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1 Introduction

This paper introduces a new scheme for calculating the Biot-Savart integral of an ellipti-
cal Gaussian distribution and compares it to an existing, asymptotic method. The imme-
diate application of these techniques is to rapidly determine the streamfunction and as-
sociated derivatives of an elliptical Gaussian vorticity distribution and for a fourth-order
viscous core-spreading vortex method. The mathematical problem, concisely stated, is
to find the streamfunction ψ where

ψ(~x; σ, a) = − 1

4π

∫∫

∞

−∞

log(|~x− ~s|2)φ(~s)d~s, (1.1a)

φ(~x; σ, a) =
1

4πσ2
exp

[

−(x2/a2 + y2a2)

4σ2

]

, (1.1b)

where φ is a function describing the shape of the basis function, and σ2 and a2 is the core
size and aspect ratio, respectively, of the basis function. Equation (1.1a) is a restatement
of the Biot-Savart integral for the velocity field restricted to a two-dimensional flow:

~u =

[ ∂ψ
∂y

−∂ψ
∂x

]

= − 1

2π

∫∫

∞

−∞

1

|~x− ~s|2R(~x− ~s)φ(~s)d~s (1.2)

where R is a rotation R[x, y]T = [y,−x]T . We capture translations and rotations through
symmetries in (1.1a) and apply them to the problem during pre- and post-treatment of
the evaluation. An earlier paper [26] describes an asymptotic approach built on top of
Lamb’s exact solution for an elliptical patch of vorticity.

This is an important problem for two reasons. First, small numbers of elliptical
Gaussian vortices may be useful for low order models (see [23, 28, 29] for examples of
this approach). Second, elliptical Gaussian basis functions are the foundation of a new
class of fourth-order vortex methods for solving the viscous Navier Stokes equations.
The use of rigid and deforming elliptical vortex patches dates back to efforts in the
1980s and early 1990s by Teng and his co- authors as a means of improving accuracy by
adapting to asymmetric flow geometries [30, 31, 32]. In their later work, patches would
deform by following the nearby flow geometry. Meiburg applied a similar approach to
simulate shear layers [15], and Ojima and Kamemoto use a hybrid deforming element in
a three dimensional vortex code [22]. Deforming elliptical Gaussians capture both linear
convection and diffusion in two-dimensions and so they are a natural choice for a high
spatial order method. Following this line of reasoning, Moeleker and Leonard performed
a series of computational experiments using deforming elliptical Gaussian basis functions
for linearized convection-diffusion equations but without the expected increase in spatial
accuracy [10, 18]. Shortly afterward, Rossi found an additional requirement for this boost
in accuracy that can be satisfied when curvature corrections are applied to the velocity
field, and demonstrated that methods using deforming blobs will outperform methods
using rigid blobs even at moderate problem sizes [24, 25].

With this issue resolved, a small number of mathematical problems barred the way
to a full-fledged high order viscous vortex method. One of them is a fast, effective means
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of evaluating the streamfunction and its first three derivatives for the elliptical Gaussian
as described in (1.1). The basis functions are deformed by local flow deviations, and the
velocity field correction requires that one calculate the velocity curvature (see Appendix
A for an overview of the dynamical system), so calculating the streamfunction and its
derivatives is critical to an effective computation. While there are a variety of methods
that can be applied for integrating axisymmetric distributions due to the obvious reduc-
tion in dimensionality, the non-axisymmetric problem is more general and challenging.
Rossi proposed an accurate and effective means of solving this problem, verified the full
nonlinear convergence of the vortex method and developed a fast summation algorithm
for elliptical Gaussians in the far field [26]. In this paper, we focus on the direct evalu-
ation of elliptical Gaussians in the near field, and we present a significant improvement
over this earlier solution.

This manuscript, describing a new, more accurate and more efficient global method
for solving (1.1), is organized as follows. This section of the paper describes the problem
in its broader context. We briefly review the asymptotic method for evaluation of the
streamfunction in Section 2. Section 3 describes the new technique for evaluating the
streamfunction. Section 4 quantitatively compares the existing asymptotic method and
the new evaluation technique to one another. We demonstrate full non-linear converence
to the exact solution of the Navier-Stokes equation for the test problem. Section 5 uses
the new method to compute a challenging inviscid filamentation problem as a proof-
of-concept, and we compare our results with a standard pseudo-spectral method and
electron vortex experiments [17]. Our results and findings will be summarized in Section
6.

2 Review of asymptotic method

Both the new technique and the asymptotic method introduced in [26] rely upon Lamb’s
expression for the streamfunction of an elliptical patch with axes l1 and l2 [7].

ψ =











1
2π(l1+l2)

(

x2

l1
+ y2

l2

)

, (x, y) ∈ E(l1, l2)

1
2π

[

ln
(

α+β
l1+l2

)

+
x2

α
+ y2

β

α+β

]

, (x, y) /∈ E(l1, l2)
(2.1a)

α =
√

l21 + ξ, (2.1b)

β =
√

l22 + ξ, (2.1c)

1 =

(

x2

l21 + ξ

)

+

(

y2

l22 + ξ

)

, (2.1d)

where E(l1, l2) is the support of the ellipse and

~u =

[

u
v

]

=

[ −∂ψ
∂y
∂ψ
∂x

]

.
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Following the procedure in [26], we can express the streamfunction of an elliptical Gaus-
sian at a point (x∗, y∗) as

ψ(x∗, y∗) = −
∫ R∗

0

ψ1∂RφR
2dR−

∫

∞

R∗

ψ2∂RφdR, (2.2a)

φ(R; σ, a) =
1

4πσ2
e−R

2/4σ2

. (2.2b)

ψ1 =
1

2





(

x∗2

α
+ y∗2

β

)

α + β
+ ln

(

α+ β

Ra+R/a

)



 , (2.2c)

ψ2 =
1

2

x∗2

a
+ y∗

2a

a + 1/a
, (2.2d)

α =
√

R2a2 + ξ, (2.2e)

β =

√

R2

a2
+ ξ. (2.2f)

where ρ∗
2 = x∗

2 + y∗
2, R∗

2 = x∗2

a2
+ y∗

2a2 and

ξ =
1

2







ρ∗
2 −R2

(

a2 +
1

a2

)

+

√

[

R2

(

a2 +
1

a2

)

− ρ∗2

]2

+ 4R2(R∗

2 − R2)







. (2.3)

The second integral poses no difficulty at all because ψ2 is not a function of R. However,
there is no known expression for the first integral in terms of elementary functions, and
this is where the challenge lies.

The asymptotic method approximates ψ1 in powers of the small parameter

ǫ =
a− 1

a + 1

which reduces the first part of the integral in (2.2a) to moments of a one-dimensional
Gaussian. The coefficients of each of the moments depend upon x∗, y∗, a and σ. Suc-
cessive moments can be obtained through a recurrence relation, so the method is both
fast and accurate. Unfortunately, it requires many terms in the large aspect ratio limit,
so the evaluation of the moments becomes unstable at high orders due to catastrophic
cancellations.

3 The high-order interpolation method with domain

decomposition

The asymptotic approximation given in §2 converges most rapidly in the small ǫ limit
and so is most accurate when vorticity blobs are nearly isotropic. On the other hand,
Marshall and Grant derived an approximation for the velocity field when blobs are highly
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anisotropic in [13]. In this section we explore a high-order interpolation technique that
uses domain decomposition for the fast evaluation of the Biot-Savart integral for all core
aspect ratios — although we restrict our implementation to a ∈ [0.1, 10], since larger
aspect ratios would be better handled by the closed form expressions derived in [13].

Without loss of generality, in this section, we assume σ ≡ 1 and use the notation
ψ(~x; a) ≡ ψ(~x; 1, a). Notice that

ψ(~x; σ, a) =
1

σ
ψ(~x/σ; a) + Cσ,a,

where Cσ,a does not depend on ~x and does not affect the velocity field; we set Cσ,a ≡ 0
in our implementation. Moreover, we restrict our computations to a ≥ 1, x > 0, and
y > 0, since

ψ(x, y; 1/a) = ψ(y, x; a) and ψ(y, x; a) = ψ(|y|, |x|; a).

The main idea is to recast the parameter a as a variable. Because the Biot-Savart
integral is a smooth function of ~x, accurate approximations of ψ can be obtained with
the polynomial expansion,

ψ(x, y; a) =

Nx
∑

nx=0

Ny
∑

ny=0

λnx,ny
(a) xnxyny , x > 0, y > 0, a > 1. (3.1)

The coefficients λnx,ny
are functions of the core aspect ratio in contrast to the asymptotic

method where the coefficients depend upon x, y and ǫ (or a). These coefficients are
computed for several values of a, and for each given aspect ratio, we compute them
so that (3.1) interpolates the values of ψ computed using (2.2a). These coefficients
were obtained only once and stored in files for future use, since this operation requires
time consuming computations. Because each λnx,ny

is a smooth function of a, when
evaluations are needed for arbitrary values of a, new coefficients can be found by a fit
of the coefficients already computed.

Figure 1 depicts the behavior of ψ as a function of the three variables x, y, and a.
Contours are shown for ψ = 0 to ψ = 0.3 in increments of 0.01. Notice that variations
of ψ with respect to a are more drastic for smaller values of a rather than larger values.
The contours in the third row of this figure show that ψ has elliptic level curves near the
origin, but circular for large values of x and y, since ψ → c log(x2 + y2) as x2 + y2 → ∞.

The number of operations required to evaluate (3.1) and its derivatives is O(NxNy).
For fast evaluations, therefore, we need Nx and Ny to be relatively small numbers. In
order to accomplish this without compromising accuracy, we resort to domain decom-
position. More specifically, we split our computational domain in 13 rectangular regions
shown in Fig. 2. The exact boundary for each subdomain is presented in Table 1. No-
tice that the subdomains are scaled with a since the resolution required in parts of the
domain depend on the core aspect ratio. These subdomains were obtained by trial and
error so that (3.1) is accurate to about 10 digits with Nx = Ny = 16 in each region. For
the far field approximation, x > 40.5a or y > 40.5a, we use the isotropic approximation
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Figure 1: Contour levels of ψ. Top row: contours for fixed values of y; middle row:
contours for fixed values of x; and bottom row: contours for fixed values of a.
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Figure 2: Domain decomposition in the xy-plane.

ψ = c1 log(x2+y2). In our implementation, therefore, we use a piecewise polynomial rep-
resentation of the solution and replace (3.1) with 13 equivalent expressions each defined
only on one subdomain.

It is well known that high-order polynomial interpolation is well-conditioned only
on nodes that are clustered more densely near the boundaries of the domain [6]. In
computing the polynomial coefficients, therefore, we mapped each domain to [−1, 1] ×
[−1, 1] and used the Chebyshev points depicted in Fig. 3; see [33] for details. We point
out that we use monomials in (3.1), rather than orthogonal polynomials, because of their
fast evaluation — since the degree of the polynomials is relatively small, the interpolation
process is not ill-condtioned.

The coefficients in (3.1) are computed in each individual subdomain for several values
of a. Because ψ varies more rapidly with respect to a when a ≈ 1, we use a nonuniform
distribution of values of a to compute these coefficients. More precisely, we compute them
for 700 aspect ratios between 1 and 10, such that the distance between two neighboring
values grows linearly as a increases; i.e., aj = 1 + 9(j/699)2, j = 0 . . . 699. Fig. 4 shows
the values of a used in our computations. Due to the large number of points, we only
show points between 1 and 1.1. Because we have a large number of samples of coefficients,
a low order approximation in the direction of the parameter a yields accurate results.
In fact, the errors in the approximations are in general due to the approximations in the
x and y direction. For an arbitrary value of a in [aj , aj+1] the coefficients are computed
using the weighted average,

λnx,ny
(a) =

(a− aj)λnx,ny
(aj) + (aj+1 − a)λnx,ny

(aj+1)

aj+1 − aj
. (3.2)
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Subdomain xmin xmax ymin ymax

1 0 5a 0 0.5
2 0 5a 0.5 1
3 0 5a 1 3
4 0 5a 3 7

√
a

5 0 5a 7
√
a 11.5a

6 5a 11.5a 0 0.5
7 5a 11.5a 0.5 1
8 5a 11.5a 1 3
9 5a 11.5a 3 7

√
a

10 5a 11.5a 7
√
a 11.5a

11 11.5a 40.5a 0 11.5a
12 0 11.5a 11.5a 40.5a
13 11.5a 40.5a 11.5a 40.5a

Table 1: Rectangular subdomains in the xy-plane.

−1  1   
−1

1

x

y

Figure 3: Chebyshev grid: 17 × 17 points.

a = 1.1a = 1

Figure 4: Nonuniform sampling values of a in [1, 1.1]. The spacing between values grows
linearly.
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In our algorithm, the coefficients are stored in 13 files, each corresponding to a
subdomain in Table 1. Each file stores 700 × 17 × 17 double precision coefficients,
requiring about 5MB of memory. The files are loaded only once in the beginning of an
execution. The number of operations required for the evaluation of ψ for an input (x, y, a)
is, therefore, dominated by approximately 2 × 289 products in (3.2) and approximately
3 × 289 products to evaluate the polynomial in (3.1). Derivatives of ψ are obtained by
differentiating (3.1).

The computation of higher derivatives usually result in loss of accuracy. Although our
implementation evaluates the Biot-Savart integral to an error of O(10−10), approximately
one accurate digit is lost for each derivative computed. In order to estimate the error in
the second derivatives, we use the Poisson equation

ψxx + ψyy −
1

4π
exp

[

−1

4

(

x2

a2
+ y2a2

)]

= 0, (3.3)

which is solved by (1.1a). The residual in (3.3) when a =
√

5 is shown on the left plot
of Fig. 5. This gray scale map corresponds to the logarithm of the residual, showing an
error of O(10−8) on the second derivatives of ψ.

Similarly, we can estimate the error in the third derivatives using the equation

ψxxx + ψyyy + ψxyy + ψxxy +
1

8π

( x

a2
+ ya2

)

exp

[

−1

4

(

x2

a2
+ y2a2

)]

= 0, (3.4)

which is obtained by differentiating (3.3) with respect to x and y and adding the resulting
equations. The residual in (3.4) is shown on the right plot of Fig. 5, which presents an
error of O(10−7) near the origin for third derivatives. Similar pattern has been observed
for other values of a.

4 Comparisons

The new evaluation method stably provides accurate estimates of the Biot-Savart inte-
gral with spectral accuracy, independent of the aspect ratio. The asymptotic method has
polynomial convergence in powers of ǫ which depends upon the aspect ratio. There are
some notable implementation differences. The computational simplicity of the asymp-
totic method allows the streamfunction coefficients to be calculated on-the-fly during
a computation. The cost associated with calculating the coefficients for the spectral
scheme is prohibitive, so we precomputed coefficient values for in regular increments
of a and then use these tables to interpolate coefficients for any value of a during the
computation. In these comparisons, the asymptotic coefficients are calculated as needed
while the spectral coefficients are pre-calculated.

The simplest comparison is to compare CPU times for streamfunction calculations.
These measurements were performed on an Intel Core 2 Duo 1.862 GHz CPU running
Linux. We compiled the standalone code with GNU C compiler, gcc, version 4.1.1
with the -O3 optimization flag set. We excluded initializations and file I/O from the
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Figure 5: Estimated error in second and third derivatives of ψ for a =
√

5. Left: log10

of the residual in (3.3). Right: log10 of the residual in (3.4).
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Method Far field (MP) Near field (direct) Velocity total

Asymptotic 9.2 287.4 296.7
Spectral 9.3 113.7 123.7

Table 2: Average CPU seconds dedicated to different tasks in the velocity computation
over five steps through the vortex method algorithm for N = 6917. All times are
measured in CPU seconds. The reported times for multipole (MP) summation include
both the calculation of multipole coefficients and the summation of far field effects. The
cost of the velocity computation includes lesser tasks so the total of near and far field
costs do not always add up to the total.

comparison. The test consisted of a calculation of the streamfunction as well as its first,
second and third derivatives on a 100 × 100 mesh covering the domain [12σ, 12σ]2 for
an elliptical Gaussian with ǫ = 0.25 using a sixth order expansion with the asymptotic
method and compared it to the algorithm described in §3 using 172 coefficients. The
asymptotic technique required 0.3 CPU seconds to complete the computation whereas
the spectral technique required 0.12 CPU seconds, a reduction of almost 1/3. The
asymptotic method had the same accuracy reported in [26] whereas the new method was
numerically indistinguishable from the high precision quadrature used as the reference.

However, this does not paint a complete picture in practice. To be competitive, vor-
tex calculations must include some form of fast summation that separates the near and
far field. The methods discussed in this paper are limited to direct evaluations in the
near field. Even for large-scale computations, the majority of effort will be expended on
direct evaluations. In Table 2, the computational costs are broken down between near
and far field. For this test, we used a test problem with N = 6917 basis functions (cor-
responding to the third most refined run of five runs shown in Fig. 6). The improvement
in performance is substantial. Tests over different problem sizes scale with N , and when
parallelized, scale with the number of CPUs.

A standard test for a vortex code is the steady diffusion of an axisymmetric distri-
bution of vorticity. We will use a Lamb-Oseen vortex

ω(~x, 0) = 4 exp
(

−4|~x|2
)

, (4.1)

where ω is the vorticity field. The exact solution is

ω(~x, t) =
1

1
4

+ 4t/Re
exp

(

− |~x|2
1
4

+ 4t/Re

)

, (4.2)

where Re is the Reynolds number of the flow. This is a strong test for any method’s
ability to capture convective forces correctly because the streamlines are concentric.
A properly implemented low-order vortex method should nail this problem to within
numerical precision regardless of the core size because it ignores linear flow deviations
that cross streamlines. This is a special advantage unique to flow with circular stream-
lines. For the fourth-order method, the Lamb-Oseen problem is not so special and
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Figure 6: Results from the spectral and asymptotic streamfunction evaluation at times
T = 6×10−5, 10−4, 1.4×10−4 and 2×10−4. Only the finer three data points are available
for T = 2.0 × 10−4 because the asymptotic velocity evaluations experience catastrophic
cancellation errors when the aspect ratios grow large.

spatial errors are finite and measurable. We performed a direct comparison between the
asymptotic and spectral technique as shown in Fig. 6. For early evolution times, both
methods produce comparable precision and exhibit fourth order accuracy. However, at
later times, the basis functions become more deformed and the asymptotic streamfunc-
tion approximation becomes less precise. At T = 2.0 × 10−4 for large 〈σ2

i 〉, the aspect
ratio becomes so large that the sixth-order expansion becomes numerically unstable and
the algorithm halts. Typical growth curves for the average aspect ratio (1/N)

∑N
i=1 a

2
i ,

circulation weighted average aspect ratio (1/
∑N

i=1 γi)
∑N

i=1 γia
2
i and maximum aspect

ratio are shown in Fig. 7. The maximum aspect ratio will determine whether or not the
asymptotic technique will become numerically unstable, but the circulation averaged
aspect ratio is a better indicator of the overall precision of the method. The new scheme
works well under all conditions.
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Figure 7: Typical aspect ratios for the Lamb-Oseen test problem as a function of time
for σ2 = 4×10−4 at t = 0 using the asymptotic technique. Initial conditions using other
initial blob core sizes exhibit similar aspect ratio growth curves.

5 A computational demonstration using laboratory

experiments of vortex filamentation

Low order vortex methods have been successful in a wide range of scientific and engi-
neering applications. High-order methods are more complex and therefore more difficult
to implement in large scale computations. In this section, we present a proof-of-concept
calculation to show that the new method is suitable for large-scale computational chal-
lenges. The demonstration will consist of the vortex method calculation, a pseudo-
spectral method calculation and a physical experiment. More information about a direct
comparisons between pseudo-spectral methods and vortex methods can be found in [5].
Similarly, quantitative comparisons between pseudo-spectral and another Lagrangian
method called contour surgery have been explored as well [8].

We performed a study of filamentation in a vorticity distribution based on that used
in the 1987 paper by Melander, McWilliams and Zabuski [16]. The initial conditions
are an elliptical vortex with a smooth transition between rotational and irrotational
fluid. This relatively simple initial condition has continuous derivatives everywhere and
a single parameter ((Ro−Ri)/Ro) that characterizes the sharpness of the interface. We
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begin with an axisymmetric vorticity distribution:

gaxi(r, Ri, Ro) =















1, r ≤ Ri,

1 − fκ

(

r−Ri

Ro−Ri

)

, Ri < r < Ro,

0, r ≥ Ro,

(5.1a)

fκ(r) = exp

[

−κ
r

exp

(

1

r − 1

)]

, 0 ≤ r ≤ 1 (5.1b)

κ =
1

2
e2 ln(2) (5.1c)

The original paper [16] is not specific on how one translates gcirc into an elliptical distri-
bution, but we take the obvious course and define

g(x, y, Ri, Ro, a
2) = gaxi

(

√

x2

a2
+ y2a2, Ri, Ro

)

, (5.2)

where a2 is the aspect ratio. The specific initial conditions for the proof of concept are

ω(x, y, 0) = 20 g(x, y, 0, 1, 2), (5.3)

corresponding specifically to one of the cases studied in [16].
To perform vortex method computations, we discretized (5.3) using N = 11, 269

axisymmetric basis functions with a core size of σ2 = 3.125×10−3. The number of basis
functions is roughly equivalent to the 1282 Fourier modes used in [16], but the vortex
computation is grid-free and requires no hyperviscosity to damp the artificial growth of
high frequency components. We chose a timestep of 10−3 and used third order Adams-
Bashforth to integrate trajectories for the vortex method. However, the deforming basis
functions continue to elongate over time. If unchecked, the deformation will lead to a
catastrophic loss of spatial accuracy.

We solved this problem by regularly reprojecting the distribution back onto a con-
figuration of axisymmetric basis functions. While there is no viscosity or hyperviscosity
introduced into the dynamics of the problem, reprojection with a fixed core size re-
moves higher-frequency components and thus can be interpreted as a form of low-pass
filter. There are a number of ways to perform this type of remeshing including using
M-functions [19, 20, 21] or radial basis functions [1, 2]. Instead, we borrow a technique
used in image processing. If we directly project an existing solution onto a regular array
of axisymmetric basis functions by choosing

γi = f(~xi)h
2 (5.4)

where f is an existing solution generated by an arbitrary configuration of basis functions,
~xi is the location of the ith new basis function on a regular array, γi is the circulation
of the new basis function which will replace the existing one and h is the mesh width,
we will generate a blurred representation of f . The overlap ratio β = h/σ is connected
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to the accuracy of the basis function interpolation. The blurring corresponds to the
solution ω(~x, t) at t = σ2 of the system

ωt = ∇2ω, ω(~x, 0) = f. (5.5)

One can see this because (5.4) approximates a convolution with the fundamental solution
to (5.5),

N
∑

i=1

f(~xi)h
2

4πσ2
exp

(

−|~x− ~xi|2
4σ2

)

≈
∫∫

∞

−∞

f(~y)

4πσ2
exp

(

−|~x− ~y|2
4σ2

)

d~y = ω(~x, σ2) (5.6)

This type of blurring has been addressed successfully with a number of algorithms. A
detailed review of PDE methods for deblurring is beyond of the scope of this paper, and
we refer the reader to sources such as [27] for a more thorough treatment.

We note that our needs differ from image enhancement because we seek to reverse
a convolution. Methods such as shock filters may help accentuate contours, but do
not necessarily serve the purpose of accurately reproducing the vorticity field. Formally
reversing the heat equation for an arbitrary fixed time is an ill-posed problem and explicit
numerical methods will amplify high frequency components. However, we are seeking
to reverse (5.5) given data at time t = σ2 where σ is our small numerical parameter.
If we refine the reprojection mesh to improve our spatial resolution, we decrease the
total integration time for the backward heat equation. Our refinement method is fairly
simple.

1. We begin with a vorticity field ω that is represented by any set of basis functions.
The configuration may be strained or some basis functions might be extremely
elongated.

2. We calculate the vorticity on a regular grid.

3. We calculate γ′ at each mesh point on the regular grid using (5.4) where h = σ is
the mesh spacing.

4. We calculate ∇2γ′ using sixth order finite differences.

5. We calculate γ at each mesh point by solving the reverse heat equation (Solve (5.5)
backward in time) using fourth order Runge-Kutta. The γ’s are the circulations of
a new configuration of axisymmetric basis functions arranged on the regular grid
that replace the original configuration.

For detailed analysis and diagnostics of the deblurring method, see [3].
For numerical comparison, we also implemented a pseudo-spectral method. We used

the algorithm described in [14], which has been used for the simulation of vortex fila-
mentation in previous studies [9, 16]. The method is based on Fourier expansions of the
vorticity and stream functions and solves

ωt + ψxωy − ψyωx = −νh∆2ω, ∆ψ = −ω,
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where νh∆
2ω is a hyperviscosity term. The simulation was performed in the double-

periodic domain with two domains at the same resolution to understand the impact of far
field boundary conditions. We performed one calculation on the domain [−π, π]×[−π, π]
using a 256×256 grid and another on the domain [−2π, 2π]× [−2π, 2π] using a 512×512
grid. Both used a hyperviscosity νh = 10−7. To advance in time, we used a third order
Adams-Bashforth scheme with ∆t = 0.0005.

For the problem at hand, both methods performed well and require modest com-
putational resources. Plots of the results obtained from both numerical schemes are
presented in Fig. 9. Both calculations resolve the position and shape of the filaments
and the core and are in agreement with each other. A systematic comparison between
both schemes is beyond the scope of this article. As pointed out in [5], the performance
of each method is very much dependent on the way boundary conditions are treated
and on the driving forces of the fluid motion. While periodic boundary conditions are
optimal for spectral methods, since the solution of the Poisson equation is trivial, im-
posing other restrictions at boundaries substantially increases the cost of these methods.
However, for problems on unbounded domains, spectral schemes often require artificial
boundary conditions such as absorbing boundary layers [12]. On the other hand, many
particle methods, including the one used in this paper, naturally satisfy the boundary
conditions on unbounded domains. Another way to address this issue which we did not
pursue is to sacrifice spectral accuracy and use finite differences in the radial direction
(remapping [0,∞) onto a finite interval) together with a spectral discretization in the
azimuthal direction [4]. For these calculations, the pseudo-spectral calculation with the
[−π, π] smaller domain produced significant overrotation, roughly 17 degrees, in the sim-
ulation. This maximum discrepency is reduced to roughly 3 degrees at the end of the
1.65 second time simulation using the [−2π, 2π] larger domain.

The raison d’etre of many large scale scientific computations is to simulate a physical
process. To complement our numerical proof-of-concept, we also present a comparison
with laboratory experiments on electron vortices, which are electron plasma columns
contained within a Penning trap [17]. In the operating regime of the experiments, where
fast electron motions in the axial direction average over axial variations and the 2D
E ×B drift approximation is valid, to first order the columns evolve according to the
2D Euler equations. The columns therefore evolve as would vorticity in an incompressible
and inviscid 2D fluid contained in a circular tank with a free-slip boundary condition.

A schematic of the experimental apparatus used is shown in Fig. 8. A column
of electrons of temperature T ≃ 1 eV is confined inside a series of conducting rings
of wall radius Rw = 2.88 cm and confinement length Lc = 36.0 cm, in a uniform
axial magnetic field Bz = 454 Ga. The rings are segmented six-fold into 60◦ sectors
to allow for vortex manipulation through the application of non-axisymmetric electric
fields. The magnetic field provides radial confinement, and negative confinement voltages
of Vc = −24 V applied to end gate rings provide axial confinement. The x, y flow of the
electrons is well described by the 2D drift Poisson equations, with the vorticity of the
flow, ω ≡ ẑ · ∇ × v = (4πec

B
)n = 0.399n, proportional to the 2D electron density [17].

In the measurements an electron column is injected and trapped, then made elliptical
by the application of precise voltage waveforms onto two opposing ring sectors. To study
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Figure 8: Side and end view schematics of the cylindrical electron Penning trap geometry.

Technique Coefficient var’s Precomputation req’d Accuracy Performance

Asymptotic x, y, ǫ or a No ǫn Slower
Spectral a Yes exp(−c n) Faster

Table 3: A summary of features for the two different methods for calculating the Biot-
Savart integral. There are implementation, accuracy and performance differences.

the subsequent evolution at a specific time, the electron column is dumped axially onto
a phosphor screen biased to 9 kV, and an image is recorded with a CCD camera of
the emitted light, which is proportional to the electron line charge number distribution
N(x, y). From the line charge, the electron temperature, and the trap geometry, we
calculate the equivalent 2D density n(x, y) and then the vorticity ω(x, y) using ω =
0.399n. Because the density measurement is destructive, multiple shots beginning with
identical initial conditions are required to follow the time evolution.

We adjusted the electron source and manipulated the injected electron column to cre-
ate a density initial condition similar to that specified by (5.3). We plot the measured
vorticity at three subsequent times in the bottom row of Fig. 9. To compare results,
we rotate the vorticity fields from the computational experiments by 124.6 degrees so
that the first frame of the each time series is horizontal. The strong agreement between
laboratory and numerical experiments in this inviscid study demonstrate the value of
high-order computations, even with moderate computational resources. This measure-
ment and others like it are being used to study the axisymmetrization of vortices. This
particular example highlights the central role filamentation plays in asymmetrization
where the core and filaments interact strongly to reduce the overall aspect ratio [16].
This process is ubiquitous in physical flows and with 2D elliptical vortices is often the
dominant axisymmetrization process, although mode instabilities can also play a role
[11].

6 Conclusion

In summary, we have presented a new method for approximating the Biot-Savart in-
tegral of an elliptical Gaussian basis function. This technique brings about a major
improvement in computational efficiency and the range of applicability of high order
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vortex methods using deforming basis functions. In particular, the new scheme for ap-
proximating the streamfunction offers several distinct advantages over the asymptotic
scheme which was the only technique available prior to this work. The key differences
in implementation, accuracy and performance are summarized in Table 3.

The evaluation method performs as well as the asymptotic technique for small or
moderate aspect ratios, but for larger aspect ratios, errors accumulate and destroy the
extra precision of the high order vortex method when using the asymptotic method.
Moreover, the method is faster and since direct evaluations are the dominant part of
a vortex computation, even when using fast summation, the new technique boosts the
performance of the full vortex method considerably. We have demonstrated the viability
of the high order method for large scale computations. While low order axisymmetric
methods allow fast, analytic evaluation of the streamfunction, the high order method
will always outperform low order methods eventually, and the transition often occurs at
moderate problem sizes (see [25] for example). Using a simple remeshing scheme, we have
performed a simple vortex filamentation simulation which shows strong agreement with
electron vortex experiments and a pseudo-spectral method. In short, the new evaluation
technique described in this paper augments and expands the capability of high spatial
order vortex methods for viscous flow calculations.
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Appendix A Overview of the high-order vortex method

using elliptical Gaussian basis functions

In this section, we formulate the dynamics for a vortex method using elliptical Gaussian
basis functions. Generalizing (1.1b), we include parameters for the circulation, position,
core size, aspect ratio and orientation of the basis function as follows.

φσ,a,θ(~x) =
1

4πσ2
exp

(

−|Aθ,a~x|2
4σ2

)

, Aθ,a =

[

cos θ/a sin θ/a
−a sin θ a cos θ

]

. (A.1)

To briefly summarize the systematic derivation in [24], we represent the vorticity field
as a linear combination of basis functions,

ω =

N
∑

i=1

γiφσi,ai,θi
(~x− ~xi). (A.2)
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We require that the basis functions satisfy evolution equation

∂tφ+ (~u+D~u ~x)φ =
1

Re
∇2φ (A.3)

where ~u is a known velocity field determined by the Biot-Savart integral discussed in
this paper evaluated at the basis function centroid and D~u, is the matrix of partial
derivatives of the velocity field ~u.

Inserting (A.1) into (A.3) yields the following equations:

d

dt
~xi = ~u(~xi) + σ2

i (~uxx(~xi)Mxx + 2~uxy(~xi)Mxy + ~uyy(~xi)Myy) , (A.4a)

d

dt
(σ2

i ) =
1

2 Re
(a2
i + a−2

i ), (A.4b)

d

dt
(a2
i ) = 2[d11(c

2
i − s2

i ) + (d12 + d21)sici]a
2
i +

1

2σ2 Re
(1 − a4

i ), (A.4c)

d

dt
θi =

d21 − d12

2
+

[

d21 + d12

2
(s2
i − c2i ) + 2d11sici

]

(a−2
i + a2

i )

(a−2
i − a2

i )
. (A.4d)

Here, dij are the constituent elements of D~u, the matrix of partial derivatives of the
velocity field ~u, ci = cos(θi), si = sin(θi), and the M ’s represent velocity field curvatures:

Mxx = c2ia
2
i + s2

i /a
2
i , Mxy = cisi(a

2
i − a−2

i ), Myy = c2i /a
2
i + s2

i a
2
i . (A.4e)

Basis function deformations are driven by D~u, the local flow deviations. Notice that
the velocity field of each basis function is not the velocity field measured at the centroid
but rather the velocity field with a curvature correction. This is necessary if one is to
achieve fourth order spatial accuracy, so accurate calculation of the velocity field and its
derivatives is essential.
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Figure 9: Computational and experimental measurements of vorticity. The top row plots
are simulations using the vortex method. The middle row plots are pseudo-spectral
computations. The bottom row plots are measurements of electron vorticities. The
cylindrical boundary of the experimental trap is indicated in the corners of the exper-
imental plots. The simulation and experiment times are indicated in the plots. Both
scales are normalized by the maximum value which is 20 sec−1 for the simulations and
4.07 × 106 sec−1 for the experiments.


