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1 Motivating example

Consider an automata over the input alphabet Σ with the state space {⊥} ∪ Σ. Define its transition relation by:

⊥

𝑎

𝑏

Σ

𝑎

𝑏

Σ \ {𝑎}

Σ \ {𝑏}

Even though only ⊥ and 2 other states are shown, it is clear how we should fill in the blanks when given another

letter 𝑐 ∈ Σ — as well as how we can extend Σ with a foreign letter 𝑐.

An example execution. Let us process the word文言文. Unsurprisingly, we start at the initial state:

⊥

Then we read in the first letter,文, from the left. There are two possible transitions, and we follow both:

⊥
文

文

文

So we are in two states at once. We continue by processing the next letter言, again following all possible transitions:

⊥

言

文

言

言

言
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— and this time, we have three active states. Now we read in a second文:

⊥

言

文

文

文

文

Note that transitions are fired from only two states. There are no more letters to process, so we follow the final

transitions:

⊥

言

文

giving 2 accepting runs in the end.

The formalism. Let 𝑄 denote the state space {⊥} ∪ Σ. By Lin𝑄 we mean the formal linear combinations of

states in𝑄, say with rational coefficients. The initial states — here there is only one, ⊥ — define a vector

𝜄 = ⊥ ∈ Lin𝑄;

the transitions labelled with 𝑎 ∈ Σ define a linear map

𝛿𝑎 : Lin𝑄 → Lin𝑄

⊥ ↦→ ⊥ + 𝑎
𝑎 ↦→ 0

𝑏 ↦→ 𝑏 for 𝑏 ≠ 𝑎

on the basis𝑄; and the final states define a covector

𝜙 : Lin𝑄 → Q

⊥ ↦→ 0

𝑎 ↦→ 1.

The execution above can then be compactly written as

𝜄 = ⊥
𝛿文↦−−→ ⊥ +文

𝛿言↦−−→ ⊥ +言 +文
𝛿文↦−−→ ⊥ +文 +言

𝜙
↦−→ 0 + 1 + 1 = 2.

It is not hard to see that in general, the output is the number of distinct letters in the input word.

The reachability problem. Processing the word 𝑎1𝑎2 . . . 𝑎𝑛 ∈ Σ∗
takes the automaton to the configuration

(𝛿𝑎𝑛 ◦ · · · ◦ 𝛿𝑎2
◦ 𝛿𝑎1

) (𝜄) ∈ Lin𝑄.
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The linear span of the configurations reachable after processing at most 𝑛 letters is thus given by

𝑉0 = {𝑟 · 𝜄 | 𝑟 ∈ Q},

𝑉𝑛+1 = 𝑉𝑛 +
∑︁
𝑎∈Σ

𝛿𝑎 (𝑉𝑛).

Notice that𝑉𝑛 ⊆ 𝑉𝑛+1 as subspaces of Lin𝑄, and if𝑉𝑛 = 𝑉𝑛+1 then in fact

𝑉𝑛 = 𝑉𝑛+1 = 𝑉𝑛+2 = · · · .

When𝑄 is finite, such an 𝑛 necessarily exists:

𝑉0 ⊊ 𝑉1 ⊊ 𝑉2 ⊊ · · · ⊊ 𝑉𝑛

means that 𝑛 ≤ dim(Lin𝑄) = |𝑄 |. Consequently, the reachability problem for weighted automata is decidable

in𝑂 ( |Σ | · |𝑄 |3) time [Kie20, Proposition 2.2] and, due to an algorithm of Schützenberger that may be extracted

from [Sch61], so is the equivalence problem.

The definitions of 𝜄, 𝛿𝑎, 𝜙 above also make sense for an infinite alphabet Σ and hence an infinite state space

𝑄: for example, on input 𝑞 ∈ 𝑄, the transition 𝛿𝑎 just checks if 𝑞 is equal to the constants ⊥ or 𝑎, and produces

an output that only uses ⊥, 𝑎, and the input 𝑞; this is a finite description of an infinite object. It is therefore still

reasonable to ask whether the reachability problem is decidable, but we certainly cannot consider dim(Lin𝑄) —

which is now infinite — again to justify why the chain of configuration spaces must stabilise in finitely many steps.

2 From automata with atoms to orbit-finite-dimensional vector spaces

Data values from an infinite domain with a limited interface arise in many settings:

• we may want to allow an unbounded number of unique process identifiers or cryptographic nonces to be

generated but only tested for equality, not arbitrary individual identity;

• in timed systems, we also want to test if a timestamp is before, the same as, or after another.

Following [BKL14, §10], we will model such data values as a countably infinite homogeneous structureA (or equiv-

alently, a Fraı̈ssé limit) over a finite relational signature. Some examples include:

Data values Fraı̈ssé limit A AutA

Nonces (N, =) all bijections N → N
Timestamps (Q, =, <) increasing bijections Q → Q
? (Rado, =,∼) graph automorphisms of Rado

We also refer to these as the equality atoms, the ordered atoms, and the graph atoms respectively.

As demonstrated in [BKL14, Lemma 6.1] and [Boj19, Lemma 1.1], equivariance under the automorphism group

AutA ensures that the interface of the atoms is respected. Hence we will use the following blend of [KF94, Defi-

nition 1] and [BKM21, Definition 7.2].
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Definition 1
A weighted 𝑑-register automaton over Σ = A consists of

• states𝑄 = 𝐶 × ({⊥} ∪ A)𝑑 where𝐶 is a finite set of control states,

• an initial vector 𝜄 ∈ Lin𝑄,

• a family 𝛿 (−) : Σ → (Lin𝑄
linear−−−−→ Lin𝑄) of weighted transition relations,

• and a final covector 𝜙 : Lin𝑄
linear−−−−→ Q

such that 𝜄, 𝛿 (−) , and 𝜙 are AutA-equivariant. It recognises the weighted language

𝑎1 . . . 𝑎𝑛 ∈ Σ∗ ↦→ (𝜙 ◦ 𝜄𝑎𝑛 ◦ · · · ◦ 𝜄𝑎1
) (𝜄) ∈ Q.

We note that𝑄 is orbit-finite: under the action 𝜋 ·
(
𝑐, (𝑎1, . . . ,⊥, . . . , 𝑎𝑛)

)
=
(
𝑐, (𝜋(𝑎1), . . . ,⊥, . . . , 𝜋(𝑎𝑛))

)
the

set𝑄 splits into finitely many orbits. We can therefore describe the vector space Lin𝑄 as orbit-finite-dimensional

since it has an orbit-finite basis𝑄.

With the equivariance of 𝜄 and 𝛿 (−) in mind, we can say more about the configuration spaces: we have

𝜋 · 𝑉0 = {𝜋 · (𝑟 · 𝜄) = 𝑟 · (𝜋 · 𝜄) = 𝑟 · 𝜄 | 𝑟 ∈ Q} = 𝑉0

and, by induction,

𝜋 · 𝑉𝑛+1 = 𝜋 · 𝑉𝑛 + 𝜋 ·
∑︁
𝑎∈Σ

𝛿𝑎 (𝑉𝑛)

= 𝑉𝑛 +
∑︁
𝑎∈Σ

𝜋 · 𝛿𝑎 (𝜋−1 · 𝑉𝑛) = 𝑉𝑛 +
∑︁
𝑎∈Σ

𝛿𝜋 ·𝑎 (𝑉𝑛) = 𝑉𝑛+1

for any 𝜋 ∈ AutA. Therefore the configuration spaces are equivariant as subspaces of Lin𝑄, being closed under

both linear combinations and atom automorphisms.

An algebraist will prefer saying that each𝑉𝑖 is a submodule of Lin𝑄, viewed as a module of the group algebra

Lin(AutA). In their language Lin𝑄 is Noetherian if all ascending chains of submodules eventually stabilise, and

Lin𝑄 has finite length — the generalisation of the dimension that accounts for equivariance — if all descending

chains of submodules eventually stabilise as well. The Noetherian property is what we need for the reachability

checking procedure to terminate.

Conjecture 2
(a) IfA is homogeneous over a finite relational signature, then LinA𝑛 has finite length for all 𝑛 ∈ N.
(b) If AutA is oligomorphic, then LinA𝑛 is Noetherian for all 𝑛 ∈ N.

Here the underlying field Q implicit, but we will write Link A if we want to work over a different field k.

We note homogeneity over a finite relational signature is a strictly stronger assumption than oligomorphicity,

and having finite length is a strictly stronger conclusion than being Noetherian. The countable-dimensional vector

space V2 over the two-element field Z/2Z — alternatively, for computer scientists, bit strings with XOR — is

oligomorphic, but cannot be made homogeneous over any finite relational signature [Mac11, before Theorem 3.17].

The orbit-finite-dimensionalZ/2Z-vector space LinZ/2Z V2 has an infinite strictly descending chain of equivariant

subspaces [BFKM24, Theorem 4.16].

Very recently, David Evans has pointed out to me that the example of V2 had already been described by model
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theorists back in [AZ91], and that if some Link A𝑛
has infinitely many equivariant subspaces over a finite field k

(e.g., if (a) fails), then we can construct a negative answer to [Mac11, Question 2.2.7 4.] and a counterexample to

the conjecture of Thomas in [Tho91].

3 Current results

In [BPP13, §1] Bodirsky et al. claim to “know very little about [Thomas’s] conjecture, beyond the fact that it is

true for some fundamental homogeneous structures.” Similarly we understand very little about Conjecture 2(a)

in general, with LinZ/2Z V2 being the only known failure of finite length (and owing to a lack of counterexamples,

we believe (b) is true too.) The equality atoms, the ordered atoms, and the graph atoms all have finite length as we

now show.

Theorem 3 (generalisation of [Yan23, Theorem 3.9])
Let 𝑑 ∈ N. Suppose there is a uniform upper bound 𝑙 on the number of local orbits: namely, every 𝑆 ⊆fin A is
contained in some 𝑆 ⊆fin A where — writing (AutA)

𝑆
⊆ AutA for the setwise stabiliser of 𝑆—we have

#

{
(AutA)

𝑆
· (𝑠1, . . . , 𝑠2𝑑)

���� (𝑠1, . . . , 𝑠2𝑑) ∈ 𝑆
2𝑑
}
≤ 𝑙.

Then, assuming the field k has characteristic 0, we have

length(Link A
𝑑) ≤ 𝑙.

The proof relies on some basic representation theory of finite groups and fits in a page. We deduce that any smoothly
approximated structure studied by [KLM89] has finite length. In particular the result applies to the equality atoms

and even to V2, showing that the problem with LinZ/2Z V2 is due to the positive characteristic of the field Z/2Z.

Ehud Hrushovski thinks the result applies to the graph atoms as well, by constructing the enveloping graph

𝑆 above from a symplectic bilinear form as described in the beginning of the monograph [CH03]; David Evans

thinks there is an elementary proof not needing the hard machinery of the monograph.

In any case, this technique of approximating by finite substructures does not work for the ordered atoms: if a

monotone 𝜋 ∈ AutA fixes a finite set, then it must fix every point in that set; so the local orbits are all singletons,

and the number of these is certainly unbounded. Instead, we can adapt and strengthen [BFKM24, §4.1 and §4.3]

to determine all the equivariant subspaces — and a fortiori the length — of any orbit-finite-dimensional vector

space. This approach works not only for the ordered atoms but also for the equality atoms, the graph atoms, the

Henson triangle-free graphs, and the ordered Rado graph, though the proof is ad hoc and quite unsightly. Here

we only state the consequence for the equality atoms and 𝑑 = 2 — write N(2) = {(𝑎, 𝑏) ∈ N2 | 𝑎 ≠ 𝑏}. Let

𝑣 ∈ Link N
(2) =

∑︁
𝑎≠𝑏

𝑣(𝑎, 𝑏)

be a vector; then 𝑣(𝑎, 𝑏) ≠ 0 only if 𝑎, 𝑏 ∈ 𝐴 for some finite 𝐴 ⊆ A. Given an arbitrary ordering< on 𝐴, calculate

• the span of

(∑
−<∗ 𝑣(−, ∗),

∑
−<∗ 𝑣(∗,−)

)
∈ k2

;

• the span of

(∑
−<𝑎 𝑣(𝑎,−),

∑
−<𝑎 𝑣(−, 𝑎),

∑
∗>𝑎 𝑣(𝑎, ∗),

∑
∗>𝑎 𝑣(∗, 𝑎)

)
∈ k4

for all 𝑎 ∈ 𝐴;

• and the span of

(
𝑣(𝑎, 𝑏), 𝑣(𝑏, 𝑎)

)
∈ k2

for all 𝑎 < 𝑏 ∈ 𝐴

to obtain a subspace ♭𝑣< ⊆ k2 ⊕ k4 ⊕ k2
. We then define ♭𝑣 = ♭𝑣<1

+ · · · + ♭𝑣<𝑜
where <1, . . . , <𝑜 are all the total
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orders on 𝐴; we also define ♭𝑉 =
∑

𝑣∈𝑉 ♭𝑣 for an equivariant subspace𝑉 ⊆ Link N(2)
.

Theorem 4
The map𝑉 ⊆ Link N(2) ↦→ ♭𝑉 ⊆ k2 ⊕ k4 ⊕ k2 is order-preserving and injective.

In particular k2 ⊕ k4 ⊕ k2
has finite dimension, so Link N(2)

necessarily has finite length. We may also use this

to derive the full lattice of equivariant subspaces shown below, assuming 2 ≠ 0 in k. Each subspace is labelled

by a possible generator 𝑣, which is in turn depicted as a finite graph with a red/blue edge 𝑖 → 𝑗 if and only if

𝑣(𝑖, 𝑗) = ±1.

1

2

3

4

1

2

3

1 2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

1

2

3

4

𝜆in 𝜆out

(𝜆in ≠ ±𝜆out)

1 2

1

2

3

4

1

2

3

1 2

6



Bartek presented a very similar lattice at the IRIF automata seminar in 2022, but he missed the family parametrised

by [𝜆in : 𝜆out] in the projective space. Regarding David Evans’s comment, note also that this family is infinite when

k = Q but finite when k is finite — so we do not get a counterexample to Thomas’s conjecture.

4 Future work

Free homogeneous structures. What specific model-theoretic properties onA did we use to prove Theorem 4?

The equality atoms and the graph atoms are both Fraı̈ssé limits of free amalgamation classes, whereas the ordered

atoms and the ordered Rado graph are their generically ordered extension. We should therefore check if we can

write a general proof for these two classes of structures; the recent works [Con17] and [PS17] may be of help.

Lower bounds on lengths. We can define a map

𝐾 ⊆ k2 ⊕ k4 ⊕ k2 ↦→ ♯𝐾 ⊆ Link N
(2)

yielding a Galois connection ♭ ⊣ ♯. However, given a strictly increasing chain𝐾0 ⊊ 𝐾1 ⊊ · · · ⊊ 𝐾𝑙 of subspaces in

k2 ⊕ k4 ⊕ k2
, it may occur that ♯(𝐾𝑖) = ♯(𝐾𝑖+1) in the corresponding chain of equivariant subspaces in LinN(2)

:

indeed 2 + 4 + 2 > 5. Can we detect when this collapse happens? That is, can we characterise when 𝐾 = ♭𝑉 for

some equivariant subspace𝑉? A first observation is that 𝐾 must be invariant under the action of 𝑆2 on the last k2

component.

I will comment on what is known about the lengths. For the ordered atoms, the bounds given in [BKM21,

Corollary 4.11 and Theorem 4.7] is

2
𝑑 ≤ length(Lin

(
Q
𝑑

)
) ≤ 𝑑!;

the analogue of Theorem 4 gives 2
𝑑

as a tighter upper bound, coinciding with the lower bound. For the equality

atoms, the bounds given in [BKM21, Corollary 4.8] is

2
𝑑 ≤ length(LinN(𝑑) ) ≤ 𝑑!(1 + 𝑑)!

which are again too generous: I found https://oeis.org/A005425(𝑑) as an upper bound in [Yan23, Corol-

lary 4.4] through a more careful application of Theorem 3, and there is evidence — namely, the remark [SS15,

(8.7)] — that the bound is tight. Exhibiting a chain of this length in LinN(𝑑)
via ♯(−) and Theorem 4 seems to

be a low-hanging fruit.

For this last task, structure theorems of Lin

(N
𝑑

)
↩→ LinN(𝑑)

will help us understand the properties of ♭(−):

it was shown in [CE91, Theorem 3.2] that over characteristic 0, there are exactly 𝑑 + 1 equivariant subspaces and

these fit in a chain. Also, the case of positive characteristics was solved in [Gra97, Corollary 3.17] using what [Jam77,

Corollary 9.4] calls polytabloids, and the same problem was again studied in [HR21, §7] using simple hypergraphs. It

would seem what [BFKM24, Lemma 4.5] calls cogs— i.e., the workhorse of Theorem 4 — is at the very least similar

to polytabloids and simple hypergraphs; we should therefore work out what these proofs share in common.

Back to automata. By [BFKM24, Lemma 5.2], the equivalence problem of two weighted 2-register automata

as defined in Definition 1 with 𝑐 control states in total can be reduced to the equivalence problem of two weighted

automata over an𝑂 (𝑐) alphabet with𝑂 (𝑐3) states; the latter can be decided in𝑂 (𝑐10) time. Can we do better if we

follow [GHL22] and do nominal linear algebra? (On that note, it will also be interesting to develop a representation

result for orbit-finitely spanned nominal vector spaces and linear maps analogous to [BKL14, Theorem 10.9]).
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On the theoretical side, we can investigate if the linear Zariski machinery in [BS23] applies to weighted reg-

ister automata; the study of algebraic geometry with atoms has already been initiated in [GL24]. On the prac-

tical side, we should implement the reachability checking algorithm in N𝜆 (https://www.mimuw.edu.pl/

~szynwelski/nlambda/) or Ons-Hs (https://github.com/Jaxan/ons-hs), and check if the chain of

configuration spaces can really grow as long as the theoretical upper bound.
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