and ¢ : Aut A — Aut A’ is a group isomorphism,
then ¢ is moreover a homeomorphism [Macri, Proposition s.2.2]. By Proposition 2.6b) A is interpretable
in A” and A’ is interpretable in A, which sets up a sort of homotopy equivalence called bi-znterpretability
between A and A" — see [AZ86, Corollary 1.4(ii) and definitions above]. If furthermore A has the SSIP and
acd({a}) = {a},ad({a’}) ={a’} fora € A, a’ € A’, then any group isomorphism ¢ : Aut A — Aut A’
is induced by a bijection f : A — A’ [PSi7a, Corollary 2]. In other words, with the (S)SIP one may

reconstruct the information lost in the passage
the permutation group (Aut A, A) — the topological group Aut A +— the abstract group Aut A.

4) Structures with the SSIP include the equality atoms [DNT86, Theorem 1], the ordered atoms [ Tru89, Theo-
rem 2.12], the Rado graph, the Henson K,-free graphs, and their directed counterparts [PS17b, Corollary 3].
Such a property is not easy to prove generally: whether even the SIP holds for the random tournament

[Macri, Question s.2.7i)] is still a standing question.

We are mainly interested in the ‘strong’ part of the SSIP, which curiously is known better to model theorists as
weak elimination of imaginary elements introduced in [Poi83, §2 except the modern definition uses the algebraic
closure in place of « la cléture rationnelle », i.e., the definable closure]; see also [Hodo3, §4.4]. Fortunately, more
intrinsic characterisations exist. Recall first the algebraic closures from Definition 1.8; we note that 2¢/(—) is indeed

a closure operator on finite subsets of the oligomorphic structure A: for B C C C, A, we have
B C ad(B) C ac(C) = ad(ad(C)) gy A

We say B is algebraically closed it acl(B) = B.

Definition 2.10
We say A admits least finite, algebraically closed supports if any of the following equivalent [EH93, Lemma 1.3]
conditions holds.

i) A has weak elimination of imaginaries.

ii) ForS,T Cf, A algebraically closed, the subgroup of Aut A generated by
AutA/S U AutA/T

coincides with Aut A/(S N T), where S N T Cp,, A is also algebraically closed.
iii) If G C Aut A is an open subgroup, then there is an algebraically closed SUPP(G) Cg, A satistying

AutA/S C G & S 2 SUPP(G)

for all algebraically closed S Cg, A — so SUPP(G) is necessarily unique.
iv) If X is a nominal Aut A-set and x € X, then

Aut A/SUPPx C (AutA), C (Aut A)suppx

for some algebraically closed SUPP x Cg, A — here SUPP x also must be unique.

We note that
SUPP: X — 94,(A)

is an equivariant function: because (Aut A) r.x = mo (AutA)yon'and 77 o AutA/Som = AutA/(x7"-S),
from iii) we see that SUPP(x - x) = & - SUPP x.
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Recall that we already have a sort of equivalence between the open subgroups of Aut A and single-orbit nom-
inal Aut A-sets: any x € X € NomSety,a defines an open subgroup (AutA), C AutA; conversely an open
G C AutAgivesriseto G € {To G | T € AutA} € NomSety, o with (AutA)g = G. The point s that a least

support assumption affords an even more concrete way to represent orbit-finite nominal Aut A-sets.

Theorem 2.11 (algebraically closed adaptation of [BKLi4, Theorems 9.1r7 and 10.9])

Suppose A admits least finite algebraically closed supports. (Strictly speaking we do not use the weak elimination
of imaginaries characterisation, so we may drop the oligomorphicity assumption.) Then the full subcategory of
NomSeta, o 07 single-orbit nominal Aut A-sets is equivalent to the category with

* as objects, pairs (S, H) where S Chin Ais algebraically closed and H C Aut S is a subgroup;
o as morphisms from (Sy, H,) to (S,, H,), sets of embeddings S, — A of the formio H, = (io h,) o H,,
whereioh, : S, — S, isan embedding such that H, C (i o h,) o H, o (i o h,) ™" for some/any h, € H,

where
* the composition of i o H, followed by j o H, is given by
ioh,ojoh,oH,=iojoH,

* and the identity on (S, H) is given by id o H withid : § — S obviously satisfying H C id o H 0 id™".

Proo¥. We exhibit a fully faithful functor [ -] from our synthetic category directly to NomSet 4.

* On objects, we put

[S.H] d:ef{s oH|s:S — Aisanembedding}

with the action 7 - (s o H) def (mos) o H form € AutA. Evidently the inclusion map 15 : § — Aisin
[S, H]); by homogeneity any embedding s : § — A can be extended to some g € AutA, which means
that 15 o tg = s — hence [ S, H]| = Aut A - (15 o H). Itis instructive to check that

AutA/S C (AutA),om C (AutA)g,

from which one deduces that 77- § is a finite support (and the least such) forrots o H € [[S, H]. Particularly,
[S, H] is a single-orbit nominal Aut A-set.

* On morphisms, we put

[[i o HZ]] : [[SI,HI]] — [SZ,HZ]]

mots, o> mous oioH,

which is visibly equivariant; it is well-defined as a function because if 7 o t5, 0 H;, = n’ o 15, o H; then

I

mots, =n' ous oh, forsomeh, € H CioH,oi " s0

. , .
mots, 0l =m otg 0oh ol

=n'oug 0ioh,
for some h, € H, which shows [[i o H,]| (7w o ts, o H,) = [i o H,]|(n" o ts, o H,).
* For functoriality, let j : §; — S, satisfy H, C j o H; 0 j"and consider [ j o H,] : [[S,, H. ] — [S;, H,]

On the one hand, by homogeneity some 7; € Aut A extendsi : S, — S; and therefore satisfies 7; o t5, =
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Ls, © I, S0 we get

[[joHs]]o[[ioHy_]]:71'0LS‘oH1|—>7'(<>‘1'l~oLSzojoH3
=moug oiojoH,.
Onthe otherhand H, CioH,0i™* C (ioj)oH,o (ioj) " so[[(io ) o H,] isindeed a morphism and

also sends 7w o 15, 0 H; tom o tg, o i o j o H;. The other requirement that [id] : [S, H] — [S., H] is the
identity function is apparent.

* For full faithfulness, observe that an equivariant function f : [S,, H,]| = AutA - (¢s, 0 Hy) — [S,, H, ]
in NomSeta, s must be of the form

Ojomr, :motg, o Hi>mojoH,

where j : S, — Aisan embedding — here j o H, = f(ts, o H;). Now O jop, is well-defined only if
1. S, = SUPP(ts, 0 H;) 2 SUPP(j o H,) = j(S,); and
2. forall b, € H, and 7, € Aut A extending A,

Th, Oj oH, = OjOHz(LS, o hI OHI) = OjOH,_(LSl o HI) = .] o H,,

ie,h oj=joh,forsomeh, € H.
So [ is full. But any embedding j : S, — A satisfying j(S,) € S,and H, o j C j o H, gives rise to an
equivariant function O jop, : [Si, H;]| = [[S., H.], and clearly O jop, = O jop, implies j o H, = j" o H,
by evaluating at ¢5, o Hy; so [ -] is faithful.

Finally, take any Aut A - x € NomSety 4. By our assumption on A, there is a least finite algebraically closed
support SUPPx Cg, A of x. Note that Aut A/SUPP x is also normal in (Aut A), C (Aut A)sypp x; let us write
H C Aut(SUPPx) for the image of the group homomorphism

(AutA),/(Aut A/SUPP x) — Aut(SUPPx)
TO (AutA/SUPPx) — T|suppx.

Now consider the map

Oy : [SUPPx, H]] — AutA - x

mouwyppx o H > - x
which is certainly equivariant and surjective; but before that, it is well-defined and injective since

mosuppx © H=n"0tsuppx 0 H

31 € (AutA) : mowsuppx = 7' © tsUppx © T|sUPpx
Ar € (AutA),,Vs € SUPPx : n(s) = (7' o 7)(s)
(") "ome (AutA),

1117

n-x=n-x.

We conclude that Oy is an isomorphism in NomSetay 4 and that an arbitrary single-orbit nominal Aut A-set

Aut A - x is in the essential image of [ ]| (whose free coproduct completion is NomSety, 4 at any rate). ]

Such an orbit-by-orbit representation has been adopted in [BBKLz2, §10] for a prototype of N4, and more
recently in [VMR22, §5.4] to implement a C++ library ONs (Ordered Nominal Sets, https://github.com
/davidv1992/0NS) as well as a Haskell library Ons-Hs (https://github.com/Jaxan/ons-hs). The
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main disadvantage compared to the set-builder notations based on first-order formulae is that to represent the
straightforwardly defined set T[A"] = A", we need to represent each of the

n+(n—)l+---+20+1

orbits for the ordered atoms and still as many orbits as the nth Bell number for the equality atoms. Indeed,
[KLOT14, §5] reports that “only very rudimentary programs could be evaluated in reasonable time” with the orbit-
based predecessor to NA. Nonetheless, when working with orbits in J; A" with 7 very small (n < 3), even if the
orbit count is big ONs(-Hs) can significantly outperform LOIS and NA; see [VMR22, Table 2] for a comparison

of the running times.

2.3 As sheaves on an dge

(Die Mathematiker sind eine Art Franzosen ...)
Mathematicians are like Frenchmen: whatever
you say to them they translate into their own
language, and forthwith it is something entirely
different.

Johann Goethe [Goe88, 1279. on p.247]

Finally, it is possible too to take supports as the primitive notion and derive the action of AutA. I learnt
this approach from the notes [Klira; Klittb] which are in turn inspired by [Johoz, Example 2.r.11(h)]; I mainly
paraphrase what is written there while likely including too many proofs and details.

To begin with, we turn the 4ge of A into a category A

o) the objects are the finite substructures (i.e., finite subsets) of A, and
1) the morphisms A(C, D) between C, D Cf,, A are embeddings of C into D.

The homogeneity assumption means every i € A(C , D) can be extended to somei € AutA.

Definition 2.12
A presheaf S is just a functor A — Set. We say S is a sheaf if the sheaf condition

o) SC ¢---"----1
i Sl’l /
D SD
J lk Skllsj
E SE

Vi,Vy : (VE,j,k:jOiszi = Sj(y)sz(y)) = dlx: Si(x) =y.

holds. We write PSh(A) and Sh(A) for the categories of presheaves and sheaves with natural transformations.

Note our sheaves are precisely category theorists’ sheaves for the atomic topology on (1&)"p [MMo4, Lemma 2 on
p-126 of §II1.4], where the Ore condition is satisfied [MMo4, Example 2(f) on p.115 of §III.4] precisely because the

amalgamation property is satisfied by the 4ge of the homogeneous structure A.
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2.3.1

Between nominal sets and presheaves

Definition 2.13

We describe a functor §f : NomSeta,. 5 — Sh(A).
0) Given a nominal Aut A-set X, define X¥ : A — Set by:
def

D
One checks that X% does not depend on the choice of i € Aut A and indeed maps into XﬁD, that X*#

is functorial, and that X* satisfies the sheaf condition — y is supported by i(C), so take x = i

1) Given an equivariant function

C XtCE {xeX| C supports x}
i XfiixTx
= {x € X | D supports x}

i
def

XD
I . y.

x—71 sy
between nominal Aut A-sets, one easily checks that
B,
xtc fexmf(x)

Ytc

vHi

XD — Y¢D
FE s ()

xti
commutes and the horizontal functions are well-defined for any C, D Shin A. So the family f,ﬂ isa

natural transformation X# = Yﬂ, and the functoriality of f§ is immediate.

sc) /~

Now we describe a functor b : PSh(A) — NomSetp .
o) Let S : A — Set be a functor. Consider the wide subcategory Ag of A with only the inclusions
where (C Cg, A,x € SC) ~ (D Cp, A,y € SD) ifand only if Stpsc(x) = Steop(y) in SE for

Definition 2.14
tpoc : C — D as morphisms; note Ac is thin and filtered. Let Ic : Ac < A denote the inclusion

functor, and define the quotient set
. def
colim SIc = N (
Cpinh

Ex-C, Sxlc(x)]-

some E Cg, A that contains C U D.

Now given m € Aut A, put
m-[C,x]~
* This is well-defined because if E 2 C,thenn|c : C — n-Candn|g : E — & - E satisfy

Lx-Eox-C © Tlct = g © tgoc. (Here we also co-restrict a restriction to its image.)
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* It defines a group action because (7 o 7)|c = T|.c © 7lc.
* The resulting Aut A-set S b is nominal: each [C, x]. is supported by C.

1) Let@ : S = T be a natural transformation. We define
a’: 8" 1’
[C.x]. = [Coac(0)];

then
b

b

* o’ is well-defined: this follows from the naturality of @;

* a’ is equivariant: we check that

o(n-[C.x].) =’ ([x- C.Salc(x)]-)
= [n-C,(@z.c o Sn|c)(x)]~
=[n-C,(Tn|c oac)(x)])-
=7 [C,ac(x)]. =x-a"([C,x].).

Soa’isa morphism in NomSeta, o. Again, the functoriality of b is immediate.

Let us be pedantic and write b for the composite Sh(A) < PSh(A) LA NomSetpya-

Lemma 2.x5 Given any nominal Aut A-set X,

nx: X — (XH

x = [Cx,x]~, where Cy is any support of x

defines an equivariant bijection. Furthermore this isomorphism is natural in X.

ProOF. The nominal Aut A-set (X*)2 has
{(C,x) | C S5, Asupportsx € X}/~
as its underlying set, where (C, x) ~ (D, y) if and only if x = y, and is equipped with the action
n-[C,x].=[r-C,m-x]-~.
It follows that i7x is well-defined, equivariant, and bijective.

For the naturality of 7, let f : X — Y be an equivariant function between nominal Aut A-sets; we see that

X — 5 (xhb

fl l(f”)Q:[C,XLH[C,f(X)L

Y —— (Y#hb

commutes as desired.

Lemma 2.16 Given any sheaf' S € Sh(A),

s (SHF =8
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es.c: (SHFC - sc

[C,x]. —x
defines a natural (in C) isomorphism between sheaves. Furthermore this isomorphism is natural in S.

ProOF. The sheaf (S2)# assigns

* toeach C Cg, A, theset {[D Cg, A,y € SD]. | Vn € AutA/C : [D,y]. =[x - D,Sr|p(y)]-},and
* to cach embedding/ : C — F, the function [D, y]. [T D,SﬂD(y)]N.

But we can say more about an element [ D, y]. supported by C now that S is a sheaf. Firstly, we have (D, y) ~
(CUD,Sitcup-p(y)) def (D',y"). Nowlet j, k : D" — E be embeddings satistying j o tp'sc = k o tprocs
we wish to show S/ (") = Sk(y’). Well, because j, k € Aut A satisfy 7lc = k|, the support assumption gives

(7 D’ 81pr ()]~ = [k - D', Skl ()]

Since E 2 j(D') = j - D’ and j = tg5j(pr) © jlpr, we also know (j - D', Sj|p (")) ~ (E,Sj(y’")) by the
definition of ~; similarly (k - D', Sk|p/(y")) ~ (E, Sk(y")), so by transitivity we obtain

(E.,Sj(y") ~ (E,Sk(y"))

in S2. We are done: by the definition of ~, there is some F' 2 E such that Stp5r (Sj(y)) = Stroe(Sk(y’)); the
uniqueness in the sheaf condition forces Sj(y”) = Sk(y"). We conclude by applying the sheaf condition again,
this time using the existence: ' = Stpoc (x) for some x € SC, and therefore

[D.yl.=[D".y']. = [C,x]-.

Conversely, for any x € SC the element [C, x] . in St s supported by C, and we have (C, x) ~ (C, x") ifand only
if x = x” by the sheaf condition yet again. Allin all, £ ¢ is a well-defined bijection of sets.

Next we check the naturality of € +: given an embedding / : C — F, we want

(shtc __%C vsC
(Sg)nl:[c,x]J—)[T-C,Sﬂc(X)]Nl lsz
(SVFF N

to commute. Our wish is granted: SI(x) = (Stroi(c) © Sﬂc)(x) indeed.

Finally, we verify the naturality of €,. To thisend, leta : § = T be a natural transformation and let C C fin A
Then the component of () acCis

[C,x]~ € (SV)FC — a2([C,x]~) = [C,ac(x)]~ € (T)C.

We conclude that (¢ o €5.¢)([C,x]~) = ac(x) = (eT.c © (ag)ﬁc)([C,x]N) and that @ 0 &g = &7 o (e2)%. m

Theorem 2.r7
Sh(A) and NomSetay, o are equivalent as categories.

Proo¥. (#,b, 1., €.) is an adjoint equivalence. n
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2.3.2 The sheaf condition versus preserving pullbacks

When A is the equality atoms Sh(A) is the Schanuel topos, whose objects are perhaps more easily known as the
pullback-preserving functors A — Set [Joho2, Example 2.1.11(h)]. For a general A, the ige category A also has

. s PYic)nj(p) > \‘ (2.18)
l D

is a pullback square — if i o k = j o [ then

pullbacks: given embeddingsi : C — Eandj: D — E,

k

(iok)(B) € i(C),
(iok)(B) =(jol)(B) < j(D)

so b +— (i o k)(b) is a mediating morphism B — P which is easily seen to be unique. In general, however, no

containment relation holds between the pullback-preserving functors in PSh(A) and the sheaves in Sh(A).

Theorem 2.19

The following conditions are equivalent in the countable homogenecous structure A.

7) The dge of A is a strong amalgamation class — see Example 1.4.
11) A bas no algebraicity, i.e.,
VC Cpp Az ad(C)=C

— see Definition 1.8 and Remark 1.12¢) for why we want to assume 8y-categoricity.
111) A bas trivial definable closure (or is “fungible” as in [BK 114, Definition 9.6]), i.e.,

VC Cp, A 1 ddd(C) =C.

iv) Every pullback-preserving functor S : A > Setisa sheaf.

PROOE. i) & ii) is explained well in [Camoo, §2.7]. Also, ii) = iii) is obvious since
C Cdd(C) C ad(C).
For ii) & iii) let d € acl(C) so that Aut A/C - d is finite, say with the elements d,, . . ., dy—,, d,, = d. Then
AutA/(Cud{d,...,dy_})-d={d}

which entails thatd € dd(C U {d,,...,d,_}) =CU{d,,...,d,_,} and hencethatd € C.

Now we will show iii) & iv), so assume iv). Notice that the inclusion functor I : A <> Set preserves pullbacks,
so I isasheaf. Let C Cp, Aand take d € A\ C; the sheaf condition for § = I and i = tcu{ayoc says that

Vyecu{d};(VE,vcu{d}iE;ﬂc:mc — j(y)zk(y)) — yeC.

When y = d ¢ C, we see that there are j, k : C U {d} — E such that j|¢c = k|c but j(d) # k(d). It follows
that (77" o k) - d and d are distinct elements of Aut A/C - d, so d ¢ dcl(C) and thus dcl(C) C C.
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Finally, we tackle iii) = iv). Suppose that § € PSh(A) preserves pullbacks. To check the sheaf condition, let
i:C — Dandlety € SD be such that

ik
VEVD L5 E joi=koi = Sj(y) = Sk(y);

in the end we wish to establish Si(x) = y forauniquex € SC. Enumerate the elements of D \i(C) asd,, ..., dy;
using the assumption on the decidable closure, we will cook up d}, . . ., d;, and k so that
c—1 D

4

DU ....d}y}2D

—— DU{d,....d})

o

is a pullback square. We do so inductively: having picked distinct d;, ..., d,,, ..., d,, € A\ D such that
do #dyy=mg-do € AutA/(DUA{d],...,d,,_}\{de}) - da,

we can continue pick d,,,, € DU {d],...,d,,} because dp, ¢ dd(D U{d],...,d,,} \ {dm+}). Once we are
done, putk = (1, 0---om, om)|p so that
e €i(C) > (o om)(e) = =e
do = (mpo---omg)(dy) =" :d:z
making the square commute; to see that C is a pullback, notice the mediating morphism C — i(C) from (2.18) is

an isomorphism. Now S preserves pullbacks, and P = {(x,,x,) € SD X SD | Sk(x,) = Stpuqar,....a;,} 20 (%)}

with the two projections is a pullback in Set: so

\\\ f )2
S .
sc —3L % SD

\S:‘l \LSLDU{d",A..,d;l}QD

SD —— S(DU{d,.....d}})

where the mediating morphism f : P — SC is a bijection. But by our assumption on'y € SD we know that

(y,¥) € P,so f(y,y) is the unique x € SC satistying Si(x) = y that we hoped for. L]

Example 2.20 (structures with and without algebraicity) It is unsurprising that an algebraic structure

like (the canonical homogeneous expansion of) Example 1.14 “has algebraicity”: we have
ac({e;, e,}) ={o, e, e,,e, + €.}

where e;, e, € V, arelinearly independent. More trivially, the expansion by constants A g in Remark r.12 also
“has algebraicity”: we always have

b € dd(C)

whenever b € B. A less evident example is the disjoint union of complete graphs A = [¢J,,, K,, whenn > 1
is finite. There, given two distinct vertices x, y € Kj,, making m € Aut A fix the vertex (i,x) € A also forces
7(i, y) to be from the finite vertex set

{@,Y) 1y €Kny #x}
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— so the singleton {(i,x)} C A already fails to be algebraically closed.

Nonetheless any other relational structure from Example 1.4 has no algebraicity, because their ige is a

strong amalgamation class.
It remains to study when S € Sh(A) preserves pullbacks.

Theorem 2.21
i) If S € Sh(A) preserves pullbacks, then S2 € NomSet,, 4 has least finite supports with respect to set
inclusion.

i7) If X € NomSetay, p has least finite supports with respect to inclusion, then X # preserves pullbacks.

Nowb : Sh(A) 2 NomSetpy. s, : § &5 an equivalence by Theorem 2.17; therefore the following conditions are
equivalent:

1) every sheaf preserves pullbacks;
1) A admits least finite supports.

ProoF. Assume S € Sh(A) preserves pullbacks. Let [B, w]. € s, Suppose that C, D Cin A both support
[B, w].; recall from the proof of Lemma 2..16 that we then have

(C9x) ~ (B’ W) ~ (D»y),

which means that some E 2 CU D satisfies Stpoc (x) = Stgop (¥). Form the pullback square of inclusions in A,
map it to Set under S, and form the pullback P = {(x¢, yq4) € SC X SD | Stgoc(xe) = Steac(¥a)} 3 (x,¥):

P 2
\\\\f
st

cnp <y ¢ S(Cn D) X g0

P )

tcacnb LE>C Stcacnp Ste>c
D——FV———FFF—E SD ———— > SE
E2D SteoD

Since § preserves pullbacks, there is a bijection f such that z def f(x,y) € S(C N D) satisfies Stcocnp (2) = X;
therefore (C N D, z) ~ (C,x) ~ (B, w), showing that [ B, w] . is supported by C N D. At last,

supp[B, w] ﬂ{F Cfin A | Fsupports [B,w].} = ﬂ{F C B Cg, A | Fsupports [B,w].}

is a finite, non-empty intersection of finite supports for [ B, w].; as we argued above, supp[B, w]. is a genuine

finite support of [ B, w] . and is by construction the least such.

Now assume that X € NomSeta,, 4 admits least finite supports. Then X # maps a pullback square in A like

p»—n(/( \ ﬂ/l Kﬂ;l()
E
P'—U‘(N / i) /X“JJ()

SO:
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where P = i(C) N j(D) and

X*P ={z € X |i(C) N j(D) supports z}
C {z € X | i(C) supports z, j (D) supports z}
={zeX|C supports’i\_I - Z, D supports f_l -7}
={zeX|T"'-zeX'C,j " ze XD}

where the C on the second line is in fact an equality, as finite supports are closed under intersection by assumption.
Since
{(r,y) | x € X*C,y e X*D,T-x = ] - y}

with the two projections defines a pullback in Set, it is clear that (x, y) — i-x=j-yeXtPisan isomorphism
of pullback cones. m

Note we did not specify that the supports are algebraically closed. This is intentional.

Definition 2.22
We say A admits least finite supports if any of the following equivalent conditions [BKL14, Theorem 9.3] holds.
By (X) C Aut A we mean the subgroup generated by an arbitrary subset X C Aut A.

i) Forall E Chn A and for all distinct ¢, d € A\ E,

GE - ¢ € {(GEguic} YGEU{a}) - C.

ii) ForS,T Cin A, the subgroup
(AutA/S U AutA/T)

coincides with Aut A/ (SN T).
iii) If G C Aut A is an open subgroup, then there is a unique supp(G) g, A satistying

AutA/SC G < S 2supp(G)

forall § Cg, A.
iv) If X is a nominal Aut A-setand x € X, then there is a unique supp x Cin A satisfying

AutA/S C (AutA), & § 2 suppx

forall § Cg, A.

This is a stronger assumption on A compared to Definition 2.10 — compare ii) or iii) here with the ones there.

Now assume that A admits least finite supports, and let x € X € NomSets, 4. Notice that suppx Cg, A
satisfies
Aut A/suppx C (AutA)y C (AutA)gppx.

To see the second containment, observe thatsupp : X — ¢, (A) isstillan equivariant function; sor € (Aut A)x
implies 77 - supp x = supp(7 - X) = supp X, i.e., 7 fixes supp x setwise. One can then go back to Theorem 2.11 and
prove another representation theorem for nominal orbits, where instead of requiring S Cg, A to be algebraically

closed we impose the rather fiddly property that

VaeS:a¢dd(S\{a}),
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as was originally done in [BKL14, see Lemma 9.8(1) and Theorem 9.17].

Let us continue by considering ac/(supp x) 2 supp x. As passing to stabiliser subgroups is inclusion-reversing,

we obtain
Aut A/acl(suppx) € AutA/suppx C (AutA)y C (AutA)syppx = (AUt A)g(suppx) -

To see the last left-to-right containment this time, take 7 € (Aut A)gypp x and suppose a € ac/(supp x) — that is,
suppose Aut A/supp x - a is finite; then

AutA/suppx - (- a)
= AutA/(m - suppx) - (7 -a)
= (moAutA/suppxon™) - (m-a)
=n- (AutA/suppx - a)

is finite too, so - a € acl(supp x). This proves that 7 fixes ac/(supp x) as well — the setwise stabiliser only sees
the algebraic closure. Of course ac/(supp x) is still finite because A is oligomorphic; so Definition 2.10 says SUPP x
exists and

SUPPx = acl(supp x)

quite conveniently.
Example 2.23 (structures with and without least supports)

a) One can directly show the equality atoms [GPo2, Proposition 3.4], the ordered atoms, and the graph
atoms [BKLi4, Corollary 9.5 and Example 10.4] admit least finite supports and therefore also least finite,
algebraically closed supports. Obviously this is not saying very much in a structure with no algebraicity,
where the two notions agree. As we mentioned before Definition 2.10, the SSIP is equivalent to the SIP
together with weak elimination of imaginaries; so the Henson graphs with forbidden subgraphs —
directed or undirected — are also examples of structures with both kinds of least supports.

b) An innocent example where the two notions start to differ is N, the equality atoms with a constant
5 € N fixed. Here one can still straightforwardly use the criterion i) of Definition 2.22 to show that

supp x and thus SUPP x always exist, with the caveat that
SUPPx = suppx U {s} 2 suppx.

c) Now consider A = 4),,, K, where m,n > 2and m X n = 8,. Then AutA is the wreath product
Sp Un Sm — thatis, the set (5,,)™ X Sy, with the operation

((pj)jEm, T) < ((O’j)jgm, ﬂ') def ((pj 0 Or-1(j))jems T © 71')

acting on A via
o gy def " M
(@) jem7) - (78) € (), () (@),

But m can also be an Aut A-set if we simply put

((@hsems ) - 1" = 7).

Here j’ € m is supported by the singletons {(j’, 1)}, {(j’,2)} S, {j'} X Kn € A, but not by their
intersection {} unless m = 1. Therefore A does not admit least finite supports, though {(;j,1)} and
{(j’,2)} are both minimal supports.
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If we restrict ourselves to algebraically closed supports, when 7 is finite the algebraicity saves us: we have

ad({(j',0}) = {j} x Kn = ad({(j’,2)}).

When n = N, we run into trouble again: A has no algebraicity, so it fails to admit either kind of least

supports.
We close with two questions.
Question 2.24

How much of [MMoy, §SII1.9], [GMMao6, §3], and [CKMio, Criterion 4.1 and Theorem 4.12]’s wheel did we

reinvent, and bow well did we do?

Question 2.25
Consider presheaves valued in Mon or Vectq instead of Set. What can be said about the sheaf condition and
pullback preservation?

Summary. We work in the following setting:

* Risafinite relational signature;
* X is an amalgamation class of finite R-structures;
e A is the Fraissé limit of K.

Then:

A is homogeneous;

Aut A acts oligomorphically on A”;

Th(A) eliminates quantifiers;

A has no algebraicity if and only if X is a strong amalgamation class;

A admits least finite supports if K is moreover a free amalgamation class [Coni7, Theorem r.1].

Note that (Q, =, <) admits least finite supports, even though its 4ge is an amalgamation that is strong but not
free [Macii, Remark 2.1.5 1.]; it is the generically ordered expansion of (N, =), whose 4ge is a free amalgamation
class. We can say more: the generically ordered expansion K. of a free amalgamation class X is Ramsey [EHN2z1,
Theorem 1.3]; equivalently, Aut(FLim X.) is extremely amenable [KPTos, Theorem 4.7]. I do not know why (or

whether) FLim K« eliminates imaginaries in general.

There are more elementary ways to get new nice structures from old: e.g., take reducts, or expand by finitely
many constants. One may need to check for homogeneity over a finite signature and the existence of least alge-
braically finite supports.

Having fixed a structure A, we can build nominal sets out of {} and the atoms a € A alone; we can and should
view them as continuous Aut A-sets, and also as sheaves on A. So we understand orbit-finite nominal sets well
through the lens of set theory, topological group theory, and category theory; we are now ready to study orbit-

finite-dimensional vector spaces.
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