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Executive Summary

In the progress of realising the Semantic Web, developimgsapporting Semantic Web
guery languages are among the most useful and importairobggroblems. In [PFT04],
we have provided a unified framework for OWL-based rule andyglaaguages. In this
report, we focus on the problems of query answering for Séim¥veb query languages
(such as RDF, OWL DL and OWL-E) in the OWL-QL specification.
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Chapter 1

Introduction

In the progress of realising the Semantic Web, developimgsapporting Semantic Web
guery languages are among the most useful and importa@irobggroblems. In [PFT04],
we have provided a unified framework for OWL-based rule andyglaamguages. In this
report, we will

e fill the gap between the theoretical foundations of the ungyframework intro-
duced in [PFT04] and the W3C work on the RDF semantics and the SPARQL
query language;

e investigate query answering within the OWL-QL formalismparticular for queries
over OWL DL and OWL-E ontologies;

e study various optimisation techniques of combining DL oeeess with database, in
order to handle large data sets; and

e report our implementations of an OWL-QL server and a hybriddtabase sys-
tem called Instance Store.

The rest of the report is organised as follows. Chapter 2 dasva connection between
the theoretical foundations of the unifying framework autuced in [PFT04] and the
W3C work on the RDF semantics and the SPARQL query language.

Chapters 3 to 5 investigate query answering within the OWL-Qim&lism. Chap-
ter 3 presents the OWL-QL formalism, the basic rolling-uphteques to reduce OWL-
QL query answering to OWL DL knowledge satisfiability and arpiementation of an
OWL-QL server. Chapter 4 presents the formal semantics fatygla¢ expression en-
abled queries and shows how to reduce query answering in OMJIL-Eo knowledge
base satisfiability in OWL-E. Chapter 5 discusses a fuzzy sxarof OWL-QL.

Chapter 6 and 7 study various optimisation techniques of aundp DL reasoners
with databases. Chapter 6 provides an in-depth descripfidheoalgorithms and im-

1



1. INTRODUCTION

plementation of a hybrid DL/Database system called In&&tore. Chapter 7 presents
some early ideas on how to optimise instance realisation.

Chapter 8 concludes this report.

2 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0



Chapter 2

Querying the Semantic Web with
Ontologies

2.1 Introduction

The main aim of this chapter to recast the RDF model theory iroeerolassical logic
framework, and to use this characterisation to shed new diglthe ontology languages
layering in the semantic web. In particular, we will show hilv& models of RDF can be
related to the models of DL based ontology languages, wittenuiring any change on
the existing syntactic or semantic definitions in the RDF akdLEDL realms.

We first introduce the notion of minimal models for RDF grapdrs] we use this no-
tion to characterise RDF entailment. RDF minimal models can be seen as classical
first order structures, that we call DL interpretations. §éstructures provide the seman-
tic bridge between RDF and description logics based languddee intuition beyond DL
interpretations is that it singles out the concepts andttiiduals from an RDF minimal
model — possibly in a polymorphic way when the same node &gdoth the meaning as
a class and as an individual. The natural DL interpretatsoiné one in which concepts
and individuals are disjoint. The class of RDF graphs whidébmabnly for natural DL
models are called DL compatible.

Once we have characterised RDF graphs in terms of their mimmodels, it is possi-
ble to understand the notion of logical implication betw&&F graphs and DL formulas.
In particular, in this chapter we analyse the problem of gmgrRDF graphs with DL on-
tologies. We define the certain answer and the possible answequery to an RDF
graph given an ontology; this is based on the notion of naikainterpretation of the
RDF graph. Finally, we prove an important reduction resuftatlis, given an RDF graph
S and a query), the answer set @ to S (as defined by W3C) is the same as the certain
answer of@) to S given the empty KB. This shows a complete interoperabilitiveen
RDF and DLs. For example, in absence of ontologies, it woulddssible to use OWL-

3



2. QUERYING THE SEMANTIC WEB WITH ONTOLOGIES

QL to answer queries to RDF graphs, or to use SPARQL to answeiegue ABoxes.

2.2 RDF Model Theory revisited

We first define the notion of minimal model for an RDF graph.

Definition 1 (Minimal Model)

A ground instantiatiorof an RDF graphS is obtained by replacing each bnode )

if any, with some URI. Aestricted ground instantiatiosf an RDF graphS is obtained

by replacing each bnode if, if any, with some element of the set of the URIs appear-
ing in S together with a set of fresh URIs — that is, not appearing elseg/im S— in
correspondence to each bnode symbdafin

An RDF minimal modelZrpr of an RDF graphsS is a restricted ground instantiation of
the graph.

Note that a minimal model is always finite if the RDF graph isténthat a ground RDF
graph has a unique minimal model, and that a minimal modegi®and RDF graph.

As the following lemma shows, the minimal models of an RDF grapntainexplic-
itly all the information entailed by the graph itself.

Lemma 2 (RDF entailment and minimal models)

1. An RDF graphS entails an RDF graplf (as defined in [Hay04a]), writte§ |= &,
if and only if each minimal model & contains some ground instantiation &f

2. RDF entailment is NP-complete in the dimension of the RIiplgs.

3. RDF entailment is polynomial in the dimension of the geght is acyclic or
ground.

The proof is based on a reduction to the problem of conjuedajivery containment, and
by using the interpolation lemma in [Hay04a].

A DL interpretationof an RDF graph shows how models of RDF can be seen as
interpretations in classical logic.

Definition 3 (DL Interpretation of an RDF minimal model)

A DL interpretation of an RDF minimal mode a description logics (DL) interpretation
I(Zror) = (A, A, C,R,F,0,.7), whereA is an abstract domainA is the union of all
XML schema datatype value spacésis a set of atomic conceptR is a set of atomic
roles,F is a set of datatype feature®,is a set of individuals, and is an interpretation
function giving the extension to concepts, roles, and feafsuch that:

4 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0
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C C URI-reference§ RDF-vocabulary
R C URI-reference§ RDF-vocabulary
F C URI-reference§ RDF-vocabulary
O C URI-references RDF-vocabulary

AD non—empty(O)

foreachC € CC* = {o € O | (o,rdf : t ype, C) € Zrpr}
. for eachR € RR? = {{01,0,) € O x Q| {01, R, 02) € Trpr}
' for eachF € FFZ = {{0,12v(])) € O x A | {0, F,1) € Trpr}
for eacho € 0o” = o

Note that there may be several DL interpretations of a siRi}é minimal model, de-
pending on which URI references are associated to concepés)am role names, to
datatype features, and to individuals.

An URI reference may be associated to more than one DL syotgpe: polymorphic
meanings of URIs are allowed. However note that, just likehimm tase of contextual
predicate calculus (as defined in [CKW293]), there is no intwadoetween the distinct
occurrences of the same URI as a concept name, or as a role oraasea feature name,
or as an individual. This absence of interaction is requfcgdlassical first order DLs
such as OWL-lite or OWL-DL. For example, given the trigk:o , rdf:itype ,ex:o0 )
within an RDF minimal model, it is possible to have a DL int&tation associated to it
where bothC andQ include the URIlex:o , and such that the individuak:o is in the
extension of the concepk:o .

The above definition of DL interpretation of an RDF minimal rebi sloppy as far
as the role of datatypes is concerned. In fact, in a DL in&tgion distinct datatypes
should be introduced explicitly. This can be easily indubgdhe structure of the lexical
form of the XML-schema typed literals themselves.

A DL interpretation of an RDF minimal model datatype-freef the RDF literals are
also interpreted as individuals @, and noA nor datatype features are given.

Definition 4 (DL compatible RDF graph)
Given an RDF minimal modélgpr, the setC, R, F, O are defined as the minimum sets
such that:

for each(o, r df : t ype, C) € Zror, theno € 0, C € C;
for each(oy, R, 02) € Zror thenoy, 0, € O, R € R;
for each(o, F,1) € Zrpr andl is a literal, theno € O, F € F.

Anatural DL interpretatioof an RDF graphS is the DL interpretation of an RDF mini-
mal model ofS whereC = C,R =R, F =F,0 = Q.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 5



2. QUERYING THE SEMANTIC WEB WITH ONTOLOGIES

An RDF graphs is aDL compatible RDF grapif for some of its minimal modeis, R,
F, O are mutually disjoint.

Note that checking whether an RDF graph is DL compatible anldibg a natural DL
interpretation takes polynomial time with respect to thaelision of the graph. Ground
DL compatible RDF graphs have a unique natural DL interpiatat

2.3 Querying with Ontologies

In the previous section we have characterised RDF graphemstef their minimal mod-
els. Itis now possible to understand the notion of logicadlication between RDF graphs
and DL formulas. We have thus achieved full semantic interalpility between the RDF-
like languages and the DL-like languages in the semantic \mgiarticular, in this section
we analyse the problem of querying RDF graphs with DL ont@sgi

Definition 5 (Querying RDF graphs with DL ontologies)

Given an RDF grapl$, consider the DL knowledge basEsg ;, each one with the same
TBox expressing some given ontology KB and with the ABox ass®#s in the natural
DL interpretation associated to thi#h minimal model ofS. Given a first order query)
over the alphabet of without the RDF vocabulary, consider the s&f, which includes

for eachi the answer set d to X5 ; (in agreement with the semantics as specified in the
Knowledge Web deliverable D2.5.1). Teertain answeof @@ to S given the KB is the
intersection of all the answer sets,kté; a possible answenf ) to S given the KB is any

of the answer sets ).

A special case of the theorem above is when we restrict they qgoground DL compat-
ible RDF graphs. This corresponds to querying the unique Ddrpmetation (trivially)
associated to the ground DL compatible RDF graph.

Theorem 6 (Querying RDF graphs with empty ontologies)

Given an RDF graplks and a first order queryy over the alphabet of without the RDF
vocabulary, the answer set ¢fto S (in agreement with the RDF entailment semantics,
as in Lemma 2) is the same as the certain answé} tid S given the empty KB.

The problem of query answering with the empty KB is polynomidl waspect to the
dimension ofS.

The proof is based on a reduction to the problem of conjuaajivery containment. Note
that in this case it is enough to encode as an ABox only the alahterpretation associ-
ated to the so calledanonical modgli.e., the minimal model whose bnodes have been
associated to distinct fresh URIs.

Note that a special case of first order query — without the RMaluolary — is the case
of positive queries, which corresponds to an open formutherform of a disjunction of

6 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0
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conjunctions of, possibly existentially quantified, non{fR&oms. Positive queries can be
expressed in RDF as a disjunction of RDF graphs, with the podatiat the only allowed
RDF property isrdfitype , and that bnodes do not appear as objectsibtype
triples.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 7



Chapter 3

OWL-QL

Here we address the OWL Query Language (OWL-QL), how to redueeycanswering
of OWL-QL into Knowledge Base Satisfiability and an impleméiota of an OWL-QL
server.

3.1 Introduction

The OWL-QL specification, proposed by the Joint US/EU ad hoeradMarkup Lan-
guage Committeéjs a language and protocol for query-answering dialoguies) ksowl-
edge represented in the Ontology Web Language (OWL). It isexdsuccessor of the
DAML Query Language (DQL) [Fik03], also released by the 3&i&/EU ad hoc Agent
Markup Language Committee. Both language specifications gangkethe aims of other
current web query languages like XML Query [Boa03], an XML [B4hquery language,
or RQL [KAC'02], an RDF [Bec04] query language, in that they support theofige
ference and reasoning services for query answering.

The OWL-QL specification suggests a reasoner independembaralgeneral way for
agents (clients) to query OWL knowledge bases on the Semafetic The specification
is given on a structural level with no exact definition of theéeenal syntax. By this it
is easily adoptable for other knowledge representatiom#&bs (such as RDFS and first
order logics), but on the semantic level OWL-QL is properlyiried, due to the formal
definition of the relationships among a query, a query answwdrthe knowledge base(s)
provided by the specification (see [FHHO3], page 10-11, Agpe Formal Relationship
between a Query and a Query Answer).

1Seenttp://www.daml.org/committee/ for the members of the Joint Committee.
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3.1.1 Queries

OWL-QL queries are conjunctive queries w.r.t. some knowédolases (or simpligBs). A
guery necessarily includesjaery patterrthat is a collection of OWL statements (axioms)
where some URI references [Ber98] or literals are replaceddnyables. In a query,
the client can specify for which variables the server hagtwide a binding ihust-bind
variableg, for which the server may provide a binding4y-bind variablesand for which
variables no bindingdon’t-bind variable$ should be returned. In this report, must-bind
variables, may-bind variables and don't-bind variables @refixed with ?”, “~” and
“1” respectively.

A client uses an answer KB pattern to specify which knowleblgse(s) the server
should use to answer the query. Answer KB patterrcan be either a KB, a list of KB
URI references or a variable (of the above three kinds); indakecase, the server is al-
lowed to decide which KB(s) to use. The use of may-bind andtelnind variables is one
of the features that clearly distinguish OWL-QL from stambldatabase query languages
(such as SQL [ANS92]) and other web query languages (such as[R&C *02] and
XML Query [Bra04]).

Here is an example of a query pattern and an answer KB pattern.

queryPattern: {(hasFather Bill ?f) }
answerKBPattern: {http://owlglExample/fathers.owl }

Figure 3.1: A query example

Assume that the KB referred to in the answer KB pattern inetutie following OWL
statements
SubClassOf(Person
restriction(hasFather someValuesFrom(Person)))
Individual(Bill type(Person)),

which assure that every person has a father that is also arpansl that Bill is a person.
It could then be inferred that Bill has a father, but we canitneahim, so the OWL-QL
server can't provide a binding and returns an empty answiegation. This is of course
different if f is specified as a may-bind-{ ) or don’t-bind (f ) variable, in both cases an
OWL-QL server should return one answer, but without a bindang-f resp.!f .

Assume now that the KB includes the additional statemerthtaay has Joe as her
father and a query with a must-bind variable for the child), The type of the variable
f for the father would change the answer set as follows:

gueryPattern: {(hasFather ?c ?f) }
If f is a must-bind variable?f ), a complete answer set contains only persons

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 9



3. OWL-QL

whose father is known, in this example (hasFather Mary JbeygvMary is a bind-
ing for ?c and Joe is a binding fo2f .

gueryPattern: {(hasFather ?c If) }

If f is a don't-bind variable!{ ), a complete answer set contains all known persons
since it is specified that all persons have a father, but withdinding for!f . In

this example (hasFather Mary !f), (hasFather Joe !f) andRatner Bill !f) should

be in the answer set.

gueryPattern: {(hasFather ?c ~f) }

If f is a may-bind variable~f ), the complete and non-redundant answer set con-
tains all known persons since it is specified that all perdane a father, but a bind-
ing for ~f is only provided in case the father is known. In this exampbesFather
Mary Joe), (hasFather Jed) and (hasFather Bil-f) should be in the answer set.

An optional query parameter allows the definition of a pattdat the server should
use to return the answers. Thasswer pattermecessarily includes the format of all
variables used in the query pattern. If no answer pattenpasified, a two item list whose
first item is the querys must-bind variables list and whoseseé item is the querys may-
bind variables list is used as the answer pattern. Thisfisrdifit to the DQL specification,
where, for the case that no answer pattern was specifieduttrg gattern is used as the
answer pattern.

Another option for a query is to includeuery premisga set of assumptions) to
facilitate “if-then” queries, which can’t be expressedathise since OWL does not sup-
port an “implies” logical connective. E.g., to ask a questi&e “If Bill is a person, then
does Bill have a father?” the query premise part includes an G\WIlor a KB reference
stating that Joe is a person and the query part is the sameFagure 3.1. The server
will treat OWL statements in the query premise as a reguladrgfdine answer KB and all
answers must be entailed by this KB.

3.1.2 Query-Answering Dialogues

To initiate a query-answering dialogue the clients sendseaygto an OWL-QL server.
The server then returns @amswer bundlewhich includes a (possibly empty) answer set
together with either germination tokerno end the dialogue or jprocess handléo allow

the continuation of the query-answering dialogue. A teation token is eitheendto
indicate that the server can't for any reasons provide mosgars omoneto assert that
no more answers are possible. If a server is unable to dehlavijuery, e.g., due to
syntactical errors, gejectedtermination token is sent in the answer. The specification
also allows the definition of further termination token,.etg provide information about
the rejection reasons.

Since an answer bundle can be very large and the computatiotake a long time,
the specification also allows to specifyamswer bundle size bourldat is an upper bound
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for the number of answers in an answer bundle. If the clieati$igd an answer bundle
size bound in the query, the server does not send more anhearallowed by the answer
bundle size bound.

To continue a dialogue the client sendsexver continuatiomequest including the
process handle and an answer bundle size bound for the rexeabundle. A server
continuation must not necessarily be sent from the sametcliéhe client can also pass
the process handle to another client that then continuegubey answering dialogue.
If the server can’t deliver any more answers for a serverigoation request, it sends a
termination token together with the probably empty answeér s

If the client does not want to continue the dialogue, thentlean send gerver ter-
minationrequest including the process handle. The server can useiged server ter-
mination request to possibly free resources. Figure u8tiihtes the query-answering-
dialogue.

Query >

< Answer Bundle
(including a process handle)

Server Continuation

Answer Bundle
<

/E\

< Answer Bundle Server Termination >
(including termination
token(s))

IN3ITI
d43AH3S

Figure 3.2: The query-answering dialogue

The specification provides some attributes for a serverdmpte the delivered quality
of service or the so callecbnformance levelA server can guarantee to ben-repeating
so no answers with the same binding are delivered. Theestittvel is called &erse
server and only the most specific answers are delivered tdig@. An answer is more
general (subsumes another) if it only provides fewer bigslifor may-bind variables or
has less specific bindings for variables that occur only &segaof minCardinality or
maxCardinality restrictions, e.q., if the KB is true for adiimg of 4 for a maxCardinality
variable, then it will also be true for a binding of 5,.6,. Since this demand is very high
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for a server that produces the answers incrementally, adsssctive conformance level
is serially terse where all delivered answers are more specific that preljialedivered
answers. Finally servers that guarantee to terminate witimihation tokemone are
calledcomplete

3.2 Reducing Query Answering to ABox Reasoning

In this section, we show that query answeringagj/clic conjunctive querie@ formal
definition of which is presented in Section 3.2.2) can be ceduto ABox reasoning.
Before presenting the details of the reduction, we wouldtidkenention two points here.

e Since there exist no efficient decision procedure for ¢0ZQ(D™") DL, the
underpinning of OWL DL, we consider tR&HZ Q DL in this section.

¢ Please note that may-bind variables are a combination tigigsshed (must-bind)
and non-distinguished (don’t-bind) variables and aredtoee not treated in further
detail here. Therefore, in the following reduction we wiitrconsider may-bind
variables.

3.2.1 Conjunctive Queries

A conjunctive query is of the formg(z) <« conj(¥;y; Z). The vectorr consists of so
called distinguished or must-bind variables that will beibd to individual names of the
knowledge base used to answer the query. The vgotonsists of non-distinguished or
don’t-bind variables, which are existentially quantifieaiables. The vectof consists
of individual names, andonj(; ¥; Z) is a conjunction of atoms. An atom is of the form
v1:C or (vy, v3):r whereCis a concept name, is a role name and,, vs, v3 are individ-
ual names front’ or variables from¥ or . The left hand side of the query, i.@(¥) «—,
might be omitted, since itis clear from the prefixes whichalales are distinguished ones.
Recall that must-bind variable names in a query are prefixéu%vidon’t-bind variables
are prefixed witH, individual names are not prefixed. Concept names are wiittepper
case letters, while role and individual names are writtelower case.

3.2.2 Query Graphs

A conjunctive queryy can be represented as a directed labelled gé@ph = (V, E),
whereV is a set of vertices, anfl is a set of edges. The sBtconsists of the union of
the elements i, y, andZz. The setFE consists of all pairgv;, v2), such thaty, v, € V
and(vy,vp):r is an atom ing. A nodev € V is labelled with a concept; M ... 1 C,
such that, for eact’;, v: C; is an atom iny. Each edge € F is labelled with a set of role
names{r — (vy,vq):r isan atom ing}.
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The functionL(v),v € V returns the label for. If £(v) is empty, the top concept
(T) is returned. The functiori(e), e € E returns a set of edge labels farThe function
L~ (e),e € E returns a set of inverted edge labels, such thate) = {r|r— € L(e)}.
The functionflip(G, (v1,v2)), (v1,v2) € E creates a new grapG’ := (V’, E’), with
V=V, E = (E\ {{(v,v9)}) U {(va,v1)}, and L((va,v1)) = L ({v1,v9)). The
functionpred(vy),v; € V returns a set of verticeg, |vy,v2 € V A (vg, 1) € E}.

Two verticesvy, v, € V are adjacent, ifC((vy,vq)) # 0 or L({ve,v1)) # (. The
vertexv; € V is reachable fromy, € V, if v; is adjacent tas, or if there is a another
vertexvs € V such thabs is adjacent ta;, andv, is reachable fromy;. The graphG(q)
is cyclic, if there is a € V, such thatC({v,v)) # 0 or if there is a’ € V, such thav is
adjacent ta’ and if one element is removed frofi{(v, v')), v' is still reachable from.

q is an acyclic conjunctive query @(q) is not cyclic.

3.2.3 The Rolling-up Technique

If a query contains only distinguished variables, one coafaace all variables with in-

dividual names from the knowledge base and use a sequenastaftiation queries to
determine if the statement is true in the knowledge base.ofgpate a complete query
answer set with this approach, it is necessary to test adliplescombinations of individ-

ual names. This is very costly, and furthermore, this apgrasanot applicable to queries
with non-distinguished variables.

In 2001 Tessaris [Tes01] proposed a rolling-up techniqaedan be used to eliminate
non-distinguished variables from a query. The techniqagdicable to acyclic conjunc-
tive queries and the OWL-QL server implemented in Manchasdes this technique to
compute the query answers.

The basic idea behind the rolling-up technique is to conadividual-valuedproperty
atoms into concept atoms. The rationale behind this rollipgan easily be understood
by the use of nominals. Thadividual-valuedproperty atoma, b): r can be transformed
into the equivalent concept atoax Jr.{b}. If we replaceb with a non-distinguished
variable!y, the corresponding role atofn, !y): r can be transformed into the equivalent
concept atoma : 3. T becausdy does not have to be bound to a named individual.
Furthermore, other concept atoms about the individifbeing rolled up) can be adsorbed
into the rolled up concept atom. For instance, the conjoncti

(a,b):r A b: D

can be transformed inta 3r.({b} 1 D). Similarly, the conjunction
(a,ly):r Aly: D

can be transformed inte 9. D becausé) is equivalent tol M D.
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Queries with One Distinguished Variable

Using the rolling-up technique introduced above, we camucedquery answering of
gueries with only one distinguished variables to retrigtiaé problem of determining
the set of individuals that instantiate a given concept).e phocess is best illustrated
using the query grapt¥(q) of a queryq (Figure 3.3). For the readers convenience the
distinguished variables are represented by a filled nejlen(hereas non-distinguished
variables and individuals are represented by an unfillee rfod

(?w) «— 7w:PERSON A (?w, !x):owns A (7w, !y):loves A {!z, 'y):haschild

Loves /VIO<— haschild _'Oz
?w: PERSON @=—__ Wy '
owns —

'x
Figure 3.3: A query and its query graph.

First of all, the query graph is transformed into a tree wité distinguished variable
as root. The functiorflip(G,e),e € E is applied to change edge directions if neces-
sary to transform the graph into a proper tree. The left haartl gf Figure 3.4 shows
the resulting tree. Then the rolling-up starts from the ésawnf the tree. A leaf, e.g'z,
is selected and the vertex and its incoming edge are replacednjoining the concept
I L(pred(1z),!z).L(!z) to the label ofpred(!z). The right hand part of Figure 3.4 shows
the result of the first rolling-up step. Thie conjunct could be omitted without changing
the semantics. This step is applied to each leaf until ordydiktinguished variable at the
root is remaining. The label of the root node can now be usedtt@ve the individual
names that are valid bindings for the distinguished vagiabbr this example these are in-
stances of the conceBERSONI Jowns. T M dloves.( TrMdhaschild —. 7).

ly lz
»O—haschild™—*O
loves
W PERSON0<Owns
-~

Ix

ly: T M 3Jhaschild™. T

»0
loves
W PERSON0<Owns

™~

Ix
Figure 3.4: Two states of a query graph in the rolling-up pssc
Queries with Individual Names

In a DL that supports the oneOf constructor, which allowsd&gnition of a concept by
enumerating its instances, the rolling-up can use the idigial name directly in the con-
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cept expression. Nodes for an individual name can then atetitdike a non-distinguished
variable with the conceptindividual nameé as label. For example, the quefyx) «—
(?x, mary ):loves is rolled-up into a retrieval query for instances of the aptc
dloves. {mary}. Unfortunately most reasoners do not support the oneOfteans
tor, but it is still possible to deal with such queries usingpacalled representative con-
cept [Tes01]. The representative concept is a so far unusszkept name, which is used
instead of the individual name, the ABox being extended withssertion stating that the
individual is an instance of its representative concep.,Ehe query could be answered
by retrieving the concept instances-loves.P ,,,,,, after the assertiomary:P ,,,,,

is added to the KB.

Boolean Queries

If the vectorz is empty, i.e., the query contains no distinguished vagsfthe query an-
swer is true, iff the knowledge base entails the query wighritbin-distinguished variables
treated as existentially quantified. The boolean query (acar, !x):.ownedby A
x:PERSONagainst the knowledge base in Example 1 should be answetbdnwe,
since the existence of such a person is entailed by the KB.

Example 1

KB={T, A}

7 = {CARLC Jownedby. PERSON}
A ={acar: CAR}

We can arbitrarily select a non-distinguished variable @edt it as if it were a dis-
tinguished one and apply the rolling up techniques predent@revious sections. For
instance, the above query can be rolled upxtERSONM Jownedby ~. {acar }. If
'x would have been a distinguished variable, the query could baen answered with a
retrieval query, but here only the assertion must hold thalh s thing exists. It must not
necessarily be named in the knowledge base.

To answer the query with true, we must prove that the negaikeldrup concept
causes an inconsistency in the knowledge base. This is egaddling a statement that the
rolled-up concept implies bottom. In this example the kremigle base becomes indeed
inconsistent if we add a statement that there is no instahtteeaconcepPERSONhat
ownsacar , i.e., adding the axiomRERSON1 3 ownedby ~. {acar }) C L. Therefore
the query answer is true, otherwise the query answer wowle been false.

Queries with Multiple Distinguished Variables
If a query contains multiple distinguished variables, thery can not be rolled-up into

a single DL retrieval query. To avoid a test of all possiblenbinations of individual
names, as necessary for the simple approach describedtior582.3, the rolling-up
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technique is nevertheless helpful. To start the query answ@rocess, one of the dis-
tinguished variables is selected as the root node, and ladr ofariables are treated as
non-distinguished. The query graph is transformed intaea &and the rolling-up pro-

cess is applied as described above for the case with onlyietiegiliished variable. The

retrieved individual names are candidates for the bindihthe variable. This step is

repeated for all distinguished variables.

Not every combination of the retrieved candidates is pdssdnd to determine the
valid combinations further boolean tests are necessargvdi as many boolean tests as
possible further optimisations can be used at this point.

3.2.4 Optimisation Techniques

One promising approach is to use an iterative process timinekes unsuitable combi-
nations as soon as possible. Consider, e.g., the query aqdeitg graph in Figure 3.5,
where?x has four candidates (i.ex; ... z4), 7y has two candidateg/, y-), and’z has
ten candidates:(, . . ., z1¢) after the rolling-up.

(?x,7y,72) «— (7x,7y):r A (?y,72):s

o—r—»@— " Ss—— >0
7x: (1'171'271'371'4) 7Y (ylayQ) 7z (Zla227237247257267277287297210)

Figure 3.5: An example query with its query graph and cardila

If we had not used the rolling-up to retrieve the candidates number of necessary
boolean tests would have been factorial in the number of dandividuals in the KB.
With the rolling-up and boolean tests for all possible cdatk combinations, the number
of tests is still the product of the number of candidates, B8 tests in this example.
An optimised strategy could start at the variable with theshwandidates (i.eZz) and
retrieve the concept instances=b§~. P, , whereP,, is the representative concept far.

In this way, one can determine which of the candidates’#oare related tay;. This is
repeated for,. By testing for valid pairs first, one can skip many unnecestest, e.g.,

if 4y, andz; are not related, no tests for candidatesofare necessary. The process is
repeated for the variable with the next highest number ofiickates (i.e.7/x). Compared

to the 80 boolean tests necessary before, this approacls fe@dretrieval queries to
determine the valid candidate combinations. However, h@amyretrieval queries are
necessary, depends on the number of candidates for thegiisthed variables, but it is
clearly cheaper than a test of all candidates and much chéegrea test of all individual
names in the KB.

Another optimisation could use structural knowledge alibatroles in the KB to
exclude impossible candidate combinations even beforalloge tests are used. The
system developed in Manchester does not yet fully implertiezgte optimisations.
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3.3 An Implementation of an OWL-QL Server

3.3.1 Used Tools, Products and Languages

The implementation was realised in Java. The reason forshit all other components
that are used in this project, e.g., the DAML+OIL to DIG cortee or the DIG interface
classes, are also written in Java, and a rich number of framsfor web services are
also available in Java. To realise such a project in the gaveaunt of time also makes
it necessary to fall back on as much experience with toolslanguages as possible,
otherwise too much time would be spent on familiarisatiothwiew tools. Java was,
therefore, the best candidate for the implementation lagguand the set up of other
tools was more or less easy.

As an application server Jakarta Tonfoatth the Axis® web service framework was
chosen. Axis is Apache’s most recent web service framewanll,compared to its suc-
cessor Apache SOAP it supports the Web Service Descripamgliage (WSDL). Ap-
plication developers can generate the Java classes for @aveige client from a .wsdl
file.

JUnit* served as a testing framework for the project and ar? Aatipt deploys both
the client and the server application to the Tomcat web senve can also run the JUnit
tests to assert that the deployed files work as expected. F8n&Xsioning the savannah
project server of the Hamburg University of Applied Scieneas used. Apache’s log4J
served as a logging framework. It is easy to use and provieesral predefined cate-
gories, such as info, warning and error. A configuration féérees the verbosity and the
output medium on an application or on a per class level. Duie development various
outputs were logged, but due to performance losses thislicesl to only error logging
in the final version of the prototype.

To parse the queries, a small parser was generated usigQ&¥ava Compiler Com-
piler),” which is similar to the well known Lex/Yacc programs or thgilccessors Flex/
Bison? The differences to Lex/Yacc are that JavaCC produces Jaednsteéad of C. Fur-
thermore it is a LL(Kk) parser generator, i.e., it parsesdopn, while Yacc is a LALR(1)
parser generator that parses bottom-up. Top-down parsicgmpletely sufficient for
parsing the queries, and the use of a Java parser allows Isintetaction with the other
components.

The Description Logic reasoner Rate used in this implementation.

2http://jakarta.apache.org/tomcat
Shttp://ws.apache.org/axis

*http://lwww.junit.org

Shttp://ant.apache.org
Shttp://logging.apache.org/log4j/docs
"https://javacc.dev.java.net
8http://dinosaur.compilertools.net
Shttp://www.sts.tu-harburg.de/ ~r.f.moeller/racer

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 17



3. OWL-QL

3.3.2 System Architecture

OWL-QL was designed as an agent-to-agent communicatioog@yband the knowledge
bases used to answer a query may be distributed over vaoauses in the Semantic Web.
Due to this requirement a web service architecture was chfose¢he project realisation.
Web services allow communication with different clientg.,ia .NET application can
interact with the service or a client written in Java or aimyglelse that supports HTTP as a
communication protocol. In addition, web services arededicribing and their interfaces
can be explored by parsing their web services descriptioguage (WSDL) [CGM04]
file.

Web services were favoured here over other middleware SUICIO&BA or Java RMI.
They are well standardised now and are able to use multiglelevel protocols, such as
HTTP or SMTP, to communicate with a remote service and do apedd on a specific
programming language. Java RMI is in comparison only usabteden Java applica-
tions, which is a clear limitation for an agent-to-agent aaumication protocol. CORBA
does not expose this restriction, but compared to web svtds not so easy to use.
Furthermore, much more efforts are currently made to extestaservice standards and
frameworks or services such as registries to promote atablaiservice. The rich set of
additional tools and services, like transaction servicescurrency control or authentica-
tion available for CORBA will surely also be available for wedndces in the future and
currently theses services are not needed for the realisatia DQL server.

Part of this project is also an example web client that allawser to send queries to
the server and then displays the answers as an HTML document.

Figure 3.6 shows the architecture of the implemented OWL-§l\es, together with
the implemented client application. The OWL-QL server parthe main component
of this work and is responsible for the rolling-up procesegglained in Section 3.2.3.
The web service offers three methods: one to initiate a qdetpgue, one to request
more answers for a process handle of a formerly asked quehoae to terminate a
guery-answering dialogue. This component then interaittsthe main OWL-QL server
and forwards the received parameters to the relevant metbbthe OWL-QL server
component.

The reasoner could be any reasoner that supports the DIG 3Bgetierface. This
implementation has been tested with Ra€aince Racer implements all ABox reasoning
methods defined in the DIG interface.

The grey box symbolises other client applications such ashalava Swing GUI, a
.NET application, another web service that uses the DQLeseas part of its service or
any other application that can use a web service.

The web service client and the server of the provided impleati®n are both located
on the same physical machine and therefore hosted by the Bammt instance. This is

Lnttp://www.sts.tu-harburg.de/ ~r.f.moeller/racer
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Webbrowser Other
Interface Clients
HTTP HTTP IHTTP
JSP  [Servlet
Sevr\i/?ges DAL DIG
¢ I
Server Server (oo AT’ Reasoner
Web Services |, SOAP |
Client " over HTTP
AXis A

Tomcat Application Server

Figure 3.6: The chosen software architecture.

not necessary and can be changed easily.

3.3.3 Components

This section provides details of various component of tichitecture.

The Web Service Interface

To start a query-answering-dialogue a client callsghery() method of the DQL web

service with the necessary parameters to answer the ghergery, the URL of a knowl-

edge base and optionally an answer bundle size bound andaeigpattern). A method

parameter for the premise is already implemented, but theesare currently ignored,
since the allowed time for the project made it necessary ¢admn the main parts and
the premise can easily be added later without major chamgggtquery-answering al-
gorithm. The premise should be transferred to the reasaferdthe queries are sent,
since statements in the premise have to be treated as if they avnormal part of the

knowledge base.

The web service interface also offers the methedtResults() , which allows
the request of further answers for a given process handle.nfdéthodterminate()
ends a query-answering-dialogue for a given process ha@lierently all answers are
produced for the first query call and if more answers are akdlthan allowed by the
answer bundle size bound, the rest of the answers is storée @erver together with the
process handle.

Figure 3.7 shows a UML class diagram of the interface claabvilas used to create
the web service and Figure 3.8 shows the classes that avameler the web service.
All these classes are in the packadg.server.webservice . DQLService is
an implementation of théDQLService interface and the classémswerSet and
QueryAnswer are types that are used to deliver query answers to a client.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 19



3. OWL-QL

TheDQLService class is not the real implementation; the class follows #uade

design pattern and delegates the parameters to the cantisg@omponents and delivers
guery answers to the client.

«interface»

@ IDQLService

& query(KBURI, query, premise, answerPattern, sizeBound)
@ nextAnswers(processHandle, sizeBound)
@' terminate(processHandle)

Figure 3.7: The web service interface.

{2 dgl.server.webservice I

© QueryAnswer © AnswerSet

QueryAnswer() AnswerSet()

getBindings() answers
getSatisfiable() ~ |¢——|
setBindings() 0.
setSatisfiable()
toString()

getAnswers()
getProcessHandle()

000

getTerminationToken()
setAnswers()

(SR

setProcessHandle()

setTerminationToken()
toString()

Q0 0000 Q@

interfacen © DQLService
© IDQLService
@ nextAnswers() =

@' query()
@ terminate()

DQLService()
nextAnswers()

query()
terminate()

00 @

Figure 3.8: The web service package.

The OWL-QL Server Component

The main component is the claB®QLServer . It passes the query to a query parser
component, the knowledge base to a converter (a comporentahverts DAML+OIL

or OWL to DIG statements) and forwards the converted knovddaftse to the reasoner.
It also initiates the rolling-up process on the producedrguggaph and finally returns
the computed answers back to th@LService class. TheDQLServer class is not
responsible for storing answers in a cache, since this ipatof the query answering
process. Instead tHeQLService facade class uses the classswerSetCache that

is responsible for storing and returning cached answers.

All parts that belong to the main component are stored in #ukg@gedgl.server
The UML deployment diagram in Figure 3.9 illustrates the poments that are incor-

porated in the realisation of the service. The componefslizd with library are not
developed as part of this project.
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Figure 3.9: An UML deployment diagram of the OWL-QL service.

The Query Parser

The queries are currently not written in DAML+OIL or OWL, smonly a subset of
these languages is supported (conjunctive queries) anslytitax of a query would be
very long in DAML+OIL or OWL. An extended version of the servavuld of course
allow a DAML+OIL or OWL query syntax and use a parser such asote provided
with the Jena framewotkto read the queries.

The different types of variables are indicated by a prefixpteduced in in the OWL-
QL specification: ! is the prefix to indicate a don’t bind vé@and ? is the prefix for
must-bind variables. May-bind variables are currentlysugiported as already mentioned
in Section 3.1.1. To parse the query a small parser was ingyiged with JavaCC. JavaCC
needs a .jj file as input containing an EBNF grammar [Wir7798$together with actions
and token definitions as regular expressions. Table 3.1shtimsvused EBNF grammar.
The non-terminals arguery , term , crName, objectName androleFiller and
the terminals are characters, like ’(, or defined regulgsression, denoted asViB>
<DB>and<ID> for a must-bind variable, a don’t-bind variable or an indival, concept
or role name respectively. The regular expressi8TDCHARs used as shortcut. The
parser also builds the query graph as described in Sectib@ &hile parsing a query.
To realise this, a graph object is instantiated before theipg starts, and the actions
for the non-terminals contain corresponding Java methtis imeadd a node, a role or a
concept assertion to a node. The grammar file for JavaCC afitkslthat are generated
by JavaCC are in the Java packatgg.server.parser . Table 3.1 shows the EBNF
grammar used to parse the queries.

Uhttp://jena.sourceforge.net
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query — term ()" term) *
term — crName "(" objectName roleFiller )"
crName — <|D>
objectName — <MB> | <DB> | <ID>
roleFiller - (" objectName)’)
<MB : ["?""#""a"-"z","A"-"Z""0"- 9 "]

(et A2 0" - 9 S * >
<DB : ['I","#""a"-"z","A"-"Z""0"-"9""_"]

(,"#",a "z""A"- Z,O 9, " * >
<ID ['#","a"-"Z", A Z 0 9 "]

(" -'z""A"-"Z""0"-"9"! " x>

Table 3.1: The EBNF grammar for the query parser.

Knowledge Base Loading

The knowledge bases are passed to the @&3sServer as URIs, so they could refer-
ence a file on the local file system or they could point to a kedgé base available over
the Hyper Text Transfer Protocol (HTTP) or the File Tran$testocol (FTP). The URIs
must end with .daml for a DAML+OIL knowledge base or with .dat an OWL knowl-
edge base. The OWL stand&rdpecifies three sublanguages, which are called OWL
Lite, OWL DL and OWL Full. Current Description Logic reasoners aot able to use

all features of OWL Full, which is the most expressive sublagg of OWL. Knowledge
bases that contain such unsupported features are rejgctbd DQL server.

Depending on the type of the ontology (DAML+OIL or OWL) theyegrassed to the
appropriate DIG converter. Both converters are librariesnfthe University of Manch-
ester and transform DAML+OIL or OWL into DIG statements. Téetatements are then
passed to the reasoner that is currently connected to the QW&erver.

Interaction with the Reasoner

The connection to a reasoner is established over the DIGdote[Bec03a], which is a
standardised XML interface for Description Logics systetageloped by the DL Imple-
mentation Group (DIG}?

A part of the DIG project is the Java API to communicate witlompliant reason-
ers, like Racer or FaCT++. All parts of the DIG project are alai from the Sourceforge
home pagé?

The OWL-QL Server tries to read the URL for the reasoner fronmopeities file that
is named dglserver.properties and is located in the packagigl.server

http://www.w3.0rg/TR/2004/REC-owl-features-20040210
Bhttp://dl.kr.org/dig
Ynhttp://dig.sourceforge.net
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If this property file is not accessible the OWL-QL server triesconnect tahttp:/
localhost:8080 to see if a local reasoner is available there. If none of tluskg; all
query() method calls will cause an exception.

The clas€ExtendedResponse in the packageql.server  implements methods
that facilitate the analysis of the reasoner’s respongg, ®. see if the knowledge base
loading was successful one has to call only one method wihidhsoner response as a
parameter.

Currently all interactions with the reasoner are perfornmeaikind of batch mode, i.e.,
all requests (tell and ask) are collected for the first ph&digecalgorithm and if necessary
also for the second phase to check the candidates for mustvariables and then sent
to the reasoner at once. This limits the network transportaiverhead to a minimum,
since the reasoner may not necessarily run on the same physchine as the OWL-QL
server.

The DIG interface was chosen since it offers an implemesnatidependent way
for the communication with a reasoner. The standard becomees and more accepted
and has currently been updated to version 1.1. This additiadirection, compared to
a direct connection to a reasoner over its proprietary fiaater may cause longer query
answering times, but it was preferred since it allows an sastich between all reasoners
that support the interface.

Recently the Jena framework has been extended to suppoudriheation of OWL or
DAML+OIL knowledge bases to a DL reasoner over the DIG stahdso this framework
could be an alternative to the converters used here. The BQEeSclass could build a
Jena model for the knowledge bases and use it to interacttiagtineasoner. Currently
the implementation is not yet included in an official Jenaask and very little docu-
mentatior® is available along with a technical report about the expegs with the DIG
standard during the extension of Jena [Dic04], so this ig anl alternative for a future
version of the OWL-QL server. It would also be necessary taftaswitch to Jena would
increase the performance, otherwise there is no need t@etiha components.

The Query Graph Component

All classes that belong to the graph representation of ayqaler bundled in the pack-
agedql.server.querygraph . Figure 3.10 shows an UML class diagram of these
classes.

The clasGraph implements the rolling-up technique as described in Se@ia.3.
The graph contains a list of its nodes and a node is represégtthe Java clagsdode.
The nodes manage their relations to other nodes with anexdjéist. An adjacent list is
more applicable than a centrally managed matrix for theiogla since the graph is build
incrementally while parsing the query. For each role agsed directed edge is added

Bhttp://jena.sourceforge.net/how-to/dig-reasoner.htm I
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2 dql.server.querygraph

0 00O OQOQOOOOOOOOOOPOOOOCOPOOOROOPOPOODROROPOOPOOTOPOODOOOQO

getRelationNameTo()
getRoleUpPredecessor()
getType()
hasAppearedinCandidateRoleUp()
hasConcept()
hashCode()
initCandidateRoleUp()
isCandidateLeave()
isChecked()
isDontBind()
isFinishedIinCandidateRole Up()
isindividual()

isLeave()

isMayBind()

isMustBind()
isRelatedFrom()
isRelatedTo()
isRoleUpComplete()
setCandidateConcepts()
setChecked()
setConcepis()
setRoleUpComplete()
setRoleUpPredecessor()
setRolledUp()

0..1 | # roleUpPredecessor
© Graph ® Node «interface»
© Nodelterator
@ addEdge() Node()
@ addNode() addCandidateConcept() © hasNext()
@ addNode() addConcept() @ next()
@ clearAsks() addRelation() /[\
@ clearTells() compareTo() |
@ computeCandidatesChecksQueries() equals() |
@ computeDIGQuetries() getCandidateConcepts()
@ generateCheckQueries() getCandidates() l
@ getAsks() getConcepts() — — J
@ getNode() getEdgeCount()
@ getNodeCount() getLeave()
@ getRoleCount() getName()
@ getTells() — getRelatedFromCount()
@ individualsToConcepts() -l getRelatedFromlterator()
@ removeNode() !_ N getRelatedToCount()
@ removeNode() getRelatedTolterator()
@ toString() getRelationNameFrom()

Figure 3.10: The UML class diagram of the query graph classes

from the outgoing node to its successor and vice versa, buntierse direction is kept
separately, since it is only needed to traverse the graplsamat part of the query. The
classNodelterator allows a convenient iteration over all related nodes. Altjiothe
guery is represented as a directed graph the term leaf isheged This is explained by
the fact that the underlying undirected graph is per dednith tree form and a node is
called leaf here, if it is a leaf in the underlying undirectgdph.

The methodstartRollingUp() initialises the rolling-up process. First all indi-
viduals are replaced by their representative concepts3seton 3.2.3 for an explana-
tion), then all individual or don’t-bind leaves are rolleg-until only one node is left or
24
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this process must stop since only must-bind variables axete If only one node is left,
the query can be transformed to a boolean query or to a coimstahce query. Otherwise
the rolling-up technique is used to compute candidatesh®bindings of the must-bind
variables as described in Section 3.2.3.

After this first rolling-up phase the generated queries arg ® the reasoner. If the
guery contains at most one must-bind variable the reasdmeady returns the final query
answer, otherwise the reasoner returns candidates foirtdags of the must-bind vari-
ables. If at least one of the must-bind variables has no dates for its binding, the
guery has an empty answer set and the query-answeringtalgagrminates. Otherwise
boolean queries for each possible candidate combinat®msent to the reasoner to test
which combinations are valid answers.

Query Types

In this implementation all interactions with the reasoner @garded as queries. There
are mainly two types of them: ask queries that want to knowetbimg from the reasoner,
e.g., which individuals are instances of a concept, andjtedries that pass information
to the reasoner, e.g., that an individual is an instance ohaept. The terms tell and ask
are also used in the DIG specification. Since there are difteypes of queries for tell
as well as for ask queries, the packalyg.server.query contains different query
type classes arranged in an inheritance hierarchy, togeftietwo interfaces that allow
users of the classes to interact with all (ask) queries instimae way. Tell queries are
only used for the representative concepts of individuatdstarstate that all representative
concepts are disjoirf i.e., the tell queries are derived directly from the absttaery
superclass, while ask queries are arranged in a deepeirtamtoer hierarchy under the
abstract clasgskQuery . Figure 3.11 shows the type hierarchy without the subctasse
of the abstract clas8skQuery for a better overview. The clagsskQuery with its
subclasses is illustrated in Figure 3.12.

Query Answers

Query answers are returned in a set represented by the ZssAnkwerSet . An an-
swer set contains at least one answer and at most as manyraresvallowed by the
answer bundle size bound variable or all computed answéhg i§izeBound variable is
zero or negative. Normally the Java class Integer with thesvaull would be more appli-
cable, but for a web service the class Integer and the pvieriyipeint are both mapped
to the XML schema typesd:int  for transportation over the SOAP protocol and both
types are then unmarshalled to an primitive Java type iner@fore, theDQLServer

Current Description Logic reasoners impose the Unique Nassemption (UNA) for individuals, and
the disjointness axiom keeps this for the representativeayuts.
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2 dql.server.query
© Query cinterface»
@ IQuery
@ compareTo() N
@ getQuery() @ ge11Q—uer(y)()
@ get e
o gerType( e
. @ isAsk()
@ isAsk() A isBooleana
@ isBooleanQuery() ———1L @ Isboolean uery()
. . @' isCandidateCheckQuery()
@ isCandidateCheckQuery() L '
@ isCandidateQuery() OA IsCandidateQuery()
. . @' isConceptMembershipQuery()
@ isConceptMembershipQuery() .
. @' islnstancesQuery()
@ isInstancesQuery()
. @ isTell()
@ isTell()
@ setQuery() %
© DisJointQuery © TellQuery @ AskQuery cinterface>
© IAskQuery
@ DisJointQuery() @ TellQuery() @ AskQuery() N
@ getQuery() @ getConceptName() @ getNode() ':'; getNode()
@ toString() @ getindividualName() © getQuerylD( |— [~ @& gelQufryID()
@ getQuery() @ getVariable() O; getvariable()
@ setConceptName() @ seiNode() @' seiNode()
@ setindividualName() @ seiVariable() O; setOue.ry()
@ toString() @ toString() ':'_ setvariable()
@& toString()
Figure 3.11: The UML class diagram of the query classes.

class works with Integer as preferred and B@LService class, which is the web in-
terface facade, works witint and does the mapping to Integer.

In addition to the answers for a query an answer set alsodesluhe termination
token or the process handle, whichever is appropriate.

On the server side the answers are stored in the 8asgerAnswerSet This
class can be stored in the answer set cache and provides adietreceive an answer
set of a specified size for delivery to the client. In this wiig ieasy to prepare the next
answer set for the specified size ofi@xtResults() request. In addition, the use of
a simpler answer set class as the return value of the welrseaavoided the implemen-
tation of special serializers and deserializers for thexldf the class complies with the
Java Bean Standard, which specifies that a class has to hawg@naefault constructor
andgetVariable() plussetVariable() methods for each used instance variable
and nothing else, the default Java Bean serializer classeasda for serialization and
deserialization. This also saves time for the client imgataers of the web service, since
they also need not implement a serializer.

A query can have two kinds of answer. If the query containechnet-bind variables
the returned answer set consists of only one answer wittaguts value if all parts of the
guery are entailed by the used knowledge base and falsenasieeThe returned answer
contains no bindings in this case. If the query containe@adtlone must-bind variable
26
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2 dql.server.query |

© AskQuery
@ AskQuery()
@ getNode()
@ getQuerylD()
@ getVariable()
@ setNode()
@ setVariable()
@ toString()
| I
© ConceptMembershipQuery | | ® BooleanQuery © CandidateQuery @ CandidateCheckQuery
@ ConceptMembershipQuery() @ BooleanQuery() @ CandidateQuery() @ CandidateCheckQuery()
® addBinding() @ getQuery() @ getQuery() @ addBinding()
@ getBindings() @ se€ isfiable() @ appendConceptEnd()
@ getConcept() @ appendConceptStart()
@ getQuery() @ getBindings()
@ setBindings() @ ConceptinstancesQuery @ getConcept()
@ setConcept() @ getConceptEnd()
@ ConceptinstancesQuery() @ getConceptStart()
@ getQuery() @ getinstance()
@ gelQuery()
@ setBindings()
@ setConceptEnd()
@ setConceptStart()
@ setlnstance()

Figure 3.12: The UML class diagram of the AskQuery subclkasse

the answer set may contain more answers. Each answer cootaenbinding for each
must-bind variable. These bindings are stored in a map.| thast-bind variables in a
query are replaced by their binding, and all remaining dbmid variables are treated as
existentially quantified, the query must be entailed by theedge base used to answer
the query.

The classeServerAnswerSet  andAnswerSetCache both reside in the pack-
agedgl.server  (see Figure 3.13), while the clasgasswerSet andQueryAnswer
together with their interfaces are located in thgg.server.webservice package,
since they are delivered to the client of the web service. ALUN&ss diagram for this
package was already given in Section 3.3.3 on page 20.

The Answer Set Cache
If a query has more answers than the server is allowed torretiue remaining answers
are stored in an answer set cache. The corresponding JagasddaswerSetCache in

the packagelgl.server . The class is implemented as a singleton, to ensure that only
one instance is available in the system. This is necessatwforeasons:

1. Web services can't guarantee (without extra effortsj th@ requests from the

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 27



3. OWL-QL

{2 dgl.server I
©® ExtendedResponse ® DQLServer @ ServerAnswerSet
& doc: Document @ DQLServer() @ ServerAnswerSet()
& map:Map @ execute() @ getProcessHandle()
& myResponse: Response ’
@ getAnswerPattern() @ gelSize()
@ ExtendedResponse() @ getPremise() @ getTerminationToken()
@ extractAskLanguage() @ setAnswerPattemn() @ isEmpty()
@ extractldentifier() é,_ @ setkB() @ setAnswers()
@ extractindividuals() @ setPremise() @ setProcessHandle()
@ extractindividuals() @ setQuery() @ setTerminationToken()
@ extractKBURI() @ toAnswerSet()
@ extractLanguage() @ toString()
@ extractNames() /l\
@ extractResponse()
@ extractSynonymSets() 0.1 #answerSeI[Cache
@ extractTellLanguage() «Singleton»
@ getlds( ® AnswerSetCache
@ isOK()
@ isTrue() @ getNextResults()
@ putAnswerSet()
@ removeAnswerSet()
@ toString()
-1 -1 -1
{2 dql.server.query 2 dgl.test {2 dql.server.webservice
-1 1

2 dql.server.querygraph 2 dql.server.parser

Figure 3.13: The UML class diagram of the packadpg.server

same client are mapped to the same object on the serverif iteg query( )
method is executed by one object this object need not be tadhat also han-
dles anextResults() request for the client. This makes it impossible to store
the answers in an instance variable. This behaviour is kraswueb sessions. In a
session the state of the application is saved on a per clesi.bWeb services can
be forced to support sessions, but a normal configuratioa doesupport this.

2. The OWL-QL specification allows any client that has a validgess handle to
request more answers for this handle, even if the origijuary() request was
sent by another client. For this reason a normal web sessidvalso not be
suitable.

With a singleton only one instance of a class is available thiglinstance stores
the answer sets and returns them on demand. When an answecsgtds empty it is
removed from the cache and if a client requests an answehnaastnot in the cache an
28
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empty answer set with an end termination token is returned.

A Query Processing Sequence

Figure 3.14 is an UML sequence diagram illustrating theadmration of the components
during a query answering process. The ad@L web service is also a software
component, namely the web service answering the query sedué the server itself is a
component with a clear boundary to the offered web serviee,the web service can be
seen as a client of the component.

% DQL Server : DQLServer Reasoner : Reasoner

DQL web service Parser : DQLParser

Py

start a query

parse query Graph : Graph

add nodes and relations

KB to DIG

Return here if no
candidate checks
are necessary

Figure 3.14: The UML sequence diagram for query answering.

Several actions have been taken to improve performanceoftimisation is to exe-
cute fast tasks that may cause an end of the query-answetnggs as early as possible,
e.g., parsing a query is normally fast, since queries arenmshorter than for example a
knowledge base and if there is a syntax error in the query nbtiee other components
need to be involved.

In two cases the process is finished after the first query pl@se case is, if at most
one must-bind variable was in the query, then the first reexs@sponse already includes
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the query answer. The other is, if the query is not entailethbyknowledge base. This
results in an empty candidate set for at least one must-tandhble or a returned false
value for a boolean query asking if a specified individuasexin the knowledge base or
is an instance of a given concept.

In all other cases a second interaction with the reasoneedsssary to verify all
possible combinations of the received binding candidafess is the most costly part of
the implementation besides the loading time for a knowldakge that is determined by
the size of the knowledge base itself.

Error Handling

The specification defines that if for any reasons a server cadeal with a query it has
to return the termination tokerejectedin an empty answer set. In addition to this, the
provided implementation also definegetErrorMessage() method that contains an
explanation of the caused error or failure.

Whenever an error occurs in the DQL server component, e.gntaxserror in the
guery or knowledge base or the reasoner may be unavailatderice reason, the error is
caught, logged and re-thrown with an appropriate desonptf the exception. The DQL
web service (that is the facade class DQLService) catchesadptions, creates an empty
answer set with rejected termination token and the mesdage caught exception, i.e.,
whenever the service is available the client will receiveaswer set for its query and in
case of an error this answer set also provides an explanation

Testing

JUnit!" is a regression testing framework to support developersarsbftware develop-
ment process. A good introduction into test driven softveieelopment is given by Kent
Beck [Bec02], one of the authors of JUnit. For each softwarethei developer should
write a test that executes defined methods and asserts firdleonditions are met be-
fore and/or after a method has been executed. A regressbrutes the unit tests of all
components. This can help to find possibly occurring sidect$f after a change in one
of the components. If a tests does not result in a defined tongihe test fails and there-
fore also the whole test suite fails. For example the Eclip&e® has a build in graphical
user interface for JUnit that signals green if all tests wexecuted as expected and red
otherwise and the used deployment tool Ant also supportexeeution of JUnit tests as
part of a software build process.

For the server, tests were implemented for all larger corapts which test different
methods against predefined results. The tests can be edemudemand and they are

Yhttp://www.junit.org
Bnttp://lwww.eclipse.org
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also part of the defined Ant deployment process for the OWL-&lves components.
The tests help to assure that specified requirements foofhease, e.g., defined by the
OWL-QL specification, are met and they save time, since it tsecessary to test every
class after a change again by executing the class’s mairochetith different examples.

The Client Interface

Another part of this implementation is a web service clidititis was not specified as part
of the project, but is rather useful to demonstrate the syste addition, it shows one
possibility of how the provided web service may be used.

The implementation is not described in much detail, sintenbt of the realisation of
a DQL server, but the system architecture diagram on pagkedfssthe general layout of
the client. It is mainly composed of one ser¥fahat collects the parameters that a user
enters into an HTML form and passes the parameters to the D&plsarvice. All classes
needed for the interaction with the web service were buildHey wsdl2java program
that is a part of the Jakarta Axis framework, see also Se@&i8rl. After the servlet
has received a result from the DQL web service the requestwgafded to a JavaServer
Pages (JSP) page. JSP are much easier to use for HTML output than a sesinet a
servlet can generate output only by using JaRaistWriter classes while JSP can
conveniently switch between Java and HTML parts.

The figures on the following pages illustrate the clientiifstee. Figure 3.15 shows
the front-end for the user. It allows to specify a local knedde base file or the URL of
a knowledge base, the answer bundle size bound, the quegraadswer pattern. It is
necessary to use the fully qualified names for concept, nudkeiadividual names as in
the knowledge base itself. The user can also specify a pdeawdle and request more
answers for this. If there are answers stored for the prdwasdle on the server the server
will return them.

Figure 3.16 shows the answer page. If the answer includeotags handle to indicate
that the client can make further calls, the client can chooseof three options: to request
more answers (then the size bound for the next answer setbaugten), to terminate
this request and hereby allow the server to free resourcés start a new call. If the
server has no more answers in its cache a termination toketuisied and the user has
only the option to ask a new query. This is displayed in Figufe .

3.4 Related Work

This section introduces other available systems to query Rdwledge bases and high-
lights the differences to the system realised in Manchester

Pnhttp://java.sun.com/products/serviet/whitepaper.htm I
2Onttp://java.sun.com/products/jsp/whitepaper.html
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ol
J File Edit View Favorites Tools  Help |
J GBack + = - ) at | Qhsearch [GelFavorites  GfMedia £4 | EAN M= |JAddress I@:l htj |JLinks »

Welcome to my DQL Server FrontEnd.

Please specify which knowledge base (KB) should be used to answer the gquery:

KB URL: |ittp:4/130.88.192.86/DOLServer/persons.darl
Ke file: | Browse... |
[DAMLH+OIL and OWL knowledge bases are supported, Use files with .darml or .owl extension.)
Answear : :
i K
Patterm: |.y|sthe child of 7x
Size Bound: I‘I [An upper bound for the amount of answers returned at once.))

Please enter your query here:

Allowed is any combination of concept assertions like conceptMamelindividualMameCOrariable) and

rale aszertions like roleMame(individualMameCOrariable, individualMameOrvariable) that don't

cause a cycle between individuals or variables used. So hasChildiMary, 7=, loves(?x, Mary) is not allowed,
Terms are conjuncted via a cornma,

A 7 prefiz indicates a must-bind variable and ! a don't bind variable,

urn:myFami ly#HASCHILD ( 7%, ?¥) ;I
[

You may also request results for a known process handle:

Process Handle: I Size Bound: I

subimit
| b | =
|Ej Daone ’_ ’_ ’_ E Local intranet: 4

Figure 3.15: The DQL client start page.

3.4.1 The Stanford OWL-QL Server

The Knowledge Systems Laboratory (KSL) of the Stanford ©rsity provides an OWL-
QL implementation that supports DAML+OIL and OWL knowledgesbs. The system
uses the first order logic theorem prover 3TFJF03] to answer the queries. The OWL-
QL server is implemented as a wrapper around the theoreneprévquery consists of
DAML+OIL or OWL statements (in RDF triple notation) with URI mfences replaced
by variables. Compared to acyclic conjunctive queries, tippsrted query language is
therefore richer. Unfortunately the system does not ansiaflowed queries. For some
gueries the server simply terminates the communication avitlient.

As an example, consider again the KB specified in Example 2 duery(?x) «
7x:CAR A (7x,ly):ownedby A !y:PERSONIs correctly answered with the binding
acar for 7x. However, the slightly modified quefyx) < 7x:CAR A (7%, ly):ownedby
A ly:CAR, asking for a car that is owned by a car, is also answered hégtbindingacar
for 7x.

Example 2

2http:/iwww.ksl.stanford.edu/software/JTP
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/3 DOL Server FrontEnd - Microsoft Internet Explorer

=10l x|

J File Edit View Favorites Tools  Help

Your query results are:

Your answer set has the process handle PH6.

Your query was: urn:myFamily#HASCHILD(?x,?y)

Your knowledge base was: http: //130.88.192.86/DQLServer/persons.daml
Your answer pattern was: ?y is the child of ?x

Your size bound: 1

Your answer pattern is:

urr:myFarmily #30EREN is the child of urn:myFammily #MONIKA
This is a valid binding for your query:

Ty urnimyFamily #S0EREMN

TR0 Uy Family #MORNIKS

You can ask a new guery now...

... or request further answers:

Size Bound:
1 [An upper bound for the amount of answers returned at once.)

submit |

... or terminate the communication:

Terminate |

J GBack + = - ) at | Qhsearch [GelFavorites  GfMedia £4 | B S - |JAddress I@ htj |JLinks »

=
|€| Done ’_ ’_ ’_ E Local intranet 4

|

Figure 3.16: A DQL client answer page with further answeslable.

/3 DOL Server FrontEnd - Microsoft Internet Explorer 10l =|
J File Edit Wiew Favorites Tools Help |
J GBack + = - ) at | Qhsearch [GelFavorites  GfMedia £4 | B S - |JAddress I@ htj |JLinks »

Your query results are:

Your answer set has the termination token end.

Your query was: urn:myFamily#HASCHILD(?x,?y)

Your knowledge base was: http: //130.88.192.86/DQLServer/persons.daml

Your answer pattern was: ?y is the child of ?x

Your size bound: 2

Your answer pattern is:

urrmyFamily #MARLIES is the child of urn:myFamily #2MNMELIESE

This is a valid binding for your query:

v urnimyFamily #MARLIES

o urnimyFamily #ANMELIESE

You can ask & new query now... -
|€| ’_’_’_ E Local intranet 4

Figure 3.17: A DQL client answer page with termination token

KB={T, A}
7 = {CARLC Jownedby. PERSON}
A = {acar: CAR}

The implementation was also tested with a second, more ¢oatgdl query, see Ex-
ample 3, against the KB in Figure 3.18. The query asks fowiddals that have an
successor that is@and has itself an r successor. The difficulty is that in theedhere
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is no nameable instance of the conc€pbut it can be inferred that eithefl orc2 is a
C. If ly is a don’'t-bind variable, as in this case, the query has Bxaoe answer, namely
al as a binding fo’x andb1 as a binding fof?z. The Stanford’s OWL-QL server does
not find the correct answer tuple but ends the dialogue withiteation token end and is
compliant with the specification in this case.

For the slightly modified query in Example 4, in which the widual name b1l is used
instead of the must-bind variabte, the KSL implementation providesl, c1, andc2
as a binding fo’x. The last two answers are, however, incorrect.

Example 3
(7x,7z) «— (7%, ly)ir A{ly,?7z):r Aly: C

cl:CuD
r r
al:A r r r ®bl:B
c2:CLUVYR.—D

Figure 3.18: The knowledge base used for the queries in EbeaBrgind 4.

Example 4
(7x) — (7%, lyyir Aly, bLl):r Aly: C

It seems that the system has difficulties with non-distisged variables, and queries
often cause unexpected results. The reasons for this memasould be due to the com-
munication with the used theorem prover or in the theorenvarrdaself. If the imple-
mentation is improved in this respect, however, it wouldvmde a powerful and complete
implementation of the OWL-QL specification. For practicad uhe system would benefit
from better error handling and error explanation and a etalocumentation would be
desirable.

3.4.2 The new Racer Query Language

The recently introduced new Racer Query Language (nRQL) [HMVi®4ot geared
to the DQL specification, therefore it misses all the prot@pecific elements, such as
termination tokens or the delivery of answers in a bundléwaispecifiable size bound. In
addition nRQL does not support non-distinguished varialdihough nRQL is far away
from the OWL-QL specification, it is nevertheless a step tolwdretter query support,
and it is therefore introduced here very briefly. The quengleage itself is very rich,
as it supports the retrieval of variable bindings in arlpjtreoncept and role expressions.
In contrast to the other systems introduced here, all vimsasre distinguished, even if
they are not included in the answer. For an example, the readg again consider the
KB in Example 2 (page 33). The nRLQ qugnetrieve (?x) (and (?x CAR)
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(?y PERSON) (?x ?y ownedby))) returns all cars that are owned by a person.
Although only cars are in the answer, a named individual rexst in the KB that is
specified as owner of the car. As a result the query answehifoekample is empty.

Another feature, which was added to nRQL, is negated quemstomplemented
using a negation as failure semantics. This is contrary ¢oQpen World semantics
normally used in DL systems (and also bp&ER). NRQL uses the same operatoo{ )
for negated query atoms and for concept negation, whictdqmobably lead to confusion
and the users have to be careful with the formulation of sugheay. The nRQL query
(retrieve ( 7x) (not ( 7x PERSON))), using the negation as failure semantics,
therefore returnscar . Due to the Open World semantics for concept negation, the
modified queryretrieve ( ?x) ( 7x (not PERSON))) returns an empty answer
set, since RCER cannot prove thacar is not an instance of the concqgrson .

NRQL offers more features than the ones described here amtfaits the reader is
referred to the RCER documentatior”?

3.5 Discussion

3.5.1 The OWL-QL Specification

In general, OWL-QL provides a flexible framework in condugtia query-answering
dialogue using knowledge represented in OWL. It allows tHendi®n of additional pa-
rameters, delegation of queries to another server or thinc@tion of a query dialogue
by other clients that know a valid process handle. If thentlspecifies an answer bundle
size bound, the specification allows an OWL-QL server to campll answers at once
or to compute the answers incrementally, as long as the arsewveeturned to the client
contains not more answers than specified by the answer bsizéldound. The specifi-
cation also allows the definition of further termination¢ok e.g. to provide information
about the rejection reasons.

The current version of OWL-QL, however, has the followingitations.

External Syntax The specification does not provide any exact syntax defmiioa
specification of how to communicate the supported confooaaevel to a client and also
other mechanism like time-outs for a query are not specifiénds is due to the focus on
providing an abstract specification on a structural levdltarallow the various syntactical
preferences of the different web communities to fit the stathdb their needs. An OWL-
QL server therefore has to provide this information in a aoentation or in an XML
Schema [Bir01] [ThoO1].

22The documentation, which includes a section about nRQLyadable from the RCER download
page:http://www.cs.concordia.ca/ ~haarslev/racer/download.html
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Semantics As the external syntax has not (yet) been specified, the foseraantics

of OWL-QL is presented in a quite general way, and is only idelilias an appendix of
the specification. In particular, the fact that the relagtip between the OWL model-
theoretic semantics and the OWL-QL semantics has not beeifisdas not very satis-

factory.

Boolean Queries The specification does not specify how to answer booleaniegjer
i.e., queries with only don’t-bind variables or querieshnain empty variable list. How to
implement a system that can answer queries with only dand-lariables is described
in Section 3.2.3. In the absence of variables query ansgasindentical to instance
checking. In both cases the answer set is empty, insteadhdveea to such a query is
either yes/true or no/false.

Query classes The OWL-QL specification does not introduce the query clasisat
DQL provides. Since it is difficult for some reasoners to iemént all of these require-
ments, DQL explicitly allows a partial implementation. A DQ@erver can restrict it-
self to specialquery classese.g. a server may only support queries that conform to
a pattern like?x rdf:type C , where C is an DAML+OIL class expression, @x
daml:subClassOf ?y  and reject all other queries. The server is then said to apply
to these query classes. Until now it is up to the implementemoOWL-QL server to
provide a documentation of supported query classes andihatall, this is communi-
cated to a client. In a real agent-to-agent protocol, howevelient should be able to
determine the supported query classes and this is one afshed a future specification
should address.

In short, for an implementer of an OWL-QL server, OWL-QL actaagiide without
a concrete external syntax, a formal relationship with tiiéL.Gnodel-theoretic semantics
and proper means to communicate the supported query clasgesconformance level.
Until now every implementation has to fill (some of) thesegapd to provide a detailed
documentation of how these gaps have been filled.

3.5.2 OWL-QL Systems

Efforts are currently being made, to develop better queppstt for knowledge represen-
tation systems. The establishment of OWL as a W3C recommemndathy also promote
the proposed OWL-QL specificatibhand so encourage improvements for the currently
available systems or the development of new query answeyistgms.

So far, all introduced systems have some drawbacks. ThdoBdamplementation
covers all features defined by the OWL-QL specification, blivelss in some cases in-
correct answers and rejects some queries, without prayimanswer. The Manchester

23nttp://ksl.stanford.edu/projects/owl-ql
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implementation does not support all DQL features and isiotstl to acyclic conjunctive
gueries. Both systems are available as Java applicatiorthar@tanford implementation
is also available as a servlet, while the Manchester impheatien is also available as
a web service. Both provide a web client interface and are tabtkeal with OWL and
DAML+OIL knowledge bases.

NRQL provides richer query support, but is not meant as an OWIlnplementation
and is therefore missing many DQL features. In additionyésériction that a binding is
required for all variables, even for those not expected fgeapin the answer set, would
make it difficult to formulate queries such as the one in $ac8.4 against the KB in
Figure 3.18. Apart from this, nRQL is easy to use, and the decation provides a
good introduction to the new features of nRQL.

For all described systems there are still improvementsilplessOne main topic for
guery answering systems is scalability. The query ansgénmnes for knowledge bases
with large amounts of individuals are still far away from tlesults achieved by databases.
For the implementation developed in Manchester, the bode@ries that are necessary
to check valid combinations of variable bindings, can canagr delays in case of many
candidates. The system would clearly benefit of a furthemagéation of this phase in the
guery answering process, some of which were discussed tlo8&8c2.4.
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Chapter 4

Querying with OWL-E-QL

This chapter describes how to query with OWL-E-QL, which igatension of OWL-QL
by using OWL-E as the ontology language and by enabling thefudatatype expression
in queries. As details of OWL-QL have already been address€tapter 3, we only have
to cover: (i) what is OWL-E, (ii) what is the semantics of dgfs expression enabled
queries, and (iii) how to provide reasoning services forguaaswering in OWL-E-QL.
As a side issue, we also include a short survey on the datptgoécates used in existing
Web-related query languages.

4.1 Formal Semantics

4.1.1 Datatypes and Datatype Predicates

Most existing ontology-related formalisms focus on eitbdatatypes (such as RDF(S)
and OWL datatyping) or predicates (such as the concrete doamal the type system
approach). Pan ([Pan04]) presents a datatype group apprneacch provides a unified

formalism for datatypes and datatype predicates.

In a datatype group, datatypes and datatype predicates dégferent purposes. A
datatypel is characterised by its lexical spatél), value spacé’(d) and lexical-to-value
mappingL2V (d). It can be used to represent its member values through tyjeedl$.
A typed literalsis of the form “v”"u, wherew is a Unicode string, called thiexical
form of the typed literal, and. is a URI reference of a datatype. datatype predicate
(or simply predicatd p is characterised by an arityp), or a minimum aritya,,,;, (p) if
p can have multiple arities, and a predicate extension (oplgimxtensioh £(p). For
instance >3 is a (unary) predicate with(>5),) = 1 andE(>{55) = {i € V (integer) |
i > L2V (integer)(“20”)}. This example shows that predicates are defined based on
datatypes (e.ganteger) and their values (e.g., the intege2V (integer) (“20”), i.e.,
20). Predicates are mainly used to represent constraietsvalues of datatypes which
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Abstract Syntax DL Syntax Semantics
rdfs:Literal Tp Ap
owlx:DatatypeBottom 1p 0
v a predicate URIref u uP
if u € Dg, AD\UD
not(u) u if u€ &g\ Dg, (dom(u))P \ uP
if u ¢ @g, U,>,(Ap)" \ uP
oneOf(“s;""dy ... %5, "dy) | {“s17 7 da, ..., “spn" 7 dn ) | {(Fs177d)PY U U {(%8,7 7 d,)P )
domain(vy, . ..,v,) [V1,y. .., U] vP x - x oD
and(P, Q) PAQ PPN QP
or(P,Q) PvVQ PP uyuQP

Table 4.1: OWL-E datatype expressions

they are defined over.

On the other hand, datatypes and datatype predicates adyctelated to each other.
Datatypes can be regarded gisecial predicates with arity 1 and predicate extensions
equal to their value spaces; e.g., the datatypeger can be seen as a predicate with arity
a(integer) = 1 and predicate extensioli(integer) = V (integer). They arespecial
because they have lexical spaces and lexical-to-value imggpthat ordinary predicates
do not have.

The reader is referred to [Pan04] for more details about #tatgpe group approach.

4.1.2 OWL-E: Extending OWL with Datatype Expressions

Although OWL is rather expressive, it has a very serious ation; i.e., it does not support
customised datatypes and datatype predicates. It has bagrgout that many poten-
tial users will not adopt OWL unless this limitation is ovemt® [Rec04]. To overcome
these limitations, [PHO4] proposes OWL-E, equivalent to #1607 Q(G) DL, which

is a decidable extension of both OWL DL and DAML+OIL, which pides customised
datatypes and predicates; in fact, [Pan04] shows that @lb#sic reasoning services of
OWL-E are decidable.

OWL-E provides datatype expressions based on the datatgpp gpproach [Pan04],
which can be used to represent customised datatypes artgpdafaedicates. Table 4.1
shows the kind of datatype expression OWL-E supports, whasea datatype predi-
cate URIref,“s;”""d; are typed literalsy,, . . ., v,, are (possibly negated) unary supported
predicate URIrefsP, Q are datatype expressions abglis the set of supported predicate
URIrefs in a datatype groug. OWL-E provides some new classes descriptions, which
are listed in Table 4.2, whef 71, . . ., T,, are datatype properties (Wheéfgl£ 7;, T; £ T;
forall1 < i < j < n),! Ris an object property(’ is a class,F is a datatype expres-
sion or a datatype expression URIref, griknotes cardinality. Note that the first four are

1 = is the transitive reflexive closure of.
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Abstract Syntax DL Syntax Semantics

restriction{ 7'} ATy,...,Tn.E | {x € AT | Ft1,... tn.{z,t;) € TT (forall
someTuplesSatisfy(E)) 1<i<m)A(t1,...,tn) € EP}

restriction{ T’} VTi,...,Tn.E | {x € AT |[Vt1,... tn.(z,t;) € TZ (forall
allTuplesSatisfy(E)) 1<i<m)— (t1,...,tn) € EP}

restriction{ 7'} minCardinality(m) >mTh, ..., Tn.E| {z € AT [#{(t1,...,tn) | (x,t;) € TT (forall
someTuplesSatisfy(E)) 1<i<m)A (t1,...,tn) € EP} >m}

restriction{ 7'} maxCardinality(m) <mTh, ..., Tn.E| {z € AT [#{{t1,. .., tn) | (z,t;) € TZ (forall
someTuplesSatisfy(E)) 1<i<m)A{t1,...,tn) € EP} <m}

restriction® minCardinality(m) >mR.C {z e AT [#{y| (z,y) € RT Ay € CT} > m}
someValuesFrondf) )

restriction(® maxCardinality(m) <mR.C {zx e AT [#{y | (z,y) € RT Ay € CT} <m}
someValuesFrondf) )

Table 4.2: OWL-E introduced class descriptions

datatype group-based class descriptions, and the lastérqalified number restrictions.

4.1.3 Queries and Query Graphs

In this chapter, we consider acyclic conjunctive queried tllow datatype expressions.
Formally, aqueryyq is of the form

T q «— conj(&;; Z)

whereconj(Z; y; Z) is a conjunction ofitoms # is a set of distinguished (or must bind)
variables that will be bound to individual names of the krenlge base used to answer
the queryy/is a set of non-distinguished (don’t-bind variables) thatexistentially quan-
tified variables, and’ consists of individual names or typed literals. Each atosdree
of the formsv, : C\? (v, v3) : 7, (vyg,v5) : 8, (t1,...,t,) : E, whereC is a concept de-
scription,r is anindividual-valuedproperty,s is adata-valuedproperty,E is a datatype
expressionyy, . .., vy are individual names frors or individual-valuedvariables fromr

or ¢, andvs andtq, . .., t, are typed literals from¥’ or data-valuedvariables fromz or /.

If conj(Z;7; Z) is empty, the query returnisue.

Here is an example query

x:q1 — (ly,7x): hasParent A ly: Male A (ly,!z): birthY ear
A (ly, tw): marriedY ear A 1z: (={ige0 V =fiagy) A (W, 12)>,
where?x is a distinguishethdividual-valuedvariable !y is a non-distinguisheithdividual-
valuedvariable, !z, 'w are non-distinguishedata-valuedvariables,hasParent is an
individual-valuedproperty,Male is a concept nameéyrthY ear andmarriedY ear are
data-valuedrariables>1940, <1990 @re unary datatype predicates ants a binary datatype
predicate.

2We avoid the more common notation 6f(v;) etc. because it is confusing whéhis a complex
concept description.
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A conjunctive queryy can be represented by a directed labelled g@ph, called
guery graph, in which there is a normal vertexor each individual, typed literal or vari-
ablex in the query, and a normal edgefrom a normal nodex to a normal vertey
for each property atonix,y) : r in the query. Obviously, there are two kinds of nor-
mal vertices, viz.individual-valuedvertices anddata-valuedvertices. For the readers
convenience the distinguished variables are representedfiied vertex ¢), whereas
non-distinguished variables and individuals are represepy an unfilled vertexd. Be-
sides normal vertices, a query graph can contain speciit®sy calledlatatype vertices
which represent datatype expressions. For each datatypession atongt,, ..., t,): E
in a query, there exist datatype edges (represented byddotes) inG(q) which relate
data-valuedverticest,, ..., t, to the datatype vertek, labelled with the positions of
ty,...,taiN (ty,...,t,): E. Forinstance, query (4.1.3) corresponds to the query graph
presented in Figure 4.1.

{.} hasParent {Mgle} birthY ear o 1 ....... L int ) it
o ¥ % [1960] [1962]
marriedY ear l 2
1 v
O cererreie i e e > >

Figure 4.1: A Query Graph

A query graphG(q) is atuple(V,,, E,,, Vg4, Eq4), whereV,, is the set of all the normal
vertices,V4 is the set of all the datatype verticds, is the set of all the normal edges and
E4 is the set of all the datatype edges. Eautividual-valuedvertexv € V,, is labelled
with £(v), which is a set of concept descriptiori3atatype-valued/ertices do not have
labels. Each normal edges E,, is labelled withZ(e) = r such thatstart(e), end(e)): r
is a property atom irg, wherestart andend are functions that return the starting and
ending vertices of an edge, respectively. Each datatypewgrc V4 is labelled with
L(p) = E whereF is a datatype expression. To simplify the presentation, se€(p) to
represent a datatype vertein query graphs. Each datatype edge Eq is labelled with
L(g), which is an integer and represents the positiontaft(g) in the corresponding
datatype expression atom of the query

Two verticesvy, v, € V,,UV4 are adjacent, i€ ((vy, v2)) # 0 or L({ve, v1)) # 0. Let
vy, U9, v3 be vertices, @athconnects two vertices and it is defined recursively as f@low

o if L((v1,v9)) # 0, the set{(vy,vs):L((v1,v2))} is a path connecting,; to vs;

e if the set¢ is a path connecting,; to v,, the set)’ is a path connecting, to v; and
¢pN¢ =10, theng U ¢ is a path connecting, to vs;

e if ¢ is a path fromy; to vy, then it is a path fromy, to v, as well.
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A normal pathis a path that all vertices on it are normal vertices(nadrmal) cycleis
a (normal) path connecting a variable vertex to itself. ArgugraphG (q) is (normally)
cyclicif a sub-graph of it is a (normal) cycle. A quegyis (normally) acyclic ifG(q) is
not (normally) cyclic.

A datatype vertey is local (w.r.t. aindividual-valuedvertexv) if all the relateddata-
valuedvertices (by some datatype edgesp@ire adjacent to; in this case, we call the
masterindividual-valuedvertex of the datatype vertex A queryq is said to be only with
local datatype expressions if each datatype vertsxocal w.r.t. somendividual-valued
vertexv in G(q). In this chapter, we consider normally acyclic conjunctigeries only
with local datatype expressions.

4.2 Datatypes and Datatype Predicates in Web-related
Query Languages

The goal of this section is to give an overview of how to in@dwnstraint expressions in
guery language for the Semantic Web context, and which kirekpressions should be
supported. This overview is built from two sources. One seware existing SW query
languages. As the SW shouldn’t be an island, we have alsondnaf@rmation from
common query language of other areas, namely RDBMSs (SQL) did(XQuery).

RDF itself and all extensions (as RDFS, OWL) and query langudge¥ specify
their own data model for atomic data (RDF literals), but rethgework done in the XML
area, especially XML Schema [BEO1].

We use the terminology from XQuery and XPath Data Model [FMM] to describe
literal values:

e An atomic type is a primitive simple type or a type derived legtriction from
another atomic type.

e the set of primitive types is listed in the specification (Begure 4.2).

Of the XML Data Model, only atomic types and values can be uis¢de Semantic Web
context, list and union values aren’t allowed for RDF literalhis means that some of the
XQuery operators and functions are not applicable in treedbintext. On the other hand,
functions for RDF-related data types (RDF nodes, RDF collas)ibave to be provided.

[HBEVO04] have described important features for RDF query leuges. The follow-
ing of these are related to data types and built-in functions

e direct support for collection-related functions

e support for XML Schema datatypes
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Figure 4.2: XQuery Data Model Type Hierarchy (from [FMI®4]

e support for URI-related functions (e.g. namespace filtgring

e multi-language support

We will refer to these in the later sections

4.2.1 Handling of variable constraints in existing query languages

Essentially there are two approaches to handling variaiistecaints:

e Constraint expressionsbuilt-in functions return arbitrary atomic types, the résu
ing constraint expression(s) must be of type boolean.
SQL, XQuery and all SQL-like RDF languages (e.g. RDQL, RQL, SeR§RARQL)
use (part of) a where clause to add such constraint expnss&i@ query.

e Constraint predicatesthere are only built-in predicates, which are satisfiedéf th
arguments are in the relation specified by the corresporzbngtraint clause op-
erator (e.g.(sum 7z 7y 7z) is satisfied if’x = ?y+7z. This approach is used by
rule-based RDF languages, e.g. SWRL, TRIPLE, QEL and BQL

3XQuery operators are just syntactic sugar to facilitatsn@bperators (e.g. in '2+2’) additionally to
prefix expressions.

“DQL uses a knowledge base where some nodes are variablescityspquery. No built-in predicates
are part of the specification, only equality is supportediaitly).

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 43



4. QUERYING WITH OWL-E-QL

These approaches are different in style and syntax, bullgquoaverful. A language
having n constraint predicates can be converted to a larguig one constraint predicate
('satisfied’) which is satisfied if the boolean argument dgtteue’ and n constraint clause
operators/functions. For example, the conjunctive caigtclause

(greaterThan 7z 7y) A (sum 7z Ta ?b) A (sum 7y ¢ 7d)
could be translated to

(satisfied (?a+7b >7c+7d))

As the latter type of expressions is used in SQL and XQuerwedisas in all non-rule-
based RDF query languages, it seems reasonable to integdite Ssyntactic approach
into rule-based languages as well (possibly as alternayinax).

4.2.2 Built-in Functions/Predicates in current RDF query languages

In RDQL, a query consists of an RDF graph template specifying thetsireliof matching
subgraphs and additional constraints of the fermariable operator constant Equality
operators (=, =), comparison operatots () and a pattern matching operator for strings
(" =) are available. There is no formal specification of thessrafors. Boolean operators
to construct more complex expressions are also provided.

SeRQLprovides numeric comparison operators, string pattercinag and functions
for RDF node type checks (isResource, isLiteral). These caobmined using boolean
operators.

SPARQLSPARQL is based on RDQL, but it is planned to rely on XQuery djpesa
and functions instead of the ones provided in RDQL. Detadsat yet provided ([PS04],
section 12).

SWRLbuilt-in predicates are mostly based on corresponding X@fiections and
operators. For primitive datatypes a selection of the nmapbrtant XQuery expressions
are supported. Additionally, predicates regarding ctibes and URIs are provided.

4.2.3 RDF(S) Related Predicates

Support for Collections RDF as well as OWL have a notion of collections. While
current query languages allow to query these inderectlgfariing to the graph structure
for representation of the collection, there is no directpsrp

A query language should have the following functions reldatecollections:

e (member ?c ?7z) satisfied if?c is a collection and contairts.

e (union 7r ?c¢?d), (intersection ?r 7c ?d), (subtraction ?r 7c¢ 7d) the common set
operator and bindr to the respective resulting set.

For Sequences, the following operators are useful:
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e (indexOf ?r ?c¢ ?x) binds?r to position of?z in 7c.

e (concat ?r 7¢ 7d) bindsr to the concatenation 6 and?d.

These operators should be able to work on linked lists (ad ins®WL-DL) as well.
It is an interesting question how XQuery sequence supparRiDF collections support
could be aligned.

Support for Resource Types A query may also require that an RDF node is of a specific
type. For example, this is necessary to return the traesdiosure of all anonymous
resources connected to a non-anonymous resource. Faljoyypes exist:

e Literal.
e Resource

— Anonymous resource

— Non-Anonymous resource

A predicate(nodeType 7z 7t) is satisfied if’t is one of these four type specifiers, and
7z is a resource of the requested type.

URI predicates While in general URIs are supposed to be opaque, in RDF it is of-
ten useful to split them into their namespace and local naants.pThus, the following
functins should be provided:

e (namespace 7r 7u) binds?r to the namespace part of Ufti.

e (localname ?7r 7u) binds?r to the local name part of utiu.

4.2.4 Functions and operators for XML atomic types

XQuery already provides an extensive set of functions amsladprs on common atomic
types as string, numerics and date. The most promising apprgeems to draw on these
efforts and take over at least the semantics of these furectig defined in [MMEOA4].
We refer to this document and the SWRL specification [HP®H regarding a suitable
subset of XQuery operators for the RDF context.
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4.3 An Extended Rolling-up Algorithm

In general, query answering with datatypes is harder thahwithout datatypes. If a
datatype-free query contains only distinguished vargldee could replace all variables
with individual names from the knowledge base and checkeifgtounded query is log-
ically implied by the knowledge base. This is impossible rion-datatype-free queries
because there are infinite numbers of typed literals.

In this section, we extend the rolling up technique preskemeTes01] to support
guery answering with normally acyclic conjunctive quengh local datatype expres-
sions. The basic idea behind the rolling-up technique iotwvertdata-valuedproperty
atoms and datatype expression atoms into concept atonesmally speaking, there are
three cases.

¢ No datatype expression atomsThe rationale behind this rolling up can easily be
understood by the use of the oneOf constructor for datatyfdw data-valued
property atom(a, “18”"xsd:integer) : age can be transformed into the equiva-
lent concept atom: Jage.{ “18”"xsd: integer }, where{ “18”"xsd:integer} is the
datatype containing only one value, i.e., the integer 18w M us consider the
data-valuedproperty atoma, ly): age where we have a non-distinguished variable
instead of a typed literal. Similarly, it can be transformeid the equivalent con-
ceptatoma: dage. T, whereTp is the datatype predicate that represents the whole
datatype domain.

e Datatype expressions with arity 1. A unary datatype expression atom with the
rolled up data-valuedvariable can be absorbed into the corresponding concept
atom. For instancefa, ly): age A ly: <t can be transformed into the equiva-

‘ [20]
lent concept atoma: Jage. <f’;g].

e Datatype expressions with arbitrary arities: Similarly, a datatype expression
atom with arbitrary arity can be absorbed into the corredp@nmaster concept
atom. For instancéa, ly): income A (a,!z):expense A (ly,!z):> can be trans-
formed into the equivalent concept at@mtincome, expense. >. In this example,
the datatype predicate is local w.r.t. the individuak.

In what follows, we present the rolling-up algorithm in matetails. Given a query
grapi G = (Vy,, E,, Vg4, Eq) and anindividual-valuedvertexv € V,,, the query graph
can be transformed into a normal tree (with ragt in which the direction of each normal
edge points from the roat, to the leaves. The directions of normal edges can be satisfied
by the application of theflip(G, (z,y)) function when necessary. Th&ip(G, (z,y))
function returns a new grap’ = (V,,),E,', V4", Eq") with V) = V., E,)/ = (E, \

SWe will specify the kind of requirement for such a query gréatlr in the chapter.
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<l’,y>) U <y,l’>,Vd/ = Vd7 Ed, = Ed7 andﬁ((y,x)) = [nv(£(<'ra y>))6
The process can be illustrated using the query gtapbf the queryg;:

7x:q1 — (ly,?x): hasParent A\ ly: Male A (ly,!z): birthY ear
AN <'y, !W>I marriedY ear N\ z: <:1960 vV :1962) VAN <!W, !Z>Z>,

{} hasParent {Male}  birthYear 1
o f;, o > =1960 V =1962
marriedY ear J 2
1 v
O et e > >
lw

flip(Gy, (ly, ?x)) returns the following query grapf., which contain a normal tree.

{} hasParent~ {Male}  birthYear 1
?.X ‘§’ '(; .................... > =1960 \/ =1962
marriedY ear 2
1 v
O crrerreti i i e > >
lw

As the resulting normal tree contains no datatype vertiesgsshould reduce type
literal atoms and datatype expression vertices.

The reduction of typed literal vertices addta-valuedvertices can be satisfied by the
application of the functiomemoveT L(G). Lett be a typed literal vertex representing
the typed literal“s”~"u, d the datatype vertex is adjacent td, £(d) = FE, i the label
(integer) of the datatype edge connectinagndd. removeT L(G) rewrites the label of
dask |_..~, which is a parameterised datatype expression, and renicues the
datatype edge connectingndd. For instance, given the query gra@h of the queryyg,

7x:qo < Tx:Person A (7x,ly):age A (ly, “18”""xsd:integer):> .

{Person} age 1
[ ]
’x ly 2

“18""xsd: inteéer
removeT L(G5) returns the following query grapfiss.

{Person} age 1
7. 'O .................... > > ‘2: LL18”A
’x 'y

“xsd: integer

Note that the> predicate has the arity of(>) = 2 and extensiort'(>) = {(i,j) |
i > jandi € V(integer)andj € V(integer)}, while the parameterised predicate

The function/nv(r) returns the inverse of a properntye.g.,Inv(love) = love™ andInv(love™) =
love.
"Here we assume that each typed literal vertex is adjacemtiyoomedatatype vertex.
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>|2:“18”N\X5d:integer has aritya’(>‘2:“18”AAXSd:inte er> =1 andE<>|2:“18”N\xsd:integer) - {Z |
i > L2V (integer) (“18”) andi € V(integerﬁ.

The reduce of datatype expression verticesdatd-valuedrertices can be satisfied by
the application of the functioremove DV (G). Letd be a datatype expression vertex, the
arity of £(d) is n, v the masteindividual-valuedvertex ofd, 1, ..., v, thedata-valued
vertices betweem andd. removeDV (G) adds the concept descriptials,, ..., s,.F
into £(v), wheres; = L((v,v;)), E = L(d), and removes the datatype vertéand all
datatype edges connectidgnduy, . .., v,. This step is applied on all datatype vertices in
the query graphremove DV (G) then removes all théata-valuedrertices and the normal
edges connecting them and correspondnagvidual-valuedvertices. The resulting query
graph is a normal tree. For instaneemove DV (G12) returns the following normal tree
G13.

{ Male, Hbi’l“thYGCL’l“.(:lg(jO \ :1962)7
hasParent™ ImarriedY ear, birthY ear. > }

{

O
7x ly

Finally, the rolling-up from the leaves of the normal treethie rootv, can be satis-
fied by the application of the functioremoveLeaf(G). Letl be a leaf,w the adjacent
individual-valuedvertex ofl. removeLeaf(G) adds the concept descriptia.C' into
L(v), wherer = L({v,1)),C = C,N...MC, whereCy,...,C, € L(I) (if L(I) = 0,
C = T, if [ represents an individual, C = {a}), and remove$ and the normal edge
connectingy andl. This step is applied to each leaf until only the distingasiariable
at the root is remaining - here the order of the reduction a¥és is not important. For
instanceremove Lea f(G43) returns the following normal tre@,.

{3hasParent™.(Male M JbirthY ear.(=1960 V =1962) M ImarriedY ear, birthY ear. >)}

[ ]
7x

Therefore, with the help of the rolling-up algorithm, quenyswering of query; is
reduced to the problem of retrieving all the instances otcthecept description

JhasParent™.(Male M 3birthY ear.(=1960 V =1062) M ImarriedY ear, birthY ear. >).

In the rest of this chapter, when we say we roll up a ventedf a query graph, we
mean we roll up the query graph into a normal tree with onlyergexz.
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4.4 Reducing Query Answering in OWL-E-QL to Knowl-
edge Base Satisfiability in OWL-E

4.4.1 Boolean Queries

If there are no distinguished variables in a normally acygliery, there are two possibil-
ities here:

1. There exist some non-distinguished variables in a quee can randomly pick up
a non-distinguished variable from ¢ and and roll ugx. Hence, we can transform
theq into
g« !x:C
where('is the conjunction of all the concept descriptions in thelaib theindividual-
valuedvertex representiniy in the resulting query graph. Therefore, query answer-
ing of ¢ is reduced to concept satisfiability ©f

2. There exist no non-distinguished variables in a qyewe can randomly pick up
an individuala from ¢ and choose it as the root of the normal tree and apply the
rolling-up algorithm. Therefore, we can transform thieto

qg—a:C

whereC'is the conjunction of all the concept descriptions in thelalh theindividual-
valuedvertex representingin the resulting query graph. Therefore, query answer-
ing of ¢ is reduced to instance checkiagC'.

4.4.2 Acyclic Queries without Datatype Expression Atoms

In this section, we consider acyclic queries with only citssns individual-valuedprop-
erty atoms andlata-valuedproperty atoms. We assume that the knowledge base is con-
sistent.

All Variables are Distinguished

Given a queryy, the algorithm of answering queries in which all variables distin-
guished consists of the following steps:

1. Roll-up eachndividual-valuedvariable?v; in ¢ and retrieve a set of individuals;
as candidates dfv;. Let us take the following query; as an example:

(Tvy, Tvg, Tuy, Tug): g3 < (?vy, Tvg): brother A (7vy, Tu):age A (7va, 7us): age.

We can roll up?’v,; and?v, and retrieve their candidatéy andO-.
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2. Getthe valid candidate combinations. We construct arsyyperyq’ of ¢ by remov-
ing all the datatype property atoms fram Each candidate combination is tested
by the corresponding boolean query, which is constructe@phacing each distin-
guished variable i’ with its corresponding candidate in the combination. Note
that if there are only datatype property atoms in a query) #lethe combination
are valid. In the above example, the datatype property afogessuper query;, of
q3 is

(7v1, 7va): g5 < (7v1, 7va): brother.

If O7 ={a1, a2}, Oy = {by, by, b3}, we can test the candidate combinati{@n, —
ai, 7vy — by) by replacing?’v, with a; and?v,; with b, in the queryg; and turn it
into a boolean query as follows:

qs < {(as,by): brother.

If the above query returnsue, then the candidate combination is valid; otherwise,
it is not.

If there exists no valid combination, the result of a queransempty set; other-
wise, we proceed with step 3. We call objects in valid comtame c-valid (¢ for
combination) candidates of corresponding variables.

3. Get the values for all thgata-valuedvariables. This can be done in two steps.

(a) Get the explicitly stated individuals and values pditED Pairs for each
data-valuedvariable 7u;. Let (?v;,7u;) : s be a datatype property atom,
Objects(?v;) be the set of c-valid candidates of;. For each c-valid can-
didatec € Objects(?v;) of 7v;, if there exists any sub-propersy of s such
that s'(c, t) is in the ABox, we store the mapping@v; — ¢, 7u; +— t) into
EI1DPairs.

(b) Getthe implicitly stated individuals and values pdif$) Pairs for eachdata-
valuedvariable?u; that does not appear i/ D Pairs. Let (?v;,7u;): s be
a datatype property aton@)bjects(?v;) be the set of c-valid candidates of
?v;. For each c-valid candidatec Objects(?v;) of ?v;, we check the most
specific clas® of ¢ and see ifD implies any fixed value for any sub-property
s’ of s. There can be several cases here:

i. there exist a sub-class’. =, of D, or

ii. there exist sub-classek’.d andVs’. =, of D,

iii. the variants of the above two cases that involves theafiseverse roles.
For instance D implies some fixed value of if 3r.(Vr—.(3s". =;)) is a
sub-class o).

Note that in some datatypest can have some variants too. For instance, in
the integer datatypesz; is equivalent ta>i A <34
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Some Data-valued Variables are Non-distinguished

Now we consider the case when all individual-valued vadakdre distinguished, but
some of the data-valued variables are non-distinguishethi$ query answering can be
achieved by rolling up the non-distinguished data-valuadables first. The function
removeDV (G) can be used to eliminate all the non-distinguished dataedhVvariables.
After this has been done, the procedure described aboveecasell to answer the query.

As an example, consider a slightly modified query from thamgxde used in the pre-
vious section.

(Tvy, v, Tuy): qq < (v, Tvo): brother A (Tvy,Tuy):age A (7, lug): age.

Here the data-valued variable is non-distinguished and can be eliminated by apply-
ing the functionremove DV (G(g4)) once. As a result the concept expressioa@fe. T
is conjoined with the label of the vertéx,. Now procedure described in the previous
section is applicable.

Some Individual-valued Variables are Non-distinguished

Here, a query may contain individual-valued variables Hrat existentially quantified,
but the knowledge base used to answer the query must notsaeitginclude a named
individual as a binding for the variable. Consider for exaanitle knowledge base in
Example 5 and the query

(7x,70): g5 < (7%, ly): brother A (ly,Tu): age.

Example 5

KB={T, A}

7 = {MaleC - Female
T CV brother.Male
T C V sister.Female
brotherC sibling
sisterC sibling}

A = {john:(=1 brother M =1 sister M =2 sibling)
(john, francis): sibling
(john,andrea): sibling
(francis):(= age 20)
(andrea):(= age 20)}

From the knowledge base we know that the individual named fads exactly one
sister and exactly one brother. In addition we know that ea@mnd francis are the names
of john’s siblings, but we do not know who is the brother andwshthe sister. Neverthe-
less, we know that both are of the age 20 and therefore, thvy as an answer in which
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john is a valid binding for the individual-valued varialile and 20 is a valid binding for
the data-valued variabl&. However, if the specified age would have been different, the
guery would have no answer, since there is no bindingdor

In this case there is no straight forward algorithm to re&ithe query answers. The
rolling up can be used to retrieve candidates. For this gtieryerification of valid com-
binations is unnecessary, since there is only one distihgai individual-valued property.
Queries with multiple distinguished variables will stiked the verification of valid com-
binations. The third step, however, can only be appliechefdata-valued variables are
connected to distinguished variables. In this case, step tf the case where all variables
were distinguished can be used to derive the valid bindiagtht data-valued variables.
If the data-valued variables are connected to undistitguisndividual-valued variables,
some answers may be found by treating the individual-val@etbles as distinguished
ones, without delivering the found bindings in the queryesrs However, the answer for
the given example would not be returned. To retrieve alseeta@swers, further reasoning
is necessary that we will investigate in future work.

4.4.3 Normally Acyclic Queries
All Variables are Distinguished

In addition to the already described case where all varsahte distinguished, here we
cover scenarios where the query includes datatype exprsssiThe beginning of the

guery answering process is the same as for the case wheegiables are distinguished,
but there are no datatype expressions in the query. Firstlgandidates for the individual-
valued variables are retrieved and the valid candidate awatibns are determined. In the
third step the values for the data-valued variables areeveti. In addition to these steps,
a forth step is necessary to verify the valid combinatiomgtie data-valued variables.

In the example query graph given in Figure 4.3, we could imago retrieve more
than one valu€u,. In this case the retrieved value fot, has to be tested with all
retrieved values fortu, to see which are valid for the given datatype expressioneiecal
all combinations of candidates for the data-valued vagslblave to be tested, as it is
necessary for the individual-valued variables.

{} {} birthY ear
. . .
’x hasParent Ty Ty
marriedY ear l 2
1 v
O te e >
?UQ

Figure 4.3: A Query Graph
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Some Data-valued Variables are Non-distinguished

In this scenario we can retrieve and validate the candidateke individual-valued vari-
ables as before. A different procedure is necessary, if ihalaga-valued variables are
distinguished. If all are non-distinguished, we can rollalpdata-valued variables as
described in Section 4.3. In case some data-valued vasiabdedistinguished and others
are not for a datatype expression, there are more stepssaeges

1. Validate that a solution is possible in the given knowketigse. To determine this,
one can treat all involved data-valued variables as naimdisished and do the
rolling up as described.

2. Retrieve candidates for the distinguished data-valuedhia. If there are no can-
didates the query has no answer.

3. The retrieved candidates have to be tested, to determhinghwvare valid in com-
bination with the non-distinguished variables and canesliéor other data-valued
variables. In this step the distinguished variables aréaced with a candidate.
Therefore, the resulting query is free of distinguishedédatiued variables and the
can be handled as described in Section 4.3.

Some Individual-valued Variables are Non-distinguished

The process of determining valid bindings for a mixture stidiguished and non-distinguished
individual-valued variables has already been describ&ention 3.2.3 of Chapter 3. Af-

ter determining the valid candidate combinations for tltvillual-valued variables, one

can imagine two situations.

¢ All data-valued variables are connected to a distinguisleable. In this case,
the bindings for the data-valued variables have to be veftiend tested for each
candidate. The process is the same as described in the casly afistinguished
variables, since for the retrieval of valid bindings for theta-valued variables only
the candidates of the distinguished master individuake@lvertex are taken into
account.

e There are data-valued variables connected to non-dissihgd variables. In this
case it is difficult to determine all valid query answers. Taasons for this have
already been described for the case where some indivicllaéd variables are
non-distinguished but the query did not contain datatygeession.
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4.5 Summary

In this chapter, we discuss the query answering in OWL-E-Q& s\Wbw how the existing

rolling up techniques can be extended to support datatypeession-enabled queries.
We also provide a short survey on the datatype predicates insé/eb-related query

languages.
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Chapter 5

A Fuzzy Extension

5.1 Introduction

The representation of uncertainty and imprecision hasvede considerable attention
in database and query services. The currents efforts ausddcto extend the existed
knowledge formalisms to deal with the imperfect nature af veord information (which
is likely the rule and not the exception). The use of DLs in ¢batext of the semantic
web points out the necessity of extending DLs with capaédjtwhich allow the treat-
ment of the uncertain and imperfect knowledge. In fact ata$®Ls are insufficient for
describing real retrieval situations, as the retrievakisally not only a yes or no question:
(i) the representation of the knowledge which the systene la@eess to is inherently im-
perfect; and (ii) the relevance of the content to a query bas be established only up
to a limited degree. Because of this, we need a logic in whather than taking crisp
decisions whether a KB entails a query or not, we are ablerioreandrank the retrieved
objects according to how strongly the systems believesain thlevance to a query.

The choice of fuzzy set theory to extend DLs plays a twofold:rQi)it directly models
semantic-based retrieval, and (ii) it offers an ideal freumidk for more sophisticated query
processes. From a syntactical point of view fuzzy DLs presitlizzyassertionsthat is,
expressions of typéu, n), wherea is a crisp assertion and € [0, 1]. We use the term
fuzzy simple assertion, fuzzy axiom, and a fuzzy KnowledgeeB&B) with the obvious
meaning. Then{3hasHeight.Height(i),.7) is a fuzzy simple assertion with intended
meaning “the membership degree of constatt conceptihasHeight. Height is .7”.
From a semantics point of view, fuzzy logic captures theamotif imprecise concept, i.e.
a concept for which a clear and precise definition is not jpbssiFuzzy concepts play a
key role in information retrieval. For instance, in the poass example the semantics are
that the persorn) is medium tall.

In D2.5.1 is presented the framework for extending DLs withzly logic. It is pre-
sented a way to extend OWL with the notion of fuzzy assertidrtse extension in the
current syntax of OWL that we propose is to add an assertionredegpresenting the
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degree that an OWL individual belongs to an OWL class or two OWdlividuals in an
OWL relation. In addition to the fuzzy assertion extensior, propose a way to extend
the SWRL syntax with degrees of importance. The degree of itapoe is assigned in
the atoms of a SWRL rule representing the degree of importahtieecatoms for the
activation of the rule. In this way, the atoms in the head afla can be activated with an
assertion degree depending the assertion degrees of tteddwariables and the degrees
of importance of the atoms in the body of the rule. There aervain differences be-
tween the assertion degree and the degree of importanicey Have different semantics
ithey have different way of calculation. Basically, thekgrees are used to manage two
different kinds of uncertainty as explained in the follogyisection.

In this chapter is presented the way to extend the query gegibased in DLs and
more specifically the OWL-Q Language, with fuzzy logic. We \pde the syntactic
as well as the semantic extensions necessary for consguitizzy queries in OWL-
QL. OWL-QL is indented to be a candidate standard languagepestdcol for query-
answering dialogues among Semantic Web computationatadarng which answering
agents may derive answers to questions posed by query agents

The structure of this chapter is as follows: the first secpfogsents a survey on past
and current work involved with fuzzy queries and extensiohguery languages with
fuzzy logic. In the second section we analyse the two kindsnakrtainty that exist in
real life applications. Also, we sumurise the work done mmB2.5.1 for the extension of
OWL and SWRL with fuzzy operators. Finally, we present the motibfuzzy entailment
for implementing fuzzy queries. In section 3, we describe eéktensions in OWL-QL
necessary to realise fuzzy queries. Also we present the evagristruct fuzzy assump-
tions. In the last section, we present a use case for bettlarstanding the need of fuzzy
logic in query languages.

5.2 Queries and Uncertainty - State of the Art

As hardware becomes more powerful and as software beconrespyhisticated, itis in-
creasingly possible to make use of multimedia data such agesiand video. If we wish
to access multimedia data through a database system a nofew issues arise. For
example a multimedia database might deal with pictureshtheae a complicated color-
ing pattern and also contains a number of shapes. Theseedifies between multimedia
databases and traditional databases bread the need afiextéme applicability of tradi-
tional databases; hence some new technigues have beers@ddpadeal with uncertain
or incomplete information [Zad65]. Fuzzy sets and fuzzyidedhave been introduced
into database systems for this purpose [MK85].

Since then fuzzy databases were widely used and a lot ofredseas made in this
area. A fuzzy database library has been build by Omron CotipargCor92] and the
standard relational SQL has been extended to Fuzzy (net}iSQL [QWC93]. Yang
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and others [QC95] stated that despite the fact that nested queries allawgeds to
express their queries in a convenient way their evaluatiegre very inefficient if they
were implemented in a naive way as nested loops. They hagaded and modified those
unnesting techniques for fuzzy databases and they alsadpbgome new unnesting
techniques for fuzzy databases.

In many fuzzy databases [BF82, PH88, JZ86, DD90, SA90, Mg3}in which the
meaning of a linguistic fuzzy set such as "young”, is repnése by a fuzzy set and thus its
membership function. So one membership function is usadéogret a fuzzy term under
all circumstances. Zhang et. al. [WCBNB95] stated that sinyitarkeal word a fuzzy term
must have several meanings among which one must be chosemutyatly according to a
given context, proposing that fuzzy databases systemssuppbrt multiple and dynamic
interpretation of fuzzy terms. They achieved that by a agafirocess that was used to
transform a pre-defined meaning of a fuzzy term into an ap@tgmeaning in the given
context. Sufficient conditions were given for a nested fupzgry with relative quantifiers
to be unnested for an efficient evaluation. They also prapeseattribute dependent
interpretation in order to model the applications in whikk theaning of the fuzzy term
in an attribute must be interpreted with respect to valuesthier related attributes. For
this purpose two necessary and sufficient conditions fopk tio have a unique attribute-
dependent interpretation were provided. They describetht@npretation system that
allows queries to be processed based on the attribute-depeimterpretation of the data
and also two techniques grouping and shifting to improvertiementation.

Papadias et.al. [DND99]worked on the configuration sintijjain the context of
Digital Libraries, Spatial Databases and Geographicarmétion systems. The queries
in these systems retrieved all databases configurationsrtheched an input descrip-
tion. Their approach introduced a framework for configumatsimilarity that takes into
account all major types of spatial constraints. They aldmed appropriate fuzzy simi-
larity measures for each type of constraint to provide fidéigyband allow the system to
capture real-life needs. Ending they also applied pregssiag techniques to explicate
constraints in the query.

Ending Morris and Jankowski [APOO] combined fuzzy sets asdlolases in multiple
criteria spatial decision making. Spatial decision makg@ fundamental function of
contemporary Geographic Information Systems (GIS). Ontbeomost fertile GIS devel-
opment areas is integrating multiple criteria decision aetsdnto GIS querying mecha-
nisms. The classic approach for this integration was to usdgda techniques of MCDM
with crisp representations of spatial objects (featur@pydduce static maps as query an-
swers. They visually represented query results more m@igcis/ implementing fuzzy
sets membership as a method for representing the perfoenaddecision alternatives on
evaluation criteria, fuzzy methods for both criteria weigh and capturing geographic
preferences and fuzzy object oriented spatial databasésdinre storage.
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5.3 Representing Queries Using Fuzzy Logic

As previously described, fuzzy logic and queries have besnbmed in many ways to

manage uncertain and imprecise knowledge. Before we dedwoil to represent and im-
plement queries using fuzzy logic, we will define the two laraf uncertainty that exist

in real-life applications. We will analyse the two kinds afaertainty by demonstrating
an example of the use case presented in the last sections cehsider that an advertise-
ment company requires a female model who is tall and thinceSgqueries need artificial

precision, this query is formed as:

Query(“List all the female models, which are
over 175 cm and under 60 kilos”)

The query pattern is as follows:

Query Patterq (hasSex ?p ?a)(type ?a femalé)asHeight ?p ?c)

(type ?c Height> 175)A\(hasWeight ?p ?d)(type ?d Weighit60)}

Must-Bind Variables List: (?p)

Answer patter{ (hasSex ?p “FemaleX hasHeight ?p “over 175 cm”

A hasWeight ?p “under 60 kilos})

Answerl: (“Mary is a female model who is over 175 cm and is urtifekilos”)
Answer2: (“Susan is a female model who is over 175 cm and ieu@d kilos™)

The above situation happens having a crisp query in a crisplKB. 700 models
database the answers that make the query true (entails thadéBMary and Susan”.
However, after a closer look in the database, we can find etthiere are more than 50
models that could satistyp some degrethis query if we didn’t have the crisp thresholds.
In a such conjunctive query, if one of the atoms of the quergsdaot entails the KB
we get an empty answer. If, for example, the model “Adrianetijch satisfies the thin
sentence, but is under 1cm only in the height sentence,astes]. The second type of
uncertainty is introduced when the query sentences aremmgaited with an equal degree
of importance. It could happen, for example, that the aisasrient company is more
interested, for the model, to be tall than to be thin. Thismseapart from limited query
answers, that we cannot rank the answers of the query angalthe user needs. If, for
example, “Mary” is 185cm tall and 65 kilos and “Susan” is 188all and 55 kilos and the
degrees of importance of the atoms is 1 and 0.5 for the weighttee height respectively,
then “Susan” should be ranked before “Mary”. To concludethia above example, is
clearly presented, the two kinds of uncertainty that exdat-tife applications. Of course,
this is not always the case. There are as many queries thatt dacorporate uncertainty.
The advantage of using fuzzy logic for managing these twdskiof uncertainty, is that
the crisp case is implemented as a subcase of the fuzzy chid, means that we fuzzy
logic does not replace the existed logic but extends it. Itb[12we have proposed a way
to manage imprecise and uncertain knowledge by extendindp@ied Semantic Web
Languages (OWL) with fuzzy logic. In the next paragraph we suse this work.
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The fuzzy DL is based on the definition of thezzy interpretationA fuzzy interpre-
tationZ consists of a non empty sé&f’ and the mapping functions:

Cc* . AT —[0,1]

R AT x AT — [0, 1]
assigning fuzzy sets to concepts and roles, respectivaly.efample ifa € A? then
AZ(a) gives the degree that the objecbelongs to the fuzzy concept, i.e AZ(a) = 0.8.

Table 5.1 summarises the syntax and the semantics of somgwaors and termino-
logical and assertional axioms. The first column providestime of the constructor, the
second its syntax and the third its semantics.

Table 5.1: Some Concept Constructors, Assertional and Tetagital Axioms

| Name | Syntax | Semanticga € A7) |
Top T T4 (a) =1
Bottom 1 1*(a)=0
Fuzzy Intersection CrD (C D) (a) =t(C*(a), D*(a))
Fuzzy Union cubD (C U D) (a) = u(C*(a), D*(a))
Fuzzy negation -C (—=CY (a) = c(C*(a))
Fuzzy Value Restriction | VR.C' | (VR.C)*(a) = infycaz wi(R%(a,b), CZ(b))
Fuzzy existential quantifier 3R.C | (FR.C)*(a) = supyenz t(R*(a,b), C* (D))
Concept Inclusion CCD C* C D*(Va € A* | C*(a) < D*(a))
Role Inclusion RCS Rt C St
(V(a,b) € AT x AT | R*(a,b) < S5%(a,b)

Concept Equality C=D ct =DpD*
(Va € AT | C%(a) = D*(a))

Role Equality R=S R* = S*(V(a,b) € AT x AT
| RI(aa b) - Sz(a’ b))

Concept Assertion C(a) (C(a))*(a) = C*(a) > 0
Role Assertion R(a,b) (R(a,b))*(a,b) = R*(a,b) >0

The concepts and the roles in classical OWL are interpretenligis sets, i.e an in-
dividual either belongs to the set or not. However, many-liéakoncepts are vague in
the sense that they do not have precisely defined membernsteipac In fuzzy OWL an
individual belongs to a degree of confidence to the set (meshi. This means that,
for example, the individual "Peter” might belong to the dagiof confidence of*0.8” to
the concept set“TallPerson”.

In fuzzy SWRL, a weight representing the degree of importarickeoatoms of the
body of the rule, is added. A rule now means that if the anteicedtomsA,, A,, A,
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are activated to the assertion degreesi», a,, € [0, 1], and have degrees of importance
b1, be, b, € [0,1] then the consequent hold to an assertion degree|0, 1] that can be
computed fromu,, as, a,, andby, bs, b,, with the aid of fuzzy operators. For example:

If(hasSmallHeight ?p ?w, “0.48(hasLargeWeight ?p ?r, “0.83}(fatPerson ?p)

If the assertion degrees pfw to the relatiorhasSmall Height isa; = 0.5(see figure5.1)
and the assertion degreesyof- to the relationhasLargeW eight is a; = 0.9 then thep
must have assertion degree to the congepterson,c = 0.8. The difference between
the assertion degrees and the degrees of importance ishthassertion degrees show
the membership values, a,, a,, of the variables included in the atoms, A,, A, to the
concepts or relations they belong to, and the degrees ofrtanpme show how important
is each antecedent atom in order to detect the head atom.

The fuzzy extensions in DLs proposed in D2.5.1 and sumuiiséte previous para-
graphs, present a way to manage the two kinds of uncertaifitgse extensions were
based on the notion fuzzy assertion, and and not he notiomeodleégree of importance
in the atoms of a rule-axiom that shows the wight of each atanthfe activation of the
head of the rule. A rule is distinguished from a query fromfdw that a query uses more
variable bindings and has only head atoms. A query may haesozenore answers, each
of which provides bindings of URI references or literals tongoof the variables in the
query pattern such that the conjunction of the answer seesgproduced by applying the
bindings to the query pattern and considering the remawanigbles in the query pattern
to be existentially quantified, is entailed by a KB called #mswerkKB. A fuzzy query is
similar to the crisp query apart from the fact that the quersveers may have a degrees
of importance, and the conjunction of the query answersumg/fentailed by a fuzzy KB
(a KB with fuzzy assertions). A crisp KB entails a query answe

KB):¢7

iff every model of the KB alsatisfies(is a model of)yy. A fuzzy KB fuzzy entails a
query answet)

KBy Er v,

iff every model of the fuzzy KB satisfies to some degeee (0, 1] v». Fuzzy entailment
occurs when

cCn-C# 1,
which is the case for fuzzy concepts, or when
C=D,
to some degree. In the D2.5.1 was defined only the notion affassertion and not the
notions of fuzzy equality and fuzzy entailment, since it wdBcult to understand where

these extensions are useful for.
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5.4 Fuzzy OWL-QL

As previously described, in classical OWL-QL each bindingiiguery answer is a URI
references or a literal that either explicitly occurs asrantén the answer KB or is a
term in OWL. That is, OWL-QL is designed for answering queriéshe form “What

URIs references and literals from the answer KB and OWL denbjects that make
the query pattern true?”. A variable that has a binding in arg@answer is identified
in the query answer. OWL-QL supports existentially quarditswers by enabling the
client to designate some of the query variables for whiclwans will be accepted with
or without variables. That is, each variable that occurs@¥L-QL query is considered
to be amust-bind, a may-bind variable or a don’t bind variabkenswers are required
to provide bindings for all the must-bind variables, mayve bindings for any of the
may-bind variables, and are not to provide bindings for arth® don’t-bind variables.

In fuzzy OWL-QL each binding in a query answer is, as in thesitad OWL-QL, a
URI reference or a literal. The difference of fuzzy OWL-QL frdhe classical one, is
that is used a fuzzy KB (fuzzy Abox) to retrieve the answens| enerefore we can use
fuzzy concepts and fuzzy relations in the queries, suchedl®drson, fatPerson, hasMedi-
umHeight” together with assertion degrees representiagrtémbership value of the ob-
ject to the corresponding concepts and relations. In addit the fuzzy assertion, the
user may assign degrees of importance to the query sentéecesng the influence that
a specific sentence must have in the query answer. For examphte query'List all the
models that hasLargeHeight and hasMidleAgeé user might be more interested in the
height sentence than in the age sentence. In this case gheamsassign degree of impor-
tance 1 to the height sentence and 0.5 to the age sentenbés Wwaty the query engine is
enabled to produce ranked answers according to the uses.nemxlly, as described in
the previous section, a KB must entail all the query sentersiace they are conjunctive.
In the fuzzy case, the decision whether a KB entails a queriesee is not crisp (yes or
no). A fuzzy KB fuzzy entails a query sentence to a degree(0, 1].

As in classical OWL-QL, in the a fuzzy OWL-QL query-answeririgldgue is initi-
ated by a client sending a query to an OWL-QL server. A fuzzy ORILguery is an
object necessarily containing a query pattern that specieollection of fuzzy OWL
sentences in which some URI references are considered toriables. The example
presented in the previous section has the form in fuzzy OWL-QL

Query(“List all the female models, which are
tall and thin”)

The query pattern is as follows:
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Query Patterr (hasSex ?p ?a)(type ?a femal@)asLargeHeight ?p 2c0.8>)
(type ?c LargeHeight)(hasMediumWeight ?p ?€0.5>)(type ?d MediumWeight)
Must-Bind Variables List: (?p)

Answer patterr{(hasSex ?p “FemaleX hasLargeHeight ?p largeHeight

A hasMediumWeight ?p mediumWeight)

Answerl: (“Mary is a female model who is 185cm tall (largegte0.8)

and is 65 kilos (mediumWeight=0.4)

Answer2: (“Susan is a female model who is 175cm (LargeHei@i®)

and is 50 kilos (mediumWeight=0.9)

Answer3: (“Helen is a female model who is 170cm (LargeHeigt)

and is 50 kilos (mediumWeight=0.9)

In this example we used the fuzzy relations “hasLargeHeigasMediumWeight”
and the fuzzy concepts “LargeHeight, MediumWeight” to nga#he uncertainty intro-
duced by the concepts “Thin, Tall”. In this way, a person whd83cm tall hasLarge-
Height=0.65 and hasMediumHeight=0.3, as depicted in fiureAlso we have assigned
degrees of importance, 0.8 for the height sentence and DtBdaveight sentence. That
is, that the user is more interested for the model to be tatlitiin. The answers are, in
the fuzzy case, ranked. The ranking vafie [0, 1] is the calculated as:

R = InfwlK, Al

whereA correspond to the fuzzy relation that has the assertionedegof a query sen-
tences, an& correspond to the fuzzy relation that has the degrees ofritaupce and,
is a fuzzy implication (see D2.5.1). In the above example rémkR for Answerl can be
computed as:

1.0
K=[10 08 0.5, Apary = | 0.8
0.4

Rmary = 087

wherew; is the implication of the Product t-norm. Accordingly aremquutedR,s., =
0.6 andR},.;., = 0.5. In this way, we do not restrict the query answer with crispsholds
and thus i)we get more answers and ii)the answers are ranked.

Classical OWL-QL facilitates the representation of “If Thequieries by enabling a
guery to optionally include guery premiseghat is an OWL KB or a KB reference. When
a premise is included in a query, it is considered to be ireziid the answer KB. Fuzzy
OWL-QL can have duzzy query premisavhich means that we can assign degrees of
importance to the query premise, and influence the rankitigegodnswers

Query(‘lIf C1is LongHair and C1 is the typeOfHair of W1,
Then what is height of W1”)

Premisé(type C1 LongHair)(hasTypeOfHair C1 WA0.8>)}
Query Pattern{(hasLargeHeight W1 ?x0.6>)}

Must-Bind Variables List: (?x)
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5.5 Use case

In order to understand the need of the proposed fuzzy logeneions, we will demon-
strate a use case. Let us consider a casting company thatdrge anultimedia database
consisting of visual and textual information about persoodels. This company has
a user interface for inserting the textual and visual charatics of the models as in-
stances of a predefined ontology. It also provides a querinertig search for models
with special characteristics depending the context andtihgect of the advertisement.
The visual characteristics of a model consist of the imageseomodels together with
some low-level information. Low-level information consid the visual descriptors of an
image(MPEG-7 visual descriptors), which are used for Viguaries. Visual queries are
included in the sense that a user can provide an image of almodeuery for models
with similar low-level characteristics (colour, shapes.gtIn the textual case a user can
guery the database providing high-level information altbetmodels (such as the name,
the height, the type of the hair etc.). The textual charéttes are inserted by a domain-
expert manually in the database (KB), However, the visuatatiaristics are inserted
automatically using a visual descriptor extraction altion, which automatically analy-
ses the inserted image and stores as instances the valhesdatécted visual descriptors
in a visual descriptor ontology. The same algorithm anallgsevisual query image. The
extracted visual descriptors are then form a query pategnigh is true if it is entailed by
the KB, as in the textual case.

In the following paragraphs we provide a sample of the Tbbg, Abox, a couple
of rules and a diagram showing how the assertion degreesabmdated, of the textual
information of the models.

Thox

Woman = Person M Female

Man = Person 1 Male

CastingPerson = Person MY HasPersonallnformation.PersonalIn formation
MY HasMeasurements.Measurements MY HasTypeO f Hair.Hair
Personalln formation = VhasName.Name M YhasLastName.Namerll
VhasAge.Age

MYhasDOB.DOB MYhasAddress.Adress 1 YhasM obilenumber. Number
Measurements = VYhasHeight M YhasW eight . W eight
MYhasShoeSize.Size

Hair = FhasHairQuality. Hair Qualityr

JhasHair Length.Hair Length 1M JhasHairColour.HairColour
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4 Height

Small Medium Large

0.65

0.3

175 183 185 195

VassilisHeight

183(cm):mediumHeight=0.3
183(cm):largeHeight=0.65

Figure 5.1: The fuzzy partition of Height

Entry: nol
Personal Information
Name:Vassilis | LastNameTzouvaras Age: 29
Address:Hatzi 7| Mobile: 6937295722| D.O.B.:07.08.75
Measurements
Height: 183cm | Weight90 | ShoeSize44
Hair
Quality: good | Length:short |  Style:frizy

Abox:

{{(nol : CastingPerson = 1), ((nol,Vassilis) : hasName = 1), ((nol,Tzouvaras) :
hasLastName = 1), ((nol,29) : hasAge = 1), ((nol,Hatzi7) : hasAddress =

1), ((nol,6937295722) : hasMobilenumber = 1), ((nol,183cm) : hasMediumHeight =

3), ((nol,183) : haslargeHeight = .65), ((nol,34) : mediumWaste = 0.7), {((nol,34):
hasLargeWaste = 0.3), ((nol,44) : hasMediumShoeSize =.9), ((nol,44 : hasLargeShoeSize =
0.1), ((nol, Long) : hasLongHair = 0.3), ((nol,good) : hasQualityHair = 0.8), ((nol, frizy) :
hasTypeO fHair = 1}

Rule 1: IF hasMediumWeight AND hasLargeHeight(a,b) THEN ThinPerson(a)
Rule 2: If HasSmallHeight(a,c) AND HasLargeWeight(a,b) THEN FatPerson(a)
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Chapter 6

The Instance Store

6.1 Introduction

One of the main features of the W3C’s OWL ontology language [D@2] is that there
is a direct correspondence between (two of the three “sgkaf OWL andDescription
Logics(DLs) [HPSO03]. This means that DL reasoners can be used to rahsom OWL
ontologies, and in particular to answer both class basedesug.g., asking if the class
“Semantic Web researcher” is a subclass of the class “Comfatentist”) and instance
retrieval queries (e.g., a query that asks for all the irtligis in the ontology that are
instances of the class “person who works at a university whesearch interests include
Semantic Web and Description Logics”).

Unfortunately, while existing techniques foBoxreasoning (i.e., reasoning about the
concepts in an ontology) seem able to cope with real worldlogtes [Hor98, HMO01a], it
is not clear if existing techniques f&Boxreasoning (i.e., reasoning about the individuals
in an ontology) will be able to cope with realistic sets oftarece data. This difficulty
arises not so much from the computational complexity of ABexsoning, but from the
fact that the number of individuals (e.g., annotations)hhlge extremely large.

The so callednstance Storés a system that addresses this problem by using a hybrid
DL/Database architecture to answer queries against @igda@ontaining large numbers
of individuals. The idea behind the Instance Store is to iplefficient (but still sound
and complete) query answering by maximising the use of thali2ae and minimising
calls to the DL reasoner.

A prototype of the Instance Store has been implemented l@arelsers in the Infor-
mation Management Group at the University of Manchesterrediily the prototype can
only deal with arole-freeontology, i.e., an ontology that does not contain any axiagis
serting role relationships (properties) between pairsidividuals, but work is underway
to extend the Instance Store to deal with arbitrary ont@sgin this chapter we will de-
scribe the functioning of the existing Instance Storesillate its performance with some
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experimental results, and outline how the Instance Stosgdevill be extended to deal
with arbitrary ontologies.

The remainder of the chapter is structured as follows: irtiGe®.2 we motivate the
design of the Instance Store; in Section 6.3 we give somalslefaDescription Logics
that will be needed in the later sections; in Section 6.4 wseidee the architecture and
implementation of the role-free instance store; in Secidnwe present the results of
an empirical evaluation that we have carried out using the-free instance store; in
Section 6.6 we describe how the Instance Store approaclbevidixtended to deal with
arbitrary ontologies; and in Section 6.8 we conclude witlisawksion.

6.2 Background and Motivation

Although the restrictions of the existing Instance Store/reeem a rather severe, the
functionality provided turns out to be precisely what isuegd by many applications, and
in particular by applications where ontology based terrasiaed to describe/annotate and
retrieve large numbers of objects. Examples include th@tigetology based vocabulary
to describe documents in “publish and subscribe” appbecatiUCD" 03], to annotate
data in bioinformatics applications [GO] and to annotaté wesources such as web pages
[DEG*03] or web service descriptions [LHO3] in Semantic Web aggilons. Indeed, we
have successfully applied the Instance Store to performsgelhice discovery [CDT04],
to search over the gene ontology [GO] and its associateanoss (see below), and in an
application to guide gene annotation [BTMSO04].

Using a database in order to support (a restricted form of)A®asoning is certainly
not new (see Section 6.7 for a discussion of related workdahe best of our knowledge
the Instance Store is the first such system that is generpgbper(i.e., can deal with
any ontology without customising the database schemayjge®s sound and complete
reasoning, and places no a-priori restriction on the sizeebntology.

In order to evaluate the Instance Store design, and in pétids ability to provide
scalable performance for instance retrieval queries, we parformed a number of ex-
periments using the Instance Store to search over a largg0®@oncept) gene ontology
and its associated very large number (up to 650,000) of idhdials — instances of concept
descriptions formed using terms from the ontology. In theealge of other specialised
reasoners we have compared the performance of the InstémreevBth that of RACER
[HMO1b] (the only publicly available DL system that supoitill ABox reasoning for an
expressive DL) and of FaCT [Hor98] (using TBox reasoning touate reasoning with a
role-free ABox).
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6.3 Description Logics

Description Logics [BCM 03] are a family of knowledge representation formalismsvea
from earlyframe systemMin75] andsemantic networkgQui68]. DLs use an object ori-
ented modelling paradigm, describing the world in term&idividuals, concepts (classes)
and roles (relationships); they are distinguished fronir tiecestors by having a precise
semanticsvhich enables the description and justification of autochateduction pro-
cesses.

The semanticf a DL is given in terms of interpretations. An interpretatiZ =
(AZ,.T) consists of a non-empty sét’ (the domain of the interpretation) and an inter-
pretation function? which maps every individual to an element &f, every concept
to a subset ofAZ, and every role to a subset df? x AZ. Concepts may be either
atomic (i.e., a concept name) or concept expressions fousiad the operators provided
by the DL. The interpretations of concept expressions mhsy @ppropriate semantic
conditions, e.g., the interpretation of the conjunct@m1 D of two concept’ and D
must be equal to the intersection of the interpretationshefihdividual concepts, i.e.,
(Cn D)t =CTnDE. (See, e.g., [BCMO3] for full details.)

A DL knowledge base (KB) is a paif7, .A), where7 is a TBox andA is an ABox.
A TBox is a set of axioms of the for@ = D, whereC' and D are concepts; an ABox is
a set of axioms of the form : C or (x,y) : R, wherez, y are individuals(' is a concept
and R is a role. An interpretatiol satisfies a TBox axiond = D whenC*? C DZ,
and it satisfies ABox axioms : C and(x,y) : R whenz? € C? and(z%,y*) € R?
respectively. An interpretatiab satisfies a TBo¥ (ABox .A4) when it satisfies all of the
axioms in7 (A); such an interpretation is called a modelZof.A). An interpretation is a
model of a KBK = (7, .A) when it is a model of botll” and.A.

Given a KBK = (7, .A), basic reasoning tasks include:

Satisfiability a concept' is satisfiable w.r.t7 (K) iff there exists some modél of 7
(K) s.t.CT £ 0.

Subsumptiona concept” is subsumed by a conceptw.r.t. 7 (K) iff C* C D? in every
modelZ of 7 (K); we will write thisas7 = C C D (K = C C D).

Instantiation an individualz is an instance of a conceptw.r.t. K iff 27 € CZ in every
model of C; we will write this asiC = = : C.

Other reasoning tasks such@sssification/computing the subsumption partial ordering,
or hierarchy; of the atomic concepts i) andRetrieval(computing the individuals itd
that instantiate a given concept) can be reduced to subsumaptd instantiation respec-
tively. Realisation the task of computing the most specific (w.r.t. subsumptaaamic
concepts ir/ that are instantiated by a given individual, can be reduseddombination
of retrieval and classification, i.e., for an individuabnd an atomic concet in 7, C
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| Description | Syntax| Semantics

atomic concept name A AT C A*

top T AT

bottom 1 0

conjunction cnbD ctnD*

disjunction cub ctuD?

arbitrary negation -C' AT\ C*

existential restriction IR.C | {a € A? | Fb.(a,b) € RT A b e C*}
universal restriction | VR.C' | {a € AT | Vb.(a,b) € R — b e C*}

Table 6.1: Syntax and Semantics&f{.F concept expressions

realisese iff x is an instance of' and there is no atomic concept+# C' in 7 such that
x is an instance ob andC subsumed. Finally, two conceptg’ and D areequivalent
writtenC' = D, iff C C D andD C C.

6.3.1 The Description LogicSHF

We will be particularly interested in th&H F Description Logic as this is the logic imple-
mented in the Instance StokH F is an extension of the basic DAL [SSS91] to include
negationof arbitrary conceptdransitive rolesrole hierarchyandfunctional roles Given

a set of concept name&’'(V) and a set of role name®&(V), concept expressions SHF
are formed according to the following syntax rules:

C,D—T|L|A|-C|CND|CUD|VYR.C |3R.C

whereA is a concept name, and D are concept expressions, aRds a role name.

In addition we assume that the getC RN of functionalroles and the se®, C RN
of transitiveroles are disjoint, i.e " N R, = (). Moreover, we impose the limitation that
there is no roleP, ) such thatP € R,, Q € FandP C . The semantics o6’ HF
concepts is shown in Table 6.1

In the most general cas8F TBox axioms have the form:

CCD RCS|C=D,R=S

whereC,D are concept expressions afds are role names. Axioms of the first kind
are callednclusions while axioms of the second kind are calledqualities an equality
can be seen as an abreviation for a symetrical pair of iramtusxioms, i.e.(' = D is an
abreviation forC C D andD C C.

Since role inclusion axioms and equality axioms contaia n@mes only, a taxonomy
of role names can be built based on the inclusion and equaldyions among the set of

68 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0



D2.5.2 Report on Query Language Design and Standardisation ISTcPI®Je2004-507482

role axioms, and a relatiod can be defined asgartial order on the transitive closure of
{RCS|R,Se RN}U{R=S|R,S € RN} C T torepresent the role taxonomy.

6.3.2 The Instance Store Notation

We now introduce some new notation used, for conveniendhismpaper. For a TBoY,
an ABox A, and a concept”:

e (' | for the set of atomic concepts ih subsumed by'; these are the equivalents
and descendants 6fin 7.

e [(']7 for the set of most specific atomic conceptdirsubsuming’; if C'is itself
an atomic concept i’ then clearly[C'|r = {C}.

6.4 The Role-Free Instance Store

An ABox A is role-free if it contains only axioms of the form: C'. We can assume,
without loss of generality, that there is exactly one sucioraxfor each individual as
x : C'U=C holds in all interpretations, and two axioms C' andx : D are equivalent to
a single axiome : (C'M D). Itis well known that, for a role-free ABox, instantiationrca
be reduced to TBox subsumption [Hol96, Tes97]; i.eK i= (7, A), and.A is role-free,
then =z : Diff z : C € Aand7 = C C D. Similarly, if C = (7, A) and A is

a role-free ABoX, then the instances of a concBptould be retrieved simply by testing
for each individuak in A if = = : D. However, this would clearly be very inefficient
if A contained a large number of individuals.

An alternative approach is to add a new axiolC D to 7 for each axiomz : D
in A, whereC,, is a new atomic concept; we will call such concepsgeudo-individuals
Classifying the resulting TBox is equivalent to performingaanplete realisation of the
ABox: the most specific atomic concepts that an individuiglan instance of are the most
specific atomic concepts that subsufeand that are not themselves pseudo-individuals.
Moreover, the instances of a concdptan be retrieved by computing the set of pseudo-
individuals that are subsumed By,

The problem with this latter approach is that the number eftigs-individuals added
to the TBox is equal to the number of individuals in the ABox, #rttis number is very
large, then TBox reasoning may become inefficient or everkitean completely (e.g.,
due to resource limits).

The basic idea behind the Instance Store is to overcome tbidgmn by using a DL
reasoner to classify the TBox and a database to store the ABtxhve database also
being used to store a complete realisation of the ABox, ia.gach individualz, the
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concepts that realises (the most specific atomic concepts thaistantiates). The real-
isation of each individual is computed using the DL (TBox)s@aer when an axiom of
the formzx : C is added to the Instance Store ABox.

A retrieval queryQ to the Instance Store (i.e., computing the set of individuhat
instantiate a concef®) can be answered using a combination of database queries and
TBox reasoning. Given an Instance Store containing a(kB.4) and a query concept
Q, retrieval involves the computation of the following setdralividuals for which we
introduce a special notation:

e [, denotes the set of individuals  that realisesomeconcept inQ) | 7;

e [, denotes the set of individuals i that realiseeveryconcept in[Q] 7.

The Instance Store algorithm to retrieve the instance3 oén be then described as fol-
lows:

=

use the DL reasoner to compugg 7;

N

use the database to find the set of individuais

w

. use the reasoner to check whetheis equivalent to any atomic concept ¥t if
that is the case then simply retuFpandterminate

4. otherwise, use the reasoner to comgaier;
5. use the database to compuitp

6. use the reasoner and the database to computiee set of individuals: € I, such
thatz : C'is an axiom ind andC' is subsumed by;

7. return/; U I3 andterminate

Proposition 1 The above procedure is sound and complete for retrieval, giwen a
concept?), it returns all and only individuals i4 that are instances ap.

The above is easily proved using the fact that we assumeouwiitbss of generality, that
for each individual there is only one axiom associated to it.

6.4.1 An Optimised Instance Store

In practice, several refinements to the above proceduresa@ to improve the perfor-
mance of the Instance Store. In the first place, as it is palgntostly, we should try
to minimise the DL reasoning required in order to computdisations (when instance
axioms are added to the ABox) and to check if individualg,iare instances of the query
concept (when answering a query).
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One way to (possibly) reduce the need for DL reasoning is tadarepeating com-
putations for “equivalent” individuals, e.g., individgat,, x5 wherex; : C; andx;y : Cy
are ABox axioms, and’; is equivalent taC;. Since checking for semantic equivalence
between two concepts would require DL reasoning (which veetiating to avoid), the
optimised Instance Store only checks for syntactic equasiing a database lookup. (The
chances of detecting equivalence via syntactic checksldmiincreased by transforming
concepts into a syntactic normal form, as is done by optithide reasoners [Hor03], but
this additional refinement has not yet been implementeddnrtetance Store.) Individ-
uals are grouped into equivalence sets, where each individuhe set is asserted to be
an instance of a syntactically identical concept, and only eepresentative of the set is
added to the Instance Store ABox as an instance of the relewaoépt. When answering
gueries, each individual in the answer is replaced by itsvatpnce set.

Similarly, we can avoid repeated computations of sub andrsopncepts for the same
concept (e.g., when repeating a query) by caching the sesdtuich computations in the
database.

DL reasoning can also be avoided when the query cor@aepinot equivalent to any
atomic concept Y, but whenQ is equivalent to the intersection of the conceptsin r,
i.e., where

= [1 C.
© CelQlr
In this case it is not necessary to compiieas the answer to the query is cleaflyi.e.,
the set of individuals ind that realiseeveryconcept in[ Q| r.

Finally, the number and complexity of database queriesla#soa significant impact
on the performance of the Instance Store. In particulaGtingputation off, can be costly
as@ | may be very large. One way to reduce this complexity is teestot only the most
specific concepts instantiated by each individual, butdcestveryconcept instantiated by
each individual. As most concept hierarchies are relatigkallow, this does not increase
the storage requirement too much, and it greatly simplifiescomputation of;: it is
only necessary to compute the (normally) much smaller sehadt general concepts
subsumed by) and to query the database for individuals that instantiateesmember
of such set. On the other hand, the computatiord,af slightly more complicated as
I; must be subtracted from the set of individuals that instéatévery concept inQ| .
Empirically, however, the savings when computihgeems to far outweigh the extra cost
of computing/s.

6.4.2 Implementation

We have implemented the Instance Store using a componeadl Bashitecture that is
able to exploit existing DL reasoners and databases. Theamnponent is a Java ap-
plication [isw] talking to a DL reasoner via the DIG interea{Bec03b] and to a rela-

tional database via JDBC. We have tested it with FaCT [Hor98] RRdER reasoners
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and MySQL, Hypersonic, and Oracle databases.

initialise(Reasoner reasoner,

Database db, TBox t)
addAssertion(Individual i, Concept C)
retract(Individual i)
retrieve(Concept Q) . Set (Individual )

Figure 6.1: Instance Store basic functionality

The basic functionality of the Instance Store is illustdaby Figure 6.1. The four
basic operations aiaitialise , Which loads a TBox into the DL reasoner, classifies
the TBox and establishes a connection to the dataksdissertion , which adds
an axiomi : D to the Instance Storeetract , which removes any axiom of the form
i : C (for some concept’) from the Instance Store; amdtrieve , which returns the
set of individuals that instantiate a query cona@pfAs the Instance Store ABox can only
contain one axiom for each individual, assertingD when: : C'is already in the ABox
is equivalent to first removingand then asserting: (C' 1 D).

In the current implementation, we make the simplifying asgtion that the TBox
itself does not change. Extending the implementation tbwi&h monotonic extensions
of the TBox would be relatively straightforward, but delgtinformation from the TBox
might require (in the worst case) all realisations to be mgmated.

6.5 Empirical Evaluation

To illustrate the scalability and performance of the Ins&atore we describe the tests
we have performed using the gene ontology and its assodiasémhce data. We also
illustrate how this compares with existing non-speciaid@ox reasoning techniques by
describing the same tests performed usirgBR and FaCT (the latter using the pseudo-
individual approach discussed in Section 6.4).

The gene ontologyQO) itself, an ontology describing terms used in gene products
and developed by the Gene Ontology Consortium [The00],tie lihore than three tax-
onomies of gene terms, with a single role being used to add-gFarelationships. How-
ever, the ontology is large (47,012 atomic concepts) andn$tance data, obtained by
mining the GO database [Go 03] of gene products, consistSs3)762 individual axioms
involving 48,581 distinct complex DL expressions usingthmore roles.

The retrieval performance tests use two sets of queries fildteset was formulated
with the help of domain experts and consists of five realgtieries that might be posed
by a biologist. The second set consists of six artificial qpsatlesigned to test the effect on
guery answering performance of factors such as the numbediefduals in the answer,
whether the query concept is equivalent to an atomic cor(deg, then the answer can
be returned without computing), and the number of candidate individuals finfor

72 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0



D2.5.2 Report on Query Language Design and Standardisation

which DL reasoning is required in order to determine if thesynf part of the answer. The
characteristics of the various queries with respect toetfi@stors is shown in Tables 6.2

and 6.3.

Table 6.2: Query characteristics (realistic queries)

Query| Equivalentto | No. of Instances No. of “candidates”
Atomic Concept|  in Answer in I,

Q1 Yes 2,641 n/a

Q2 No 0 284

Q3 No 3 284

Q4 Yes 7,728 n/a

Q5 Yes 25 n/a

Table 6.3: Query characteristics (artificial queries)

Query| Equivalentto | No. of Instances No. of “candidates”
Atomic Concept,  in Answer in I,
Q6 No 13,449 551
Q7 No 11,820 116
Q8 No 12 603
Q9 No 19 19
Q10 Yes 4,543 n/a
Q11 Yes 1 n/a

ISTcPI®je2004-507482

The tests were performed using two machidk (Linux, 850MHz Intel Pentium
[, 256Mb RAM) andM2 (Windows 2000, 2.5GHz Intel Pentium IV processor, 512Mb
RAM). For the Instance Store we run version 1.2/dn with a MySQL-4.0.12 database
on M1 and connecting to a FaCT-2.34.13 reasoner running remoteM2 For the
tests on RCER we run RACER-1.7.7 and for the pseudo-individual tests we used FaCT-
2.34.13, both oiM2.

6.5.1 Loading and Querying Tests

In these tests, we compared the performance of the Instaonce Bith that of RRCER
using the GO TBox and differently sized and randomly selestdxets of the GO ABox.
The Instance Store was first initialised with the GO TBox (dkd-aCT approximately
1,020 CPU seconds to classify the TBox), then, for each ABox, wasured the time
(in CPU seconds) taken to load the ABox into the Instance Stodetlze time taken to
answer each of the queries.

In the case of RCER, we carried out the same tests in two different ways. In both
cases we first initialised &ZER with the GO TBox (it took RRCER approximately 1,620
73
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CPU seconds to classify the TBox), then loaded the ABox. In teeféirm of the test, we
then used theealize-aboxXunction to force RCER to compute a complete realisation of
the ABox before answering any queries; this is roughly edeivao the Instance Store,
which effectively computes a complete realisation whiladimg the ABox. We timed
how long RACER took to to realise the ABox and, if the realisation was sudodigs
completed, how long it took to answer each of the queries.hénsecond form of the
test, we simply timed how long it took &L ER to answer each of the queries without first
forcing it to realise the ABox.

Table 6.4: The Instance Store andd@¥R load and realise times (CPU seconds)

Number of|  Distinct Load & Realise (Ss)
Individuals | Descriptions|| The Instance Stor¢ RACER
200 155 189 180
500 330 405| 3,420
1,000 591 804 | 22,320
2,000 1,017 1,395 fault
5,000 2,024 2,906 fault
10,000 3,299 5,988 fault
20,000 5,364 11,057 fault
50,000 9,760 21,579 fault
100,000 15,147 33,456| fault
200,000 23,387 56,613| fault
400,000 35,800 96,503| fault
653,762 48,581 140,623 fault

The times taken by the Instance Store and 2 BR to load and realise the various
ABoxes are shown in Table 6.4. The time take by the Instance $&doad the ABoxes
increases more slowly than their size: for ABox size 200, tistadnce Store takes about
1s to add each individual axiom; by the time the ABox size hashied 400,000 this has
fallen to approximately 0.25s per axiom. In view of the eaiewt individuals optimi-
sation employed by the Instance Store, however, it may be madevant to consider the
time taken per distinct description: this increases fromuafis per description for the size
200 ABox (which contains 155 distinct descriptions) to apprately 3s per description
for the size 653,762 ABox (which contains 48,581 distincicdesions).

The time taken by RCER to realise the smallest ABox is roughly the same as that
taken by the Instance Store. As the ABox size grows, howeawetjine taken by RCER
increases rapidly, and at ABox size 1,000 it is already takipgroximately 22s per ax-
iom. For larger ABoxes, RCER broke down due to a resource allocation error in the
underlying Lisp system.

While the times taken by the Instance Store to load (and, @cefto realise) the larger
ABoxes are quite significant, it is able to deal with the 653,a&iom ABox, whereas
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RACER failed to realise a 2,000 axiom ABox. Moreover, the loadissabperation only
needs to be performed once—an added advantage of the laStore is that the database
provides for persistence of the realised ABox. Dependindgiemature of the application,
it may also be more normal for instance data to be added to8tarice Store over time
rather than all at once as in our experiment.

Tables 6.5 and 6.6 give the results for the Instance Stor@wahswering each of the
five realistic queries and six artificial queries describedables 6.2 and 6.3. In addition
to the time taken (in CPU seconds) to answer the queries, tidewof candidate indi-
viduals in/; is also given as this is one of the major factors in deterngitie “hardness”
of the query: for each individual id,, the Instance Store must use the DL reasoner to
determine if the individual instantiates the query conc&pte time taken to answer these
gueries is also plotted against the size of the ABox in Figuge Bote the logarithmic
scales on both axes.

Table 6.5: The Instance Store realistic query times (CPUmsix)cand cardinality of;,
Number of Q1 Q2 Q3 Q4 Q5

200 86| nfa|] 1.4 1] 1.9 2| 42| nfa|1.0]| n/a

500 8.6| nfa| 1.9 2| 20 2| 42| nfla| 11| n/a

1,000| 8.8| nla| 2.1 3| 21 3| 45| n/a| 11| n/a

3 3

5 5

2,000(| 8.8| nfa| 3.7 2.1 47| nfa| 1.1| n/a
5,000|| 8.8| n/a| 4.0 2.2 48| nla| 1.2 | n/a
10,000 9.2 | n/a| 4.3 6| 3.1 6| 49| nfa] 1.2| n/a
20,000|| 9.7| nfa| 4.8| 13| 45| 13| 55| n/fa| 11| n/a
50,000{ 10.1| n/fa| 7.1| 20| 6.9| 20| 6.6| n/a| 1.2| n/a
100,000(| 11.4| n/fa| 9.6| 34| 95| 34| 8.2| n/a] 1.2| n/a
200,000{ 11.5| n/a| 20.2| 85| 19.2| 85| 10.9| n/a| 1.2 | n/a
400,000| 15.0| n/a| 33.8| 151| 33.9| 151 | 17.4| n/la| 1.2 | n/la
653,762| 23.0| n/a| 55.4| 241 | 55.1| 241| 35.3| n/a| 1.3 | n/a

As can be seen, the time taken to answer queries becomedagygaavhen the num-
ber of individuals in/; is large. In these cases, the time taken to check if theseduils
instantiate the query concept (roughly 0.2s per indivigdaminates other factors. The
number of “distinct” individuals in the answer also has anffigant impact on query an-
swering performance: when there are many such individttesjatabase query required
in order to compute the complete answer set (i.e., retrgethe union of the equivalence
sets of these individuals) can be quite time consuming. dércdse of Q9 with the largest
ABox, for example, the relevant database query takes 19®{a@ total of 25.7s).

When the query concept is determined to be semantically algut/to an atomic
concept in the TBox, as is the case with Q1, Q4, Q5, Q10 and @&#h,no further DL
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Table 6.6: The Instance Store artificial query times (CPU séspand cardinality of,

Number of| Q6 Q7 08 Q9 010 | Oil
200 2.4 2| 21 3 1.6 1] 20 1/1.7| n/a] 1.8] n/a
500 2.6 4| 2.1 3 2.0 3| 21 1/1.7| nfa] 1.8] n/a

1,000 3.0 8| 23 3 2.0 3| 21 1122 n/aj 19| nla
2,000 3.4 9| 24 4 2.2 4| 2.3 1/18| n/a|1.7| nla
5,000 45| 15| 3.0 7 2.9 9| 2.5 1/19| n/aj1.9]| n/a
10,000 7.1 32| 42| 13 6.0 21| 25 1/1.8| n/a] 1.8| n/a
20,000 10.9| 58| 54| 19| 115| 38| 2.9 1121 nfa]l1l7]| nla
50,000 17.4|101| 7.3| 31| 23.8| 81| 3.3 1119 n/aj 18| n/a
100,000 27.3|164| 8.9| 45| 31.9|147| 5.2 211.7| n/a] 1.8| n/a
200,000| 44.4|273|13.1| 64| 40.1|,268| 7.9 7119 n/a] 1.8| n/a
400,000| 70.9|416| 16.4| 85| 68.1/430|15.8| 11/19| n/a|1.9| n/a
653,762| 111.8| 551 | 22.1| 116 | 104.0| 603 | 25.7| 19| 19| n/a| 1.9| n/a

< @
—~ a7
-4 Q8
-+ a2
—— Q1D
2| v o g |

(CPU time)

nds

Figure 6.2: The Instance Store realistic (above) and adifibelow) query times -v-
ABoX size

reasoning is required. In these cases, the time taken toearieer query changes much
more slowly with ABox size, and is mainly determined by thevesissize. With Q4, for
example, the time taken to answer the query rises to over Bbshve largest ABox, when
the answer contains 7,728 individuals.

Tables 6.7 and 6.8 give the results fon€&ER when answering the same sets of five
realistic and six artificial queries used to test the Inste®itore, both in the case where the
ABox has been realised (R) and where it has not (N). Timings aikeapproximate, as
precise measurements were not possible when usingabe®Rserver under Windows.
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Table 6.7: RACER realistic query times (CPU seconds), realised (R) and not (N)

Number of Q1 Q2 Q3 Q4 Q5
Individuals| R | N R| N R| N R| N R| N
200 | ~0 ~0 | =0 ~0 | =0 ~0 | =0 ~0 | =0 ~~

500| =0 ~0 | =0 ~0 | =0 ~0 | =0 ~0| =0 ~
1,000 ~0 ~0 | =0 ~0 | ~0 ~0 | =0 ~0 | =0 ~
2,000 n/a ~60 | n/a| =~240| n/a| ~60| n/a| ~150| n/a| ~210
5,000|| nfa| =240| nla| =~420| n/a| =240| n/a| ~360| n/a| ~300
10,000(| n/a| ~1,080| n/a| ~1,080| n/a| ~660| n/a| ~720| n/a| ~930
20,000| n/a fault | n/a fault | nfa| fault | nfa| fault | nfa| fault

Table 6.8: RCER artificial query times (CPU seconds), realised (R) and not (N)

Number of

Q6 Q7 Q8 Q9 Q10 Q11

Individuals | R | N R N R N R N R[] N |[R]N
200 || ~0 ~ ~0 ~ ~0 ~ ~ ~ ~ ~ = ~

500 | =0 ~0 | ~0 ~0 | =0 ~0 | =0 ~0 | =0 ~0 | ~0 ~0
1,000 || =0 ~ ~0 ~ ~0 ~ ~ ~ ~ ~ ~ ~0
2,000| nfa| =~120| n/a| =120| n/a ~60 | nfa| =60 | n/a| =210 | n/a| ~180
5,000|| nfa| =~420| nla| =~270| nfa| =~420| nla| ~480 | n/a| ~330 | n/a | ~390
10,000 || n/a | ~1500 | n/a | ~1120| n/a| ~1020| n/fa| fault | n/a| ~810 | n/a | ~780
20,000 n/a fault | n/a fault | n/a fault | n/a| fault | nfa| fault | n/fa| fault

In the cases where the ABox had been realised, queries wene@ts almost in-
stantly, but results are only available for the relativelyadl ABoxes that RCER was
able to realise (up to 1,000 individuals). In the cases whaeABox was not realised,
answers were again returned almost instantly for smallerx®Bpbut when the ABox
size exceeded 1,000 individuals the answer times incredrsediatically, and for ABoxes
larger than 10,000 individuals (larger than 5,000 in theeaa{sQ9) RACER again broke
down due to a resource allocation error in the underlying kigstem.

It should be mentioned that the results for the InstanceeStatude significant com-
munication overheads (both with the database and DL regsavi@ch was not the case
for RACER since queries were posed directly via thed®RrR command line interface.

6.5.2 Pseudo-individual Tests

As discussed in Section 6.4, one way to deal with role-freeX&Bas to treat individuals
as atomic concepts in the TBox (pseudo-individuals). To ttestfeasibility of this ap-
proach, and to compare it with the Instance Store, we agaith e GO TBox and ABoX,
KWEB/2004/D2.5.2/v1.0
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and the realistic and artificial queries described abovéhdmpseudo-individual approach,
ABox axioms of the formz : C are treated as TBox axioms of the foth C C, and
retrieving the instances of a query concépimeans retrieving the pseudo-individuals
that are subsumed by. In order to make the comparison as fair as possible, we did
not use all of the individuals in the GO ABox, but only 48,58#liinduals correspond-
ing to the distinct concept expressions used to describ@dugls in the GO ABox—the
equivalence set optimisation described in Section 6.4nlotwiously be used with the
pseudo-individual approach as well. The FaCT system wasindbdse tests asACER
broke down when trying to classify the GO TBox augmented withgseudo-individuals,
again due to a resource allocation error in the underlyirsg lsystem.

In order to get some idea as to how the pseudo-individualcgmbr would scale with
increasing ABox (and hence TBox) size, we tried computing threcepts subsumed by
each query with the GO TBox alone (which contains 47,012 quincames) and with
the TBox augmented with the pseudo-individuals derived ftben GO ABox (a total
of 95,593 concept names). The answers to these DL queriegl@xaormal TBox con-
cepts that are subsumed by the query concepts as well aslevgigpseudo-individuals,
but the answer could easily be filtered so as to leave only skeego-individuals. (An
alternative approach would be to add a concBptto the TBox, representing pseudo-
individuals, and conjoinP/ to both pseudo-individual axioms and subsumption queries
used to retrieve pseudo-individuals.) The results of thests are given in Table 6.9. Itis
important to note that they do not include the time requiceeXpand answers to include
sets of equivalent individuals—as discussed above, timdeaquite time consuming for
some queries (e.g., 19.5s in the case of Q9 with the largesk)ABo

Table 6.9: Pseudo-individual query time (CPU seconds) asd/ansize

Query GO TBox GO TBox + ABox
Time | Answer Size| Time | Answer Size
Q1 8.1 220| 233.3 2,861
Q2 1.3 1] 1.2 1
Q3 0.2 1 1.4 4
Q4 26.0 881 | 631.8 8,609
Q5 0.5 2 5.2 27
Q6 4.3 86| 176.6 2,450
Q7 1.4 1| 10.0 147
Q8 1.3 1| 15 7
Q9 1.4 1 3.5 22
Q10 4.2 109| 114.4 1,407
Q11 0.5 1 2.0 2

As can be seen from the results, the time taken to computenveeais to the queries
is heavily dependent on the size of the answers, and, in geaaQ4 with the pseudo-
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individual augmented TBox, the time was over 600s. This isonti@ast to the Instance
Store, where the size of answer had comparatively littleatfbn the time taken to an-
swer queries. For queries with relatively small answersyawer, the pseudo-individual
approach was highly effective, even for queries that wene tonsuming to answer using
the Instance Store.

6.6 Query Answering with an Extended Instance Store

In this section we introduce an algorithm for instance estal in anSHF knowledge
base. The algorithm can be divided into two steps. The fiext stansforms a gen-
eral ABox into multiple new ABoxes, the second step is to usedheewly constructed
ABoxes answer instance retrieval properly.

6.6.1 Preliminaries

As the Instance Store does not respect the Unique Name AssungpNA), two sepa-
rate individual names could be inferred to be identical.hia following, we present the
definitions which are used to detect syntactically whetiverindividual names represent
the very same element in a given ABOX.

Definition 7 (Source4(o, R), groupRole (0, RG)) Givenan ABox4, an individual name
o, and a role nameR in A, the relationSource 4(o, R) holds iff there is a role name
R’ < R such that eithep: 3R'.C' € A or, for some individual namé, (o0, 0'): R’ € A.

Given a set of role nameBG={R; | 1 < i < n}, and an individual name in a KB
(T, .A), the relationgroupRole 4(o, RG) holds iff, for any two role nameB, and R,,, in
RG, the following two conditions are satisfied:

e Source(o, Ry) and Source4(o, R,,); and

e there existaset of role namés,,--- , L,,_;} and a set of functional rolegr, - - - , F,}
in 7, such thatkR, < Fi\,L; < F\,L1 = Fy,Ly =< Fy,---,L; = F;,L; =
Fi1,-++ Ly 2 F,, R, 2 F,andSourcey(o, L;) fori =1,--- ,n— 1.

Remarks : ThegroupRole 4(0, RG) implies all role names iRG are functional ones. It
also takes into account the possible interaction betwesrotk hierarchy+ and the func-
tional restrictionsF. Basically, a set of role namd®G are groupRole 4(0, RG) related

if they are either functional or have some functional supés,rand there are assertions in
the ABox as shown in Definition 7 that force evaRy-successow; of the individual name

o to be interpreted as the same element. This can be betterstmold by considering the
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following role hierarchy situation in which the relatignoup Role 4(o0,{ Ry, R, }) holds:

For each of the role namé®, L, - -- , L,,_1, R,,, for all modelsZ of (T, A), o* has
SUCCESSOrsy, 01, - - - ,0,_1,0m € AZ. By Definition 7, every role name has a functional
super role, the functional restriction therefore forcesrg¥wo successors to be the same
element.o, ando;, o, andos, - - -, 0,1 ando,,, which in turn forces all the successors to
be the same element. In particulargifoupRole 4(0,{ R¢, R, }), the Ry,-successoo, of
o? is then forced to be the very same element adifesuccessos,, of o”.

Definition 8 (sameAs 4(01,02)) Given an ABoxA4, two individual names; and o, the
relation

sameAs4(01,02) In A holds if there exists some individual namewith (o,0;): R,
(0,09): S, andgroupRole 4(0,T) with R, S € T. .

Definition 9 (label) Given an ABoxA, thelabel £(x) of an individual namer in A is
defined as the conjunction of all concepts in the conceptrasse about the individual
namez:

{Clz:CecA}

M C iftheset{C |z :C € A} is not empty
L(r) = .
T otherwise

CLAIM: [1] Given a TBox7, an ABox.4 and an individual name in A, for every
modelZ of (T, A), o> € L(0)* holds. Proof: Leto be an individual name il with a
non-empty se{Cy,--- ,C,,} = {C | o: C € A}, and letZ be a model of 7T, A). By
Definition 9,£(0) = C, M --- 1 C,,. SinceZ is a model of4, of € C forall 1 <i < n.
Henceo® € CZ N ---N CT and, by the semantics? € (C; M ---MC,)% = L(0)*.

If {C|o:C € A}is empty, by Definition 9£(0) = T. Henceo? € AT = TZ =
L(0)2. .

Given two individual names; ando, in the ABox A, the relationreachable(o,, 01)
holds iff
(01,02): Rin A. Letreachable™ be the transitive closure etachable, i.e.,reachable™ (0q, 01)
means a directed “role assertion chain” fropto o, can be found in the ABox.

Definition 10 ((a)cyclic ABox) An ABoxA is cyclic iff there exists some individual name
o in A such thatreachable™ (0, 0). An ABox that is not cyclic is calleacyclic .

80 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0



D2.5.2 Report on Query Language Design and Standardisation ISTcPI®Je2004-507482

6.6.2 Precompleting anSH.F ABox

The step of precompleting a$iHF ABox is based upon a DL technique callpecom-
pletion[Hol96, Tes97]. It extends the original ABox using a set oftagtic rules. When
no further rules can be applied, all information implicittime role assertions has been
made explicit through adding more concept assertions amkihgnaqualities between in-
dividuals explicit. Note that, for the DISHF, because of the non-determinism of its
precompletion rules, many different precompletions caddyesed from a single ABox.

In the following we present a set of nondeterministic syttacles which extend the
original ABox. It will be shown that an interpretatidnis a model of an ABox iff it is
also a model of a precompletion df derived using these rules.

To simplify the description of the algorithm, we assume #ibtoncepts in the labels
of individual names are inegation normal fornfNNF), where negation can appear only
in front of atomic concepts. Arbitrarg§’HF concepts can be transformed into equivalent
ones in negation normal form using De Morgan’s laws and rudelsiding ——C' — C,
—-3dR.C — VR.-C and—-VR.C — dR.—-C [Hor97]. Moreover, we assume that all con-
cept axioms in the TBox are in the form = C whereC' is an arbitrary concept ex-
pression. For DLs with negation, it is easy to show that amcept axioms of the form
Cy C Oy is equivalent tol C (=C; U Cy) [Tes97].

Definition 11 (Rep4) Given an ABoxA, Rep4 IS a set containing pairs of individual
names fromA. .

Definition 12 (precompletion rules) Given a knowledge basg@ ,.4) and a setRep 4,
theprecompletion rulefor SHF are defined as follows:

1. —c rule:
ifoisin A, TC C e 7,ando: C & A, thenadd: Cto A.

2. —nrule:
if o: C111Cy € A, and eithero: C; &€ Aoro: Cy € A, thenadd: C; ando: (s
to A.

3. — rule:
ifo: CiUCy e A 0. Cr € A, ando: Cy € A, then chooséd=C} or D=C,, and
addo: D to A.

4, —- rule:
ifo: AR.C € A, (0,0') : S € A, groupRole4(0,{R,S,---}),ando’: C ¢ A, then
addo’: C'to A.
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5. — rule:

if o: VR.C € A, (0,0'): S € A, there exists a role nam&’ < R such that
groupRole 4(0,{R',S,---}),ando’: C' ¢ A, thenadd’: C'to A.

6. —vy rule:

if o: VR.C € A, (0,0): Se A, S <X R,ando’: C ¢ A, thenadd’': C to A.

7. —y+ rule:

if 0: VI.C € A, (0,0'): S € A, there is a transitive role namg& such thatS <
R<T,ando: VR.C ¢ A, thenadd’: VR.C to A.

8. —ameas rule:

if sameAs4(0,0'), then add(o, 0’) to Rep 4 and replace all occurrences ofin A
with o'.

Remarks : Since the—y: rule only works on functional roles, the, rule can not be
merged with—: rule. Since a transitive role can not be a sub-role of a fonetirole,
there is no need for a functional role version fex,+ rule. The—,.,.4s rule does not
make—: rule redundant—considering the following counterexampledR’, o: VR.C,
(0,0"): S'andgroupRoleo(0,{R',S}).

Definition 13 (7 -precompleted ABox) Given a knowledge bas& , A) and a setRep 4,
the ABoxA is called 7 -precompletedff none of the precompletion rules can be applied.

Starting with the original ABox4 and the empty sekep 4, the precompletion rules
will non-deterministically generatene7 -precompleted ABox. If a searching strategy is
applied upon these rules, however, multifigorecompleted ABoxes can then be found.
Note that there may exist exponentially many
T -precompleted ABoxes!’, A”,--- generated due to the non-deterministig, rules.
Each of the7 -precompleted ABoxes, however, can be generated using golghspace
in the size of originalA.

Definition 14 (leaf node) Given a7 -precompleted acyclic ABaA, we call an individ-
ual nameo aleaf nodeif, for any individual name: and role nameR, (o, z): R ¢ A.
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Definition 15 (extended label) Given an acyclic ABox, theextended label’(x) of an
individual namer in A is inductively defined as follows:

L(x) if x is a leaf node
Lz)n T1 . JR.L'(z")  otherwise

Remarks : The acyclicity condition in the above definition is to guaesthe termination—
due to the presence of cycles among role assertions, thedexiéabel generation process
will not terminate.

Definition 16 (subconcept) The subconceptub(D) of an SHF-conceptD is the clo-
sure of the subexpression bfand is inductively defined as follows:

1. if D is of the form—=C, VR.C or 3R.C, thensub(D) = {D} U sub(C);
2. if D is of the formC, M Cy or Cy U Csy, thensub(D) = {D} U sub(Cy) U sub(Cy);
3. otherwisesub(D) = {D}.

Definition 17 (consistent) An ABoxA is consistentith respect to a TBoY, if there is
an interpretation that is a model @7, A). .

Definition 18 (7 -derivable) Given a TBoxZ and an ABoxA4, A’ is called7 -derivable
from (7, A) if A" is T-precompleted, consistent, and obtained frdm.4) and an empty
setRep 4 by application of the precompletion rules. .

Lemma 19 Given a consisteri -precompleted ABox, an individual name in A, and
a role nameR in A, the relationSource 4(o, R) holds iff, for every model of (7, A),
there exists some elemenin AZ such thato?,y) € RZ.

Proof: “=-" Let o be an individual name, It be a role name in @-precompleted ABox
A with

Source4(o0, R), and letZ be a model of 7, .A). By Definition 7, there exists a role name
R'" < R, such that eithep: 3R'.C' or for some individual name’, (0,0'): R’ € A.
SinceZ is a model of(T, A), this implieso’ € (IR'.T)* or (o*,0%) € R*. Since
(AR.T)E C (3R.T)? andR?* C RZ, this implies thab” € (IR.T)Z or (o, 07) € RL.
Sinceo? € (3R.T)? implies thato? € {a € AT | Jb.(a,b) € RT}, we can see that, in
either case, there exists some elemestich thato?, y) € RZ.

“«<" We prove this direction by proving its counterpositive,.j.“Given a consistent
T-precompleted ABox4, an individual name in A4, and a role namé&? in A, if the
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relation

Source 4(o, R) does not hold, then there exists a modedf (7, .4) such that, for any
elementy € AZ, (of,y) ¢ RL” Let o be an individual name, le® be a role name in a
7 -precompleted ABox4, and letZ be a model of 7, . A). We now show a witness model
7' of (T, A) can be constructed based ®nWe remove al(o?, y) tuples fromRk? and
R7in Awith R' < R (y is an arbitrary element inn?). Since the relatioource 4 (o, R)
does not hold, we know that either 3R’.C' or for some individual name/, (o, o) : R’
with R’ < R can not be found ipd. Therefore, the resulting modél is still a model of
(T, A). Since all(o?,y) tuples are removed during the constructiorzgfwe have, for
any elemeny € A%, (o', y) ¢ R”.

Lemma 20 Given a consistent ABaX, an individual name in A4, and a role name set
T.

1. if the relationgroupRole 4(0,T") holds, then every role nameIhis functional, and
for every modef of (7, A), R;, R; € T, (o*,z) € R}, (o*,y) € R}, thenz = y.

2. if Ais T-precompleted, every role nanig in I" is functional, and for every model
Zof (T, A), foranyR;, R; €T, (o*,z) € R}, (o*,y) € R}, such thatr = y, then
the relationgroupRole 4(o,T") holds.

Proof: We shall prove the first claim first. Letbe an individual name, l1&t={R;,--- , R,}
be a role name set in a consistent ABdxwith groupRole 4(0,T"), and letZ be a model
of (7,.A). By Definition 7, all the role nameg; in I" are thus functional because they
are either functional or have some functional super réle-(- - , F,). Hence, for each of
these role nameB;, o’ has at most one successor, say

In the following, we are going to show that al}, for 1 < ¢ < n, are equal. Let
us arbitrarily choose two role namég and R,,, from I'. By Definition 7, there exist a
set of role name$L,,---,L,_1} and a set of functional rolegFy, - -- , F!'}, such that
Ry 2 F, Ly R, Ly 2 Fy, Ly 2By, Ly 2 F Ly 2 F - Ly 2 F Ry 2
F!. Moreover, for eacli;, the relationSource 4(o, L;) holds by definition, which implies
that, for eachl;, there exists an elemept in AZ such that(o?,y;) € L (Lemma 19).
Since relationsSource 4(o, Ry) and Source 4(o, R,,,) also hold by definition, there exist
two element andm in A% such thato?,¢) € RF and(o*,m) € RZ,.

Since(o?, () € RY, (0%, ) € L¥, RZ C F/TandL? C /%, we know{ (0%, ¢), (o*,y1)} C
F%. Due to the functionality of,Z, we can conclude thdt= 7. Similarly, we can apply
the same deduction to role name pdifsandL,, L, andLs, - - -, L, 1 andR,,, such that
Y1 = Y2, Y2 = Y3, -+, Yn—1 = m Which obviously induceg = m.

Analogously, the same arguments can be applied to any pani@hamesRk;, R;,
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in T'. Therefore, for every moddl of (7, A), there exists only one elementn A%, such
that, for each role namg; in T, (o*, z) € R?.

We prove the second claim by proving its counterpositive, i‘Given a consistent
T-precompleted ABox4, an individual name in .4, and a functional role name get if
the relationgroupRole 4(0,I") does not hold, then there exists a modedf (7, .A), and
there exists two role name®;, i; € I with (o, z) € R} and(o”,y) € R, such that

x % y."
Let A be a consisterI -precompleted ABox, led be an individual name i, let T’

be a functional role name set, and Tebe a model of 7, A). We now show a witness
modelZ’ of (7, .A) can be constructed based®n

By precondition, there exists two role namBs R; € T with (o,z) € R} and
(o',y) € R;. If the elementz # y, then the modef is the witness model and we
are done. If the element = y, we first remove allo?, z) tuples from R and R”
in A with R < R,. For each tuple we removed, we aflef, 2) to R7 and R with
2z € AT andz # y, thus we constructed a new modglof (7, A). Since the relation
groupRole 4(0,I") does not hold, by Definition 7, we know that there exist attleas
pair of role namesk;, R; € I' do not share their successorscdfas the same element.
Without loss of generality we assunig, ; are such a pair of role names, therefore the
functionalities ofR;, R; are not violated and the modgl is the witness model. .

Lemma 21 Given a TBoxZ, an acyclic ABox4, and an individual name in A, for
every model of (T, A), o* € £'(0)* holds.

Proof: Leto be an individual name in an acyclic ABo%, and letZ be a model of 7, A).
We prove this lemma by structural induction on the extendéelldefinition.

e BASIS: The individual name is aleaf node By Definition 15, £(0) = £L(0),
thereforeL’(0)* = L(0)%. Sinceo’ € L(0)* holds by Claim 1, this implies that
ot € L'(0)*.

e INDUCTION: Let £'(0) be an extended label built by the inductive definition as
follows:

E/ =L 1 M ElRlE/ ‘
(0) (O) (Oﬂ/‘i): R,eA (:E )

By the induction hypothesis, for every individual namewith (o, z;): R; € A, we
havez? € £'(z;)*. To show thabv® € £'(0)*, we have to show that’ € L£(0)*
and, for eacho,z;): R; € A, o € (3R;.L'(z;))*. The first point follows from
Claim 1. For the second claim, lé&t, z;) : R; € A. Then we have

of € {a € AT | (a,2]) € RT}
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Sincex? € £'(x;)* holds by induction assumption, it implies that

of €{ae AT | (a,27) € R} C{ac AT |3b.(a,b) € READE L' (2;)'} = BR:.L (2:))*

Therefore

ofeL)fn (] (GR.Li(x:)
(0,zi): Ri€A

and thus* € £/(0)?.

Lemma 22 Given a consistent ABa®, and two individual names;, o, in A.

1. if the relationsame As.A(oy, 02) holds, then for every modélof (7, A), of = o3.

2. if Aiis T-precompleted, for every modglof (7, A), ando? = of, then(oy,0,) is
in Repy.

Proof: We shall prove the first claim first. Let, o, be individual names in a consistent
ABox A with sameAs.4(01,02), and letZ be a model of 7, .A). By Definition 8, there
exists some individual namewith (0,01): R, (0,09): S, and groupRole 4(o,T") with
R,S € T. Hence, by Lemma 207 = oZ.

We prove the second claim by proving its counterpositive, I'‘Given a consistent
7T -precompleted ABoxA, two individual names, 0, in A, if (o1, 0,) IS not in Rep 4,
then there exists a modelof (7, A), such thav? # ol.

Let o1, 0, be individual names in a consistehtprecompleted ABox4, and letZ be
a model of(7', A). We now show a witness modél of (7', .A) can be constructed based
onZ. We assume that’ = of, otherwiseZ is the witness model and we are done. We
take an element € AZ with = # oZ, and make? = z. Since(oy, o) is not in Rep 4, by
Definition 12, we know that the relatiommme As.A(o01, 02) does not hold. By Definition 8,
we know that there does not exist some individual naméh (o, 0,): R, (0,02): S, and
groupRole 4(0, ') with R, S € I'. Since the functionalities of functional roles are not
violated, the resulting modé/ is still a model of(7", A) and it is the witness model.

6.6.3 Soundness and Completeness for Precompletion

This section presents the proof for soundness and compkteri the precompletion rules
we proposed in last section.
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Proposition 2 The process of using the set of precompletion rules to extendriginal
ABox always terminates, and ea€hderivable ABox has a size which is polynomial with
respect to the size of the original knowledge base.

Proof: (Sketched). Termination of this process is an immediatseguence of the fol-
lowing observations. Let'nd(.A)| be the number of individual names in the ABdxand
|C'(7T)| be the number of concept axioms in the TBbxThe applicability of the— rule

is bounded by the number ¢fnd(A)|*|C(T)|. The —»r, —, —31, =y @and—y rules
always introduce concepts into labels which aubdconceps of the original ones. Be-
cause the number of subconcepts is polynomial w.r.t. theecdia given knowledge base,
only finitely many concept assertions can be added. Thecgtylity of the— .4, rule

is bounded by the number sameAselated individual name pairs which is always less
than|Ind(A)| * (|Ind(A)| — 1)/2. Therefore the process of applying the precompletion
rules will terminate after finitely many steps.

To obtain an upper bound on the size of e&Clderivable ABox, we can use the
results from the termination analysis. The number of d#fifticoncept assertions that can
be generated through -, —n, —, —31, —v1, —v and— .45 rules cannot exceed the
number of| Ind(.A)|*|C(7T)|, and this number is polynomial w.r.t. the size of the origina
KB. The number of different concept assertions that can bemgéed using—y+ rule
is bound by the number of transitive role names and role &sserin the original KB.
Therefore the size of each-derivable ABox is polynomial with respect to the size of the
original KB. .

Proposition 3 All the precompletion rules preserve consistency of thexABe., given a
TBox7, an ABoxA, and a modeT of (7, A), if a precompletion rule is applicable, then
there exists an ABox’ obtained after this rule application, such thatis also a model
of (T, A').

Proof: Suppose thal is a model of knowledge basé , A):

1. LetobeinA,letT C C € T and leto: C ¢ A. Then applying the-c rule to A
yields A'=A U {o: C}.

SinceT C C € 7, we haveA? C (7, and theno’ € C%. Thereforeo: C is
satisfied byZ, and thusZ is also a model of7", A’).

2. Leto: C1MCy, € Aand leteithen: C; € Aoro: Cy ¢ A. Then applying the—n
rule to A yields A'=A U {o: C1,0: Cs}.

Sinceo: C, 110, € A, we haven” € (C) 11 Cy). By the semantic&C; M Cy)? =
CInCE, henceo? € CF N CE. Thereforen: C; ando: C, are satisfied byZ, and
thusZ is also a model of 7, A').
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3. Leto: C1UCy € Aandleto: C; € Aando: Cy, ¢ A. Then applying the-, rule

to AvyieldsA'=AU {o: C,} or A'=AU {o: Cs}.

Sinceo: C; U C, € A, we haven” € (C) U Cy)%. By the semantic&’; L Cy)* =

CT Ut henceo? € CT UCE. If o € CF holds, we add: C to A; otherwise if
o? € CF holds, we add: C, to A. Hence we can apply the:, rule such that is
a model of( 7, A’) for A’ the resulting ABox.

. Leto: JR.C € A, let(0,0') : S € A, let groupRoley(o,{R,S,---}), and let

o': C ¢ A. Then applying the—x: rule to A yields A'=A4A U {o': C'}.

Sinceo: 3R.C' € A, there exists an elementc C? such that(o?, ) € RZ. Since
(0,0'): S € A, we have(o?,0%) € ST. SincegroupRolea(o,{R,S,---}), we
haveo? = z by Lemma 20. Then we can see thdtc C%. Thereforeo': C is
satisfied byZ, and thusZ is also a model of7 ", A’).

. Leto: VR.C € A, let(o,0'): S € A, let groupRole(o,{R,S,---}) for some

role nameR’ < R, and leto’: C ¢ A. Then applying the—y: rule to A yields
A'=AU{o: C}.

Sinceo: VR.C' € A, every element with (o?, z) € R* must be inCZ. Since
groupRole4(0,{R',S,---}), there exists an elemeptin AZ such that(o?,y) €
R (Definition 7 and Lemma 19). Sind&? C RZ, we havego?,y) € RZ andy €
C?. Sincelo,d'): S € A, we havdo?, 07F) € S%. SincegroupRole4(o,{R', S, - }),
we haveo” = y by Lemma 20. Then we can see thidtc CZ. Thereforeo': C is
satisfied byZ, and thusZ is also a model of7 ", A’).

. Leto: VR.C € A, let(o,0'): S € A, letS < R e 7T,andletd’: C ¢ A. Then

applying the—y rule to A yields A'=A U {o": C}.

Sinceo: VR.C' € A, every element with (of,2) € R? must be inCZ. Since
(0,0): S € A, we have(o?, 0?) € ST. SinceS? C RT € T, we have(o?,07) €
R ando? € CZ. Thereforeo': C' is satisfied byZ, and thusZ is also a model of
(T, A",

. Leto: VI.C' € A, let (0,0'): S € A with a transitive role name? such that

S<R=TeT,andletd: VR.C ¢ A. Then applying the-y- rule to A yields
A'=AU{d': VR.C}.

Sinceo: VT.C' € A, every element with (o, z) € TZ must be inC%. Since
(0,0): S € A, we have(o?,0?) € ST. SinceS <= R < T € 7, we have
ST C RT C T7 which meango?,0?) € RZ. If there exists an elemeptin A?
such that(o?,y) € RZ%, then(o®,y) € R* due to the transitivity of?*. Since
R = T, the elemeny must be inC%. Thereforen” € (VR.C)* and theno': VR.C
is satisfied byZ, and thusZ is also a model of 7, A’).

. LetsameAs4(o,0") ando be in.A. Then applying the— .5 rule to.A yields A’

which is obtained through replacing all occurrences if A with o'.
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Sinceo? = o7 by Lemma 22, all newly generated concept assertions and sle a
sertions ob’ through replacements are satisfiedbyand thusZ is also a model of
(T, A.

Therefore, for every moddl of (7, A), if a precompletion rule is applicable, then there
exists an ABoxA’ obtained after the rule application, such tfats still a model of
(T, A). .

Proposition 4 Given a TBox, an ABoxA4 and all ABoxesA“, A%, - - - | AP¢ T -derivable
from (7, A).

1. If Z is amodel of 7, A), thenZ is a model of 7', A¥) for some;;

2. If Z is a model of 7, A¥) for somei, then there exists an extensidhof Z that is
amodel of(7, A).

Proof: Let7 be a TBox, letd be an ABox, letd’” be an ABox7 -derivable from(7', A),
and letZ be a model of 7', A). The first claim (soundness) can be proved by induction
on the process of applying precompletion rules:

e BASIS: For the basis, letl; be a consistent ABox extended from the original ABox
A after one step application using some precompletion ruleceS is a model of
(T, .A) by assumption, we can apply the rule in a way such Thist still a model
of some(7, A,) by Proposition 3;

e INDUCTION: Now assume > 1, let. 4, ,; be a consistent ABox extended from a
consistent ABoxA4,, after one step application using some precompletion rule. By
induction,Z is a model of(7", A,). By Proposition 3, we can apply the rule in a
way such thaf is still a model of somé7, A, ).

By Proposition 2, the process of using the set of precompletites to extend the original
ABox always terminate. Hence, after finitely many steps otpnepletion rule applica-
tions, the precompletion rules can be applied in a way suat¥trs still a model of some
(T, A).

We now prove the second claim (completeness).ZLée a TBox, letd be an ABox,
let A be an ABox7 -derivable from(7, A), and letZ be a model of 7, A”). We can
construct a new ABox4™ as follows: for each individual name pair Rep_4, recover
all the replacements of individuals names and add the.rztffb We now construct a new
modelZ’ for (7, Afd) based orZ, for each individual name,, replaced by;, if of = x
with € A%, makeo” = z. By Lemma 22, the resulting mod#! is still a model
of (T, A™). SinceA is a subset of any constructet{°, if there exists a model’ of
(T, A", then it is also a model o7, A). Therefore, ifZ is a model of(T, A™), then
there exists an extensidn of Z that is a model of 7', A). .
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Now we can concentrate on the derived ABoxes and show hownicsstztrieval ind
can be realised using derived ABoxes.

6.6.4 Answering instance retrieval

An ABox is consistent if and only if it has a consistent derivieBox (Proposition 4).
When it comes to instance retrieval, computing instancesgiWen concept using only
one obtained consistent derived ABox is moiund—an individual is an instance of a
given concept in the original ABox if and only if it is instanoé the given concept in
every consistent derived ABox. Taking this matter into aetpthe step of answering
instance retrieval, is therefore defined as follows:

Definition 23 (acyclic answering procedure) The acyclic answering procedureturns
x to query@ w.rt. a TBox7 and an acyclic ABox4 if for each ABoxA’ 7-derivable
from A, the extended label’(z) Cr Q in A'. .

Proposition 5 Let7 be a TBox,A be a consister -precompleted acyclic ABog) be a
concept. For every modélof (7, A), o* € Q¥ iff L'(0) Cr Q.

Proof: “<" Let o be an individual name in a consistéftprecompleted acyclic ABox,
let ) be a concept, and I&tbe a model of 7, A). Sinceo” € £/(0)* holds (Lemma 21),
and/L'(0)* C @7 holds, we can see that € Q.

“=" Let o be an individual name in a consisteéhtprecompleted acyclic ABo¥,
let @ be a query concept, and [Etbe a model of(7,.A). We prove this direction by
structural induction on the extended label definition:

e BASIS: The basis case is when the individual nasmie aleaf node By Defini-
tion 15,£(0) = L'(0). Sinceo” € Q*, we haveL (o) —-Q C_L. SinceL(o) = L'(0),
we havel' (o) M —Q C_L. ThereforeL(o) C Q.

e INDUCTION: We prove this step by proving its counterpositive., “If there exists
amodelZ of (7, A), such that'(0)? Z Q* holds, therv? ¢ Q7 holds.”
Let £'(0) be the extended label ofbuilt by the inductive definition as follows:

"(0) := no M 3R.L(x;
L'(0) := L(0) o o R;.L'(z;)

By assumption there exists a modedf (7, A), such that’'(o)? Z Q* holds. Then
we may assume there exist a modieind an element in AZ, with a € L"(o)j and
a & Qf. In the following we show that it is possible to define the mdBén such
away thaty = o”.
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Sincea € £'(0)%, thereforen € £(0)f anda € (3R;.L/(x;))%; thatis,a € {z €

L)% | (x,b) € R Ab e £'(x;)T}. The individual name must suffice its concept
assertions and role assertions for every model mcluﬁfn@nereforeaz € L(o)*
and(of,27) € RZ; thatis,o” € {z € L(0)T | (x,2T) € RT}.

FoIIowmg the result from the= direction, for some concejdt, if for every model
T of (T, A), L'(x;)* C C? holds, theme? € C%. Following our induction as-
sumption, if for every model of (7, A), 27 € C? holds, thenl'(z;)* C C*
holds. Becaus is also a model of7, .A), we can conclude that'(z;)* € C%
iff 2Z € CZ. Hence the element s¢t € L(o 7| (2,b) € READ € £(x)T} is
the same agz € L(0)L | (z,2%) € RI}. Therefore, the element satisfies the
condition of beingaf. Since we know thai ¢ Qf, ot ¢ Q7.

Lemma 24 Given a TBoXZ, an acyclic ABoxA, ABoxesAl,Ag, , A, T-derivable
from A, and a concep®), for every modef of (7, A), o € Q7 iff o¥* € Q% holds for
every model; of every(7, A;).

Proof: “=" We prove this direction by contradiction. Thus assume tbaevery model
7 of (T, A), we haveo” € 97, and there exists one modglof some(7T, A;) such that
ot ¢ Q%. Since there exists one modglfor some(7, A;), we can see that there exists
a extensioriZ! of Z; that is a model of 7, A) (Proposition 4). Since’ ¢ Q% w.r.t.
(T, A;), we haveo”s ¢ Q% w.rt. (T, A). Since for every model of (7, A) of € Q*
must hold, we derived a contradiction.

“<" Analogously, this direction can be proved by contradictes well. Thus assume
that for every model; of every(7, A;), we haveo? € 7, and there exists one modgl
of (7, A) such thabv? ¢ Q. Since there exists one modgbf (7, .4), we can see that
T is also a model of som&T ", A;) (proposition 4). Since” ¢ Q* w.r.t. (T, A), we have
ol ¢ QF w.r.t. some(T, A;). Since for every model; of every (7, A;) o € Q% must
hold, we derived a contradiction. .

Theorem 25 The acyclic answering procedure returns individuato concept() with
respect to a knowledge basg, .A) (where A is acyclic) iff, for every modef of (7', A),
ot € Q*.

Proof: Let o be an individual name in an acyclic ABo4, let Q be a concept, lef’(o)
be the extended label of let A; be ABoxesT -derivable fromA, and letZ be a model
of (7, A). We know that? € QF w.r.t. (T, A) iff, for every modelZ; of every (7, A,),
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ol € Q% (Lemma 24). We also know that: € Q% w.rt. (T, A;) iff, £'(0)% C Q%
(Proposition 5). Therefore? € Q w.r.t. (7, A) iff, for every (T, A;), L'(0) C Q.

This means that we now have an instance retrieval algoritheacyclic answering
procedure of Definition 23 provides an algorithmic way to pome the instance retrieval
answers in a knowledge base.

6.6.5 Answering instance retrieval without acyclic restriction

When the ABox is cyclic, the idea of doing instance retrievahg®xtended label is not
working anymore—the extended label generation procestdwmi terminate because of
the presence of cycles among role assertions. In the folpwie introduce an algorithm
for retrieving instances in a8 H.F knowledge base without acyclicity restriction.

Definition 26 (locally-consistent) Given a7 -precompleted ABoxX and an individual
namez, A is locally-consistentv.r.t. = if the following two conditions are satisfied:

e L(x)is satisfiable w.rt7; and

e if (x,y): R € A, thenA islocally-consistent.r.t. y.

Lemma 27 Given a7 -precompleted ABox, A is inconsistent iff there exists some in-
dividual name» in A and A is notlocally-consistent w.r.to.

Definition 28 (boolean answering)Given7 a TBox, .4 a consistentZ -precompleted
ABox,x an individual name in4 and @) a concept, thdoolean answeringeturnsTrue
for (z,Q,(7,.A)) if there is no ABoxZ -derivable fromA U {z: —-Q} that is locally-
consistent w.r.tz. .

Proposition 6 Let 7 be a TBox,4 be a consisten? -precompleted ABox) be a con-
cept. For every model of (T, A), of € Q7 iff the boolean answering returngue for

(z,Q, (T, A)).

Given the above boolean query answering definition, theqaloe for answering
instance retrieval queries without acyclic restrictiodédined as follows:

Definition 29 (answering procedure) The answering proceduresturns an individual
answer set

{x1, 29, -+ ,2,} to query@ w.r.t. a TBoxZ and an ABoxA if, for each ABoxA’ 7 -

derivable fromA, the boolean query answering returiguefor (z;, @, (7, A’)). .
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Theorem 30 The answering procedure returns individuato concept) with respect to
a knowledge bas¢T | A) iff, for every model of (7, A), o* € Q*.

Remarks : Although the above answering procedure can be used towetristances
in anSHF knowledge base without acyclicity restriction, it is ndi@ént—the boolean
guery answering procedure only tests one individual nanadiate. For implementation
purpose, in the next section, we propose the query-oriaariedering procedure.

6.6.6 Query-oriented answering

Definition 31 (literal, quantifier form, Disjunctive Normal Form) AnSHJF conceptis
considered to be hteral iff it is either a concept name or the negation of a concepte@am

Given a role namé&? and a concept expressia@rn, an SH.JF concept is considered to
be inquantifier formiff it is either in the form o/ R.C or in the form o3 R.C.

AnSHF conceptis considered to be isjunctive Normal Forniff it is a disjunction
of one or more conjunctions of one or more literals or one oremmncept expressions
in quantifier form. .

Given anSHF concepty in Disjunctive Normal Form, without loss of generality we
assume that each disjunct is in the following form:

1 35,.V;)n( 1 C)n( I VR.U)

1<j<m; 1<k<n;

We now introduce some new notation used, for conveniencéharfollowing query-
oriented answering procedure. For every disjuncof Q:

o {3(D;)} forthe set{3S;.V; | 1 < j < m,}

e A(D;) forthe concep(1<k|_|< Cp) (1 VR.Up);

n; 1<t<o0;

Definition 32 (associated 4(01, 02, R)) Given a role nameR, two individual names,
and o, in the ABoxA, I N the individual name set ang/V the role name set it{, the
relation associated C INxI NxRN is defined inductively as follows:

e BASIS: if there exists a role nansesuch that(o;, 02): S'in AandS < R, then

associated (01, 02, R);

e INDUCTION: if there exists a transitive role nants an individual name’ in A
andS =< R, associated 4(01,0', S) andassociated 4(0', 02, S), thenassociated 4(01, 02, R).
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CLAIM : [2] Given a clash-fre€ -precompleted ABox4, two individual names®,0,
and two role names,R in A, if the relationassociated 4(01, 02, S) holds andS < R,
thenassociated 4(01, 02, R).

Proof: Let A be a clash-fre@ -precompleted ABox, let;,0, be individual names it4,
and letS,R be role names itd. This claim can be proved using the following basis and
induction steps:

e BASIS: The basis case is there exists a role nafrsuch thato,, 02): S’ in A and
S’ < 5. SinceS” < S < R, we haveussociated 4(01, 02, R).

e INDUCTION: Letassociated (01, 02, .S) be the relation built by the inductive step
of the definition, fromassociated 4(01,0', S") andassociated 4(o’, 0, S”) with S’
a transitive rolep’ an individual name and’” < S. SinceS’ < S < R, we have
associated (01, 02, R).

CLAIM : [3] Given a clash-freeZ -precompleted ABoxA, three individual names
01,09,03 and arole namg'in A4, if the relationsissociated 4 (01, 02, S) andassociated 4(0z, 03, S)
hold andS is a transitive role name, thefssociated 4(01, 03, S).

Proof: Let A be a clash-fred -precompleted ABox, let;,02,03 be individual names in
A, and letS be a role names iml. This claim follows directly from the inductive step
in the definition: if there exist a transitive role narfiethree individual name,,05,0s3 in
AandS < S, associated (01, 02, S) andassociated 4(02, 03,.5) hold, then the relation
associated 4(01, 03, S) holds. .

Given a7 -precompleted ABox4, a concepty in disjunctive normal form, the in-
stance ofQ is computed as shown in Algorithm 1. Thetricve(C) functiont in the
algorithm is taken from the Instance Store APJlgnd it returns a set of individual names
to a given concepf’. The
getSuccessors(x, R) function in the algorithm returns a set of individual nanigs v, - - - , yn },
for eachy;, the relatiomussociated 4(z, R, y;) holds in the ABox.

6.7 Related Work

As already mentioned, the idea of supporting DL style reggpuasing databases is not
new. One example is [BB93], where an architecture and algostare presented which
can handle DL inference problems by converting them intolkeciion of SQL queries.

INote that it only takes into account the individuals’ cortcagsertions and ignores their role assertions.
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Algorithm 1 queryOrientedRetrieve( Concept Q) : Set
1: results ()
2: results  « retrieve(Q)
3: for eachD; € () do

4:  candidateIndividualSet — retrieve( A(D;)) \ results

5. for eachx € candidatelIndividualSet do

6: for each3S.V € {3(D;)} do

7 successorSet = getSuccessors(.S)

8: if iISEmptySet§uccessorSet N queryOrientedRetrieve(V')) then
9: candidateIndividual Set < candidateIndividualSet \
10: Break
11: end if
12: end for
13:  end for
14:  results < results U candidatelndividualSet
15: end for

16: returnresults

This approach is not limited to role-free ABoxes, but the Dhgaage supported is much
less expressive, and the database schema must be custatiseding to the structure
of the given TBox.

Another example is the Parka system [ASH95]. Parka is notdohto role-free
ABoxes and can deal with very large ABoxes. However, Parka sugports a much
less expressive description language, and is not basedwodasti DL semantics, so it is
not really comparable to the Instance Store.

Finally, [Sch94] describes a “semantic indexing” techeidjuat is very similar to the
approach used in the Instance Store except that files andidialsls are used instead of
database tables, and optimisations such as the use of len@gaets were not considered.

6.8 Discussion

Our experiments show that the Instance Store providesestatnl effective reasoning for
role-free ABoxes, even those containing very large numbensdividuals. In contrast,
full ABox reasoning using the RCER system exhibited accelerating performance degra-
dation with increasing ABox size, and was not able to deal téhlarger ABoxes used

in this test. (It may be possible to fix this problem by chaggsystem parameters, but
we had no way to investigate this.) The pseudo-individugragch to role-free ABox
reasoning was more promising, and may be worth further tigagfon. It does not, how-
ever, have the Instance Store’s advantage of ABox persestama it appears to be less
likely to scale to even larger ABoxes: it does not cope welhJarge answer sets, and is
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inherently limited by the fact that DL reasoners (at leasturrent implementations) keep
the entire TBox in memory. Moreover, it is not clear how theyakeindividual approach
could be extended to deal with ABoxes that are not role-free.

The acceptability of the Instance Store’s performance doblViously depend on the
nature of the application and the characteristics of the K& af typical queries. It is
likely that the performance of the Instance Store can betanbally improved simply
by dealing with constant factors such as communicationhmaas—in the current im-
plementation, communication overheads between the lost&tore and the DL reasoner
account for nearly half the time taken to answer queriesrédguire significant amounts
of DL reasoning to compute the answer (i.e., whigis large). It may also be possible
to improve the performance of the database, e.g., usingigeds such as indexing and
clustering, or by reformulating queries.

As well as dealing with the above mentioned performancderatks, future work
will include the investigation of additional optimisat®and enhancements. Possible op-
timisations includesemantic indexing feedbaekadding new indexing concepts to the on-
tology for the purpose of query optimisatiaescription canonicalisatior-canonicalising
the descriptions passed to the Instance Store, so thatadepiivdescriptions can be more
effectively identifiedcardinality estimatior—estimating the cardinality of the result (and
in particular of/;) before executing a query, and giving users the chance teergtieries
if the cost of answering them is likely to be very high; aegult caching—caching the
results of queries and of DL subsumption tests in order tadaizd. reasoning when
answering subsequent queries. Possible enhancemenidammioviding a more sophis-
ticated query interface with support for, e.g., conjuretijueries [Tes97].

As discussed in Section 6.6, we are currently engaged imextg the Instance Store
to deal with ABoxes that are not role-free. The impact thas thill have on perfor-
mance is likely to be heavily dependent on the structure efgilen ABox. In partic-
ular, the Instance Store is not likely to perform well with As that result in highly
non-deterministic precompletions. ABoxes that are hightgriconnected and/or contain
many cyclical connections are also likely to have an advaffeet on performance. An
evaluation of the effectiveness of the extended Instanoee Still therefore have to wait
for the completion of the prototype, and on the developmérapplication ontologies
containing large numbers of individuals—currently theeeia rather short supply, but
we hope that development of such ontologies will be encaddny the existence of the
extended Instance Store.
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Chapter 7

Optimising Instance Realisation — an
ldea

In order to speed up the instance retrieval InstanceSta@itéed in the previous chapter
restricts the expressiveness of the A-Box to instances withoy relationship to other
instances in so-called role-free A-Box. The aim of this fiestn is to be able to use
database technologies for answering description logiciesie

However, InstanceStore can use database functionalitipnevery query. If a query
is classified to the top element, for example, the proposgarithm from InstanceStore
must fall back into the traditional query answering proagedwhere every instance is
checked deductively. This inference is known asitigance realisation Instance real-
isation seems to be needed especially in the case where ¢ng cpntains disjunctions
— an separating feature of description logics. It is obvithat in such cases instance
realisation is very inefficient even for very large sets atamces because every instance
must be checked.

In this chapter we discuss the opportunity to optimise mstarealisation. In cases
where database technology can not be used the idea of ouvaegbpis different from
traditional methods, where a specific goal — the implicabetween instance and query
— Is proven. Instead we propose a data-driven approach vafienstances are assigned
to the most specific concepts based on the available knowledipe A-Box before the
first query is sent to the system. The process of assignirtgrnioes to most specific
concepts continues during the query answering. In this Wwaysystem is continuously
optimised for instance realisation leading to a dynamicbetur of the system.

In the following we explain this process using an exampleteeive give details about
the underlying theory.
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7.1 A motivating example

For the example the domain of family relationship is used.as&ume that the reader is
familiar with the notion of description logics. Suppose tbkowing small and simplified
ontology together with the instances is given:

Woman = Human Female
Man = Human T Male
Mother = Woman M3 Child: Human
MotherOfOnlySons = Woman MY Child: Man
Father = Man M 3Child: Human
Parent = Mother U Father
Grandmother = Mother M3 Child: Parent
Granduncle = Man M 3sibling: Grandmother
A; = {Woman(anja), Child(anja,nils), Man(nils),

Father(fried), sibling(fried, anja)}

Given the A-BoxA; above we can directly conclude thatja must be aMother
because she has a child/s, andnils is a Human because every/an is a Human. Of
course, a normal description logic reasoner (DLR) will natutze it at the moment. Only
if a query is sent to the system asking:iija belongs toM other then the system will
answer with yes (and perhaps store this result in its intel@@abase). But normally such
a query is a part of a sequence where the application trieadaofiit to which concepts
anja belongs. Apart from the questiondf,ja belongs tolM other there must be further
queries ifanja belongs toMan, Father, Grandmother, MotherO fOnlySons, etc.
This leads to a uniformed search where the application toiésd out the most specific
concept to which an instance belongs with the help of a seueiqueries. Furthermore
if the application wants to retrieve all instancesMdbther, all (relevant) instances must
be checked if the could be assignedittwther before a DLR can answer the instance
retrieval query. The uninformed search and instance vairia general makes instance
realisation inefficient.

Instead of testing we can reformulate the concept expresano classification rules.
The rule forM other would be:

Mother(X) «— Woman(X) A child(X,Y) AN Human(Y)

With such a rule we can directly conclude thatja is a Mother. All conditions are
satisfied, i.eanja is aWoman, has as childils (i.e. child(anja, nils)) andnils is at
least aHuman. If similar rules exist for every concept and can be appleethe A-Box
knowledge, the application must not guess which the passinhcepts ofinja are.

The rules seem to be a direct translation of the concept tefinnto logical rules.
However, for the instance realisation it is not possible —€ aat needed — to translate
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every (part of) concept definition into its correspondingi¢al rule. For example we
can never infer in4; thatanja is a MotherO fOnlySons. nils is her only son and the
conditions for aMotherO fOnlySons might be satisfied at the moment. But in future
anja can get further children perhaps including a daughter. tlwer words the open
world assumption (OWA) prevents the inference from the Kedge in the A-Box that
anja has only sons as children. The only way for instance re#@is# to wait thatunja

is assigned to concept terdChild : Man — implicitly or explicitly.! Therefore the
concept definitionM otherO fOnlySons cannot be translated into the obviousgical
rule which can be used for instance realisation but into @kifi®d one where the concept
termVChild: Man is replaced by the concept instantiatibn’ M (X') and a new concept
definition FC'M = VChild: Man is added to the T-Box:

MotherO fOnlySons(X) «— Woman(X) N FCM(X)
The negation and the disjunction must be handled in the saage w

All the information that can be derived from A-Bay; is now derived. But now the
dynamic behaviour of the proposed idea is considered. Foptirpose the A-Box will
be extended tal;, +:

Aiqn = A;U{Father(nils)}

With new information aboutils we can trigger that rules which are affected by this
new information:

Grandmother(X) «— Woman(X) A child(X,Y) A Parent(Y)

Becausenils becomes aParent (to be precisenils become aF'ather which is a
specialisation ofParent) we now know thatnja must become &randmother. This
derived information can be added to the A-Box and again triggme rules. We can now
conclude with the help of following rule

Granduncle(X) «— Man(X) A sibling(X,Y) A Grandmother(Y")

that fried become aGranduncle becausenja, his sibling, becomes @randmother.
This “chain reaction” imagines the great benefit of the dirteen, dynamic approach:
Every time when new information is arrived in the A-Box all sequences are tried to be
directly computed and as much as possible inferences frerddta is derived.

1This is not completely true. The problem can also be solved ibperator is available which says that
no further instantiation of a role/property will exists utdre.
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The rule-oriented approach can further be optimised. Irotd safe tests we can
partly instantiate the rules even if not all knowledge fdisfging the conditions is present.
That parts which are already satisfied can be omitted indigdhat these tests are al-
ready passed and must not checked again. For example witk-Box A; the rules for
Grandmother and forGranduncle can already be instantiated to

Grandmother(anja) «— Woman(anja) A child(anja,nils) A Parent(nils)

—> Grandmother(anja) <«— Parent(nils)
Granduncle(fried)  «— Man(fried) A sibling(fried,anja) A Grandmother(anja)
= Granduncle(fried) «— Grandmother(anja)

Now anja seems to “wait” fornils to become itself aParent in order to become a
Grandmother. fried is waiting foranja to become &'randmother. However the rule
instantiation may imply that a lot of rules must be instaetifor one instance. With
large sets of instances a still larger set of instantiategsnmnust be stored and maintained
which may have a detrimental effect to the optimisation witle instantiation.

This small example demonstrates two main characteristittseoproposed idea. First it
shows the data-driven behaviour. Instead of waiting foreopureries the system directly
computes the most specific concepts to which an instanceatandgand prevents some
uninformed search for the application which uses this syst8econd it shows the dy-
namic behaviour. New information can (monotonically) bededlwhen they appear and
the consequences are tried to be derived directly.

7.2 The Representation Formalism

After this motivating example the representation formmali®r the data-driven instance
realisation will now be introduced. As already mentionelas a strong relationship to
rule formalism. However, the dynamic nature should alsceflected by the formalism.
One adequate method to model dynamic behaviour is an eviestachpproach. For the
instance realisation such an event indicates the arrivakof information either by the
application or by the instance realisation process itSEfie new information thatnja
becomes & randmother and fried a Granduncle are two examples for such system-
generated events.

System-generated events may also be interesting for tHecagogn which uses the
DLR. In order to keep informed about the new derived infororathe events can also be
sent to the applicatioh Then the application will be informed by the DLR if an instanc
was assigned to a more specific concept.

20f course this functionality extends the current availablerfaces like DIG.
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In order to become a little bit more technical events are g#ad and consumed. For
both the following notation is introduced:

|.] checks if the event has appearedX : C'| looks for an instanceX
which is associated to concept | R(X,Y) | is the corresponding event
check that the instances andY is related througiR.

[.] generates an event if not already generated in the past: C'] says
that instanceX now belongs taC'. [R(X,Y)] is the corresponding
event generator for the relatidn

Both notations can be combined to more complex event term&dysual logical
connectives\ andV. Furthermore the logical implications® can be used to connect
events in order to formulate conditions for event checkingenerating. For example,
|R(X,Y)| ~ [Y : C'] says, that the everit” : C'] is only be generated if the instances
X andY are related trougl®, i.e. the even{ R(X,Y")| was observed. Both complex
event terms constitute both sides of an event rule. To be prexse:

Y «—— ¢ is anevent rulewhich generates the eventsin= ... ® [§] ® ... when
the events inp = ... ® |§] ® ... are observed® represents one of the
following connectivesA, V, Or ~.

The most interesting question now is how an ontology candmstated into this event-
based rule formalism. The translation will be explainechi® mext section.

7.3 Translating the Ontology into the Formalism

The eventrules are generated from the terminological axiorthe ontology where every
axiom of the formC = D or C C D will be translated into a set of rules. Before
the translation can begin the concept term must be transfibinto disjunctive normal
form. Furthermore like for the negation normal form it is @s®d that the negation is
propagated to the innermost terms, i.e. the negation omdgas together with a concept
namet, i.e.C = D, U ..U D,resp.C C D;U...U D, with D; = Dj; M ...D;,,.. For
the case o = D, Ul... U D,, the translation functiom forms for each combination @f
andD; an event ruley(X : C) « 7(X : D;) as shown in table 7.1.

‘ CC/=D ‘ 7(.) = ‘
C=DiU..UD, | (X :C)—7(X:Dy),..,Tn(X:C) — 1(X : D)
cCChu..ub, | —

Table 7.1: Translation for axioms

If the events in the conditions (X : D;) of the event rule are observed then the events

3We use a different notion for implication in order to distirigh it from the rules
4The normal form preserves the satisfiability property andtmot be visible for the application or an
user.
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(X : C) are generated for the common variale Which events must be observed
resp. generated is determined by the translation funetign resp.r|;(.) depending on
the variableX which is associated t®; resp.C.

For the case of C D; LI ... U D,, no translation exists because the axioms only
defines necessary but not sufficient conditidnsL! ... LI D,, that an instanceX must
satisfy. Obviously only sufficient conditions can be trastl into event rules (if you
conclude fromD; U ... LI D, to C).

Data-driven instance realisation has one great advantageposite to inferences like
satisfiability checking: it must not discuss all (hypothet) cases during a proof by cases
but can derive on explicitly known facts. Because of the isheppen world semantics
a realisation of an instance to a more specific concept cantmndone if all required
information is available in the A-Box. For example a consir&iR : C' can never be
guaranteed by a data-driven instance realisation itselflme a relation can be added
every time in the future which violates that concept terne @so section 7.1). To satisfy
this concept term the only way is to tell the A-Box explicitlyat the concept term is
fulfilled. Because of the restricted A-Box formalism this cantydbe done for an instance
X if X belongs to a conceRC,,.,, (i.e. X : FRC,.,) which is defined ag'RC,,.., =
VR:C.

FRC,.. Is a artificial concept definition added to the T-Box which nali;mis not
seen by an user or application. It is not expected that the exq@icitly associate an
instanceX to that concepf’RC,,.,, but to some subsumers 6tRC,,..,. For example if
anja is told belonging taV/ otherO fOnlySons (i.e.anja : MotherO fOnlySons) and
MotherO fOnlySons is a specialisation of' RC,,.., = Vchild: Man then we also know
that the concept teriichild : Man is satisfied byinja.

Such artificial concept definitions will appear in severalaiions during the transla-
tion with 7 (.) resp.7r1(.). Table 7.2 shows the translation of concept termsby) and
defines the events which must be observed in order to satisA-Box expression.C
and D are concept termg,N is a concept nameR a role andF’ a attribute. Note that
currently the translation is restricted #0.C', an expressive but restricted subset of OWL
DL. The extension of the translation to OWL DL needs furth@estigation.

X : CNandX : C 1D is translated in obvious way toX : CN| and7 (X :
C) A1(X : D). Because the concept terms are not unfold (cf. [BMNPS02]) wstmu
ensure that an eveffX : EN'| which is generated for a specialisatiéiiv of C N can
also be caught byX : C'N|. Therefore the following event rules are virtually added to
the system:

[X:CN] < |X:EN| whereEN,CN are concept names witlE N C CN

For X : C'uU D andX : —C there is no possibility to check these conditions directlgl a
an artificial concept definition must be generated. WhKeis associated to a subsumer of
C U D resp.—C then the events can be caughBtk : C resp.3F : C' are also translated
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| | () = | Remarks |
X :CN | X : CN|
X:CnD T (X :C)NT (X : D)
X.CuD (X : CODye] CODyow=CUD
X:-CN (X : DNyeu | DNpew = -CN
X :3dR:C |[RX,Y)] Ar (Y :C)
X :3F:C |[F(X)=Y]|A1(Y:0O)
X :VR:C | X : FRC e | FRC,., =VR:C
X VF:C | | X : FFChe] V([F(X)=Y]|ANT (Y :0)) | FFCper =VF:C

Table 7.2: Event checking translation fy(.)

obviously: two events must be observed telling thais related toY’, i.e. | R(X,Y)]
resp.| F(X) = Y|, and instancé” belongs taC, i.e.7 (Y : C). X : VR:C'is translated
with help of an artificial concept definition bl : VF' : C for the attribute/functionf’
can also be checked directly. In difference to the ®lthere is a number restriction for
attributes: they can only be instantiated for one value. f$were is such a valu& for
that attributef” and if this valueY” belongs to the concept ter@ithenVF : C' is satisfied.

| | () = | Remarks |
X:CN [X : CN]
X:CnbD (X : C)NT(X : D)
X:CubD [X : CODyer | CODye, =CUD
X:-CN (X : DNpow | DNyow = -CON
X :dR:C —
X :3JF:C F(X)=Y]~mY :0)
X:VR:C | [X:FRCpew| N(|R(X,Y)] ~7m(Y :C)) | FRCyery =VR:C
X VE:C | [ X FFCpew| AN F(X)=Y ]|~ :C)) | FFCpew =VF:C

Table 7.3: Event generation translation#y(.)

Table 7.3 defines how events are generated from complex teyntise translation
functionrp(.). The first four conditionsX : CN, X : CND, X : CUD,andX : ~CN
now generate these events that may be observed by the ewskirg translation. But
it may surprise that the translation &f : IR : C' will be empty. Because the role has
no number restriction it is always possible to generate atante which belongs t0.
The new generated instance can be absolutely independentfie instance¥” which
are currently related witlX' trough R. Therefore no event must be generated for existing
instances. However, the attribute/functibrinas an implicit number restriction. Therefore
the translation ofX : 3F: C looks for the valug” of the functionF’ and if Y exists then
an event is generated thatow belongs t@”; if the valueY” does not exists then the event
will not be generated. A mixture is the translation for theonstructor inX : VR:C and
X :VF:C. First they generate an event for the artificial concept d&fmin order to be
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able to catch them. Second they generate events for alls/&lwé R and F if they exist.

The rules in table 7.1 are generated from the concept axiainf@mulate conditions
D when an instanc& can be classified t6'. However these rules do not express all
possibilities for an instance realisation. Suppose thatABox A;.; in the example
of section 7.1 is further extended t ., by the information thatinja has an further
child jens, i.e. A;1 o = A1 U {Child(anja, jens)}. When we further add thainja
becomes alotherO fOnlySons, i.e. Air3 = Air2 U {anja : MotherO fOnlySons},
then we can conclude thatns must be alMan. However, we can extend the A-Box
in the opposite order, i.ed},, = A,;; U {anja : MotherO fOnlySons} and A, , =
Al , U{Child(anja, jens)}, which also has as consequence thats must be al/an.

Both ways of extensions demonstrate two further poss#slitor instance realisation
based on events in the A-Box and are not covered by the rulesble 7.1. For the
extension of4;,, and A, 3 the realisation ofjens is triggered by the new information
aboutanja becausgens is related taunja. In more general terms the new classification
of X to C' lead to the realisation to some part/lof Now the events are propagated in the
opposite order frond' to D. Such event rules are illustrated in table 7.4. For both kiihd
axioms the same event rule is generated.

‘ CC/=D ‘7‘(.): ‘
CCDn..NbD,

X D) A ATR(X : Dy) — 1 (X : O)

Table 7.4: Further translationfor axioms

Please note that for this translation the concept tBrmust be transformed into a differ-
ent normal for, the conjunctive normal form.

The second way of extensions the realisatioficofs is invoked by introducing a new
relationshipChild to anja. Because of this new relationship in generala andjens
may be subject of an instance realisation. The checkdhat needs further refinement
is covered by the event rules in table 7.1. But the possilmlityealisation forjens is not
checked by any rule. Therefore further rules are neededdrie shown in table 7.5.

| CC/=D | 7() = |
cchu..ub, TH(YZE)<—TU(XZC)/\Lf(X):YJWith
C=D,u..ub, D;=..M3f:EnM...andf is a property or
TU(X : C) A\ LR(X,Y)J — TH(Y : E) with
D;=..MVR:E M ... forroles and propertie

[72)

Table 7.5: Further translationfor axioms

The first two translations of an axiom are not surprising. yThave their correspon-
dence in the logical translation. From a logical point ofwithe third translation is not
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needed and redundant. But together with the event mechanigmrsles are desirable.
The logical reason is that free variables in the heads ofules are all-quantified. Instead
realising it with the help of the inference mechanism thedtkind of rules is introduced

in order to simplify the implementation of the reasoningv/g=s.

With the artificial concept definitions some helper condtomns are introduced which put
some additional knowledge into the subsumption hierarthg use that knowledge from
the subsumption hierarchy is characteristics for the pgegadea of optimising instance
realisation. The subsumption hierarchy must be computéddogormal description logic
reasoner — perhaps before any instance realisation canrtmemed. The a priori com-
putation can be interpreted as a pre-compilation of the kedge base in order to perform
specialised reasoning, e.g. in this case instance reafisaturthermore the need for a
complete DLR indicates that the proposed data-drivenmestaealisation is not suitable
to replace any normal DLR reasoning. Instead it can onlynopg
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Chapter 8

Conclusion

In this report, we have investigated the problems of queswaning for Semantic Web
guery languages (such as RDF, OWL DL and OWL-E) in the OWL-QL d$jgation. Key
features of the OWL-QL specification are summarised in Se@ia.

Theoretical results are mainly on query answering with RCdphgs and OWL-E on-
tologies. In Chapter 2, we recast the RDF model theory in a massical logic frame-
work. Given an RDF grapty and a query?, the answer set of) to S (as defined
by [Hay04b]) is the same as the certain answef)db S given the empty KB. In other
words, an RDF graph can be transformed to a DL ABox; therefok¥ QL servers
(such as the one described in Chapter 3) can be used to supgoyt answering w.r.t.
RDF graphs. In Chapter 4, we extend OWL-QL to OWL-E-QL, so as tpstgonjunc-
tive queries with datatype expression atoms. We have shioathunder certain restric-
tions, query answering w.r.t. OWL-E ontologies can be reduoeABox reasoning (such
as knowledge base satisfiability, instance checking oaits retrieval).

In addition to the above theoretical results, we also piteseme implementation re-
sults. Chapter 3 escribes how to implement query answerinth&SHZQ DL in an
OWL-QL server. As query answering can be reduced to ABox reagamnd instance
retrieval is the expensive problem (among the three ABoxar@ag problems mentioned
above), we have further investigated optimisation tealescfor instance retrieval based
on a hybrid DL/Database architecture (Chapter 6).

As for future work, we will further look at how to apply our rdsto support the
SPARQL language. In addition, we would like to investigateHar implementation and
optimisation issues on query answering for Semantic Webydarguages (such as RDF,
OWL DL and OWL-E) in the OWL-QL specification.
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