Software Engineering Group

The ten-page introduction to
Trusted Computing

Andrew Martin

CS-RR-08-11

ex[i[DomI[MINA

ol Nvs | TIO

oIl rLLY | MEA

o

o s
S

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD.



The ten-page introduction to Trusted Computing

Andrew Martin, University of Oxford

November 2008

Synopsis

Networked computer systems underlie a great deal of
business, social, and government activity today. Every-
one is expected to place a great deal of trust in their
correct operation, but experience shows that this trust is
often misplaced. Such systems have always been sub-
ject to failures due to oversights and mistakes by those
who designed them; increasingly such failures are ex-
ploited by those with malicious intent.

The concept of Trusted Computing has been present
in the computer security literature for quite some time,
and has influenced the design of some high-assurance
solutions. These ideas are now becoming incorporated
in mainstream products — PCs, mobile phones, disc
drives, servers — and are the subject of much discus-
sion and sometimes misinformation.

Trusted computing implies a re-design of systems ar-
chitecture in such a way as to support its factorization
into relatively discrete components with well-defined
characteristics. This permits, in particular, rational
decisions based upon reasonable expectations of be-
haviour. Any such systems thinking must be motivated
by an analysis of risks — so that effort is expended
where it may give the best return — and an aware-
ness of the limitations of such risk assessment (because
frequently the raw data and parameters are simply not
available, and because security properties are typically
not compositional).

The approach described here is largely the result of
the work of an industry consortium (the Trusted Com-
puting Group, TCG), itself informed by a history of re-
search, largely in the area of high-assurance systems,
from government and academe. TCG’s approach is dis-
tinctive in that previous trusted systems were usually
bespoke and highly expensive: the current work aims to
touch every computing device.

This tutorial surveys the relevant notions of ‘trust’,
exploring what this means for ‘trusted computing’. We
describe briefly the interventions needed in hardware
and software required to give a stable platform upon
which such systems can be constructed. In essence,
this gives us two new systems characteristics: (a) a high
degree of confidence in the state (configuration, run-
ning software, etc.) of a local computing system — and
hence a measure of its relative freedom from unwanted
intervention; (b) a relatively high degree of confidence
in the state of a remote system (a property called ‘re-
mote attestation’).

The first of those characteristics has perhaps always
informed the way that users interact with desktop per-
sonal computers: many malware attacks exploit mis-
placed trust in the local system. The second characteris-
tic is genuinely novel, and may be seen as an enabler of
many new kinds of pattern of interaction in distributed
systems. Knowing that a platform is in a particular state
is neither a necessary nor sufficient condition for trust-
worthiness (or, indeed, security) — but helps to inform
decisions about that. We explore how these capabilities
are constructed, and some uses to which they might be
put. We also briefly describe the state of deployment of
these technologies, and some current areas of research.

1 Introduction

Much of what we do in today’s society involves us
typing things into a computer (or, sometimes now, a
mobile phone), seeing them appear on the screen, and
thereby interacting with someone or something at a dis-
tance. How do we know something desirable will hap-
pen when we press *Go’, without something bad hap-
pening now or in the future?

By and large, we don’t. But we make some kind of
informal risk assessment, and live our lives in the light
of it. In particular, we tend to trust the computer on the
desk in front of us to do the right thing. Or rather, we
may not truly trust it, but we have little alternative. This
is our starting point for thinking about trusted systems.

We probably know where the computer on the desk
(or in our hands) came from: either we bought it from
a reputable supplier, or someone we trust installed it
for us. We may believe that we know what software
is installed on it: the operating system and the applica-
tions. But there our problems start: one program may
appear like another; life on the world-wide web entails
all manner of downloads, some safer than others; we
know to our cost that software is imperfect, and these
days we expect vendors to patch it periodically, often
to rectify problems with its security. If someone else
has ever used the computer, they may, by accident or
design, have installed software without our knowledge.

Most operating systems are designed around the idea
of an all-powerful, professional system administrator.
For a great many deployed desktop systems, we know to
our cost that the administrative power is in the hands of
someone who does not necessarily have the time, or the
expertise, or the tools, with which to take administra-
tive and configuration decisions. And yet these systems



are increasingly repositories for content of considerable
value — whether purchased digital music, photograph
collections, or downloaded software, or keys to online
banking applications, tax returns, or medical records.

The same challenges apply to any system we interact
with across the network, with the added complexity that
because we cannot see or touch the servers involved, we
have to take a whole lot more on trust. We generally
have to trust — or assume — that those who administer
those servers are both wise and good: wise that they will
install only ‘safe’ software, and good in that they will
(because of altruism, a contract, or a regulator) always
act in our best interests. But intuitively we know that
neither assumption is necessarily valid.

Of course, we manage complexity by building soft-
ware and systems in layers. From a security perspec-
tive, we build protections into each layer, appropriate
to the functionality it offers. But one recurring strat-
egy of those who wish to attack our systems is to attack
‘the layer below’. We may use a strongly-encrypted
link to interact with our online bank accounts, but if
the library which implements it has been replaced by a
rogue, our secrets can still be compromised. Our files
may be organised into directories with elaborate access
control files attached, but as many public sector organi-
sations have lately demonstrated, such protections avail
nothing if the disc holding that filing system itself falls
into the wrong hands. We may install a fresh operat-
ing system from trustworthy media, but many pieces
of software run before a single character appears on
the screen; they can readily be corrupted.! One such
‘rootkit’ is sufficient to infect every operating system
installed on the corrupted platform, and so to, say, re-
port every keystroke to a third party (whilst our anti-
virus product is fooled into thinking that all is well).

2 Trust

We have used the term ‘trust’ informally above. This
notion is, of course, the subject of stacks of literature: in
computing, in sociology and psychology, and so on. In-
deed, the word is sufficiently over-loaded that Gollman
(2004) was able to argue that ‘Trust is Bad for Secu-
rity’. He notes that in the 1980s, the term was synony-
mous with multi-level security (the longstanding goal
of many military and intelligence IT systems), and a
decade later, synonymous with digital signatures (as in
code signing).

The US DoD gave us the ‘Orange Book’ Trusted
Computer Systems Evaluation Criteria (DoD, 1985) in
the 1980s, formalizing the Trusted Computing Base as
the totality of protection measures within a system: that
part of the system (hardware, software, other) which
you simply have to rely upon, and whose failure almost
inevitably leads to compromise.

For us, then, trusted systems are those upon whose
correct (or predictable) operation we rely. If they fail to

I'This is not mere paranoia or speculation (Heasman, 2006).

live up to our expectations, we may expect bad conse-
quences. In a strong sense, this idea of trust is somewhat
orthogonal to that of security: we may use trusted com-
ponents to build secure systems. Trust on its own does
not entail security: merely, predictable behaviour. We
would not generally try to build secure systems from
untrustworthy components, but the author can think of
a handful of examples where this may work.
Careful speakers distinguish

e trusted systems
e trustworthy systems
e trustable systems

but if we understand the notion of ‘trust’ in use here, the
meaning of these terms follows naturally.”

Graeme Proudler says (Mitchell, 2005, chapter 2)
that it is safe to trust something when:

1. it can be unambiguously identified, and
2. it operates unhindered, and

3. the user has first-hand experience of consistent,
good, behaviour or the users trusts someone who
vouches for consistent, good, behaviour.

The first two points are easily overlooked, but they
are of course crucial. If a rogue replaces a good device,
the behaviour will be different. If a piece of software
has been tainted by the introduction of a virus — or
a replaced link library, or other change of context —
normal good behaviour can easily turn bad.

Ideal grounds, perhaps, for building an expectation
of good behaviour, are proofs of correctness. A system
which is provably or demonstrably correct (i.e. it meets
its specification) will be trustworthy — at least within the
parameters of its specification.’> Generally, this turns
out to be of theoretical value only: a system on the scale
of a modern desktop computer is much too complex to
be amenable to formal specification, still less, proof.

Instead, we must usually fall back on surrogates for
such proof: extensive testing, long experience of use,
third party evaluation and certification (with or with-
out liability!) and so on. This is not, of course, out
of keeping with the notion of ‘trust’, which is seldom
absolute. The crucial feature is that we are given use-
ful grounds upon which to base the decision about the
degree of trust.

All of this is summed up (some would say very in-
adequately) in the Trusted Computing Group’s working
definition:

An entity can be trusted if it always behaves
in the expected manner for the intended pur-
pose. (TCG 2004)*

2Having said that, many of those responsible for popularizing
‘Trusted Computing’ now wish that they had described it more ac-
curately as ‘“Trustable Computing’, but the die is already cast.

3Notice that the classical notion of correctness gives us no help at
all in establishing the first two steps to trust.

4This definition is widely quoted as ‘(TCG 2004)’ but, despite



3 Trusted Computing Platforms

There are many ways in which a computing platform
may fail to enable the steps to trust outlined above. (For
the purposes of this section, we will consider mainly the
PC platform; later sections will broaden that notion).
In order to facilitate the first two steps, we will require
platforms which:

1. strongly identify themselves — using public key
cryptography, involving a secret key strongly tied
to the platform itself, and

2. strongly identify their current configuration and
running software — using cryptographic hashes of
object code, and other mechanisms.

We may regard the platform identity as a crypto-
graphic serial number, but mindful of privacy concerns
raised when integrated circuit manufacturers introduced
unique serial numbers for their CPUs, we must invest
additional effort to protect this information from abuse
(see below). For a ‘strong tie’ to the platform, we hope
for solder and some form of tamper-evidence, at least.
The strength needs, of course, to be commensurate with
the risk entailed: locked cases work well in some envi-
ronments, circuit boards encased in resin, in others.

In order to make use of cryptographic identity, we
shall need some hardware support akin to that some-
times offered by a cryptographic co-processor (or a
smart card): namely, the ability to sign data with one
or more keys, without any danger that that key value
can be extracted and re-used elsewhere.

Discovering, recording, and reporting the configu-
ration of the platform might entail careful ‘measure-
ment’ of all those elements — firmware and software:
BIOS, ‘option ROMs’, loaders, configurations, kernels,
libraries, applications — which contribute to the oper-
ating state of the platform, and hence the trustworthi-
ness of the computations it performs and the extent to
which it enforces a desired security policy. In this con-
text, we use the term ‘measurement’ in a specific but
possibly unusual manner: it means the action of mak-
ing a cryptographic hash of the item to be measured. In
this way, we reduce every one of the components men-
tioned above to a single, effectively unique representa-
tive value.’

3.1 Trusted Platform Module

The foregoing discussion implies a need for a change —
a relatively minor one — to the architecture of the PC.
A Trusted Platform Module (TPM) has been defined (as
a logical bundle of functionality), together with a means
to embed it in the PC architecture (for the time being,

many inquiries, the author has been unable to find the document to
which that reference refers.

5Such measurements are too fragile for many situations: two se-
quences of assembly instructions may produce identical behaviours
on all inputs and in all contexts, yet hash to different values. We will
return to this problem later.

as a discrete chip, residing on the ‘LPC’ bus; but this
may change in future). The functional behaviour of the
TPM can be implemented wholly in software, but some
of its behaviours — such as the strong protection of a
platform-specific unique secret key — require protec-
tions which can be achieved only through a hardware
device.

We might go so far as to say that for these particular
pieces of functionality, we require a device which is not
like a Turing machine: a general read/write capability
for storage locations gives an attacker too much scope.
In particular, we require protected storage (some of it
non-volatile) which is accessible through certain spe-
cial interfaces and not subject to the normal read-write
protocols of a register or memory location. Such capa-
bilities are inherent in the design of many smartcards,
and it may be helpful to consider the TPM as like a
smartcard soldered to the PC’s motherboard. By com-
bining the small quantity of non-volatile storage in the
TPM with the ability to store wrapped keys (i.e. keys
encrypted under keys available only within the TPM)
we may build a hierarchy of protected storage of arbi-
trary size.

The TPM, with its embedding in the PC platform, is
then intended to provide three roots of trust:

Root of trust for measurement (RTM) a trusted im-
plementation of a hash algorithm, responsible for
the first measurement on the platform — whether
at boot time, or in order to put the platform into a
special, trusted state;

Root of trust for storage (RTS) a trusted implemen-
tation of a shielded location for one or more se-
cret keys — probably just one, the storage root key
(SRK);

Root of trust for reporting (RTR) a trusted imple-
mentation of shielded location to hold a secret key
representing a unique platform identity, the en-
dorsement key, (EK).

These are described as roots of trust because they are
each inherently indivisible: all subsequent trust deci-
sions are based upon these; they are the basis of an in-
ductive chain.

The SRK and EK use asymmetric cryptography: the
TPM'’s role is to protect the secret part of the key pair.
The public part of the EK should be signed into a certifi-
cate by the manufacturer, and in most uses the key pair
will remain fixed throughout the lifetime of the plat-
form. The SRK, on the other hand, is established when
someone ‘takes ownership’ of the platform, and may be
re-initialised (loosing all the secrets it protects) when
the platform passes to a new owner.

The RTM and RTR are the essential elements for the
establishment of the ‘steps to trust’ described above, in
relation to a third party. Via a process called ‘sealing’
(see below), the RTS helps to establish trust in the local
platform. The RTS will also turn out to be valuable for



the protection of privacy, as well as for building com-
partmentalized/isolated storage for mutually untrusting
applications or users.

We can, then, describe a process of building a chain
of trust forward from these roots. One approach to this
is to thread the process of measurement alongside the
platform boot process, to give a measured boot pro-
cess. If we subsequently check those measurements, we
shall have achieved an authenticated boot (though that
checking requires care, lest the checker itself be under
the control of an adversary). A measured boot proceeds
as follows:

1. At power on (platform reset), the RTM records an
indication of its own identity in a safe place — this
might be a measurement of its own code, or simply
an identifier.

2. Before dispatching the next item in the boot chain
the RTM takes a hash of the next component to
execute, and stores this value in a safe place. It
then transfers control to that component.

3. Repeat step 2 for each link in the chain.

Then, any program, at any point in the chain, can
gain confidence in (i) its own integrity, and (ii) the in-
tegrity of the components it relies upon, by comparing
the stored values with the ones it was expecting. From
a trust perspective, it is ideal to have an RTM which is
immutable — burned into silicon once and for all.

The initial design for a trusted PC platform uses a so-
called ‘static’ root of trust for measurement: the pro-
cess described above whereby the entire boot chain is
to be measured. This is problematic for several rea-
sons: the number of elements in the boot chain is ac-
tually very large, which makes maintaining expected
values for measurements relatively onerous; those el-
ements are subject to frequent patching and updating
(at the upper levels, we must include the boot loader
configuration, say, and the operating system kernel, and
some higher level libraries, and so on), so determining
‘correct’ values for them is non-trivial; also there are
good reasons why some of the elements in the chain
may be executed in different orders, which (because of
the way we store the measurements) gives rise to dif-
ferent measurement values; it also introduces a perfor-
mance hit (as each step in the chain requires storing
away the measurement value in that ‘safe place’, which
is not, for now, high-speed memory).

An alternative has been implemented by the major
chip vendors, allowing a ‘dynamic’ root of trust; the
‘late launch’ of a measured environment (Grawrock,
2008; Strongin, 2005). Here, a special CPU instruction
invokes a major change of platform state. A fixed piece
of code is loaded from a trustworthy source which is
able to measure and launch a nominated (white-listed)
piece of software (recording the measurement, as be-
fore). This is, then, a very short chain of trust, and by
having it launched by a piece of inherently trustwor-
thy code (untainted by anything else which has hap-

pened since the platform was rebooted), the platform
can jump directly into a trustworthy state — a ‘mea-
sured launched environment’. The expected application
of this capability is to launch a virtual machine mon-
itor (see below), but it might also launch some spe-
cial, short-lived program which requires a high degree
of trust.

The ‘safe place’ referred to above is a collection
of ‘Platform Configuration Registers’ within the TPM.
These are special shielded locations: they can be di-
rectly read, but cannot be written with arbitrary val-
ues. Instead the only available update operation (beside
‘reset’, which for a static root of trust must coincide
with a platform reset), is an operation called ‘extend’,
which takes one input. It writes into the nominated PCR
a cryptorgraphic hash of the combination of the input
value and the previous value of that PCR. In this way, a
single register can record a sequence of values — and a
separate, unprotected storage area can list those values
and their sources, if we wish. The PCR can be put into a
particular state only by a particular sequence of extend
operations — and so if a ‘good’ value is found there, we
have the confidence that we need.

This process is not sufficient by itself: how is any
high-level piece of software to know that the PCR val-
ues it sees are indeed those stored in the TPM, and not
a fiction created by some rogue driver or other interven-
tion? Two mechanisms help to achieve this:

1. The operation ‘TPM quote’ returns a (nonce-
challenge protected) signed copy of nominated
PCRs, the signature key protected by the TPM,
and the calculation of the signature constructed en-
tirely within the TPM. So any party able to verify
the signature can have confidence in the ‘current’
state of the TPM (and hence the platform, if the el-
ements in the chain of trust are relied upon to store
trustworthy measurements there). Proving in this
way to a third party that the platform is in a partic-
ular state is known as ‘remote attestation’.

2. Using asymmetric cryptography, we have the pos-
sibility of encrypting a block of data, and marking
it for the TPM to say that its contents should be
decrypted only when the PCRs match particular
nominated values. This is described as ‘sealing’
data to a particular platform state. We would, of
course, expect the TPM to be managing the secret
key used for the decryption, ensuring that it is not
available for arbitrary cryptographic operations.

Both of these mechanisms use the protected storage
hierarchy established from the RTS mentioned above.
The TPM has of course limited storage space for keys:
the storage root key is held in non-volatile memory;
other keys are cached and decrypted within the TPM as
needed. In this way, a tree of arbitrary size containing
protected keys can be constructed.

Many applications are based upon keys which are
trusted to reside at only one platform. Legitimate uses
arise for the migration of keys from one platform to



another: for group work, or the passing of privilege,
and also for maintenance and upgrade. Support for mi-
gration of keys from one TPM to another is arranged
through suitably-protected protocols. Some keys can
be marked as being prohibited from being migrated, or
only to be migrated under a special backup procedure,
designed to re-insert data into a new platform when a
TPM device fails.

Because the TPM is participating in high-grade cryp-
tography, it also implements key generation capabili-
ties, based in turn upon a true random number genera-
tor. It also incorporates non-volatile monotonic coun-
ters, which can serve as a surrogate for a real time
clock in many signature contexts, and can help to pro-
tect against other ‘replay’ style attacks. The embed-
ding in the PC platform must pay careful attention to
the hibernate/suspend/resume behaviours, and their po-
tential impacts upon the availability and trustworthiness
of measurements stored in the PCRs.

The TPM assists in the construction of a trusted plat-
form. By enabling, in addition, key migration and re-
mote attestation, we begin to be able to federate that
trust; to support trusted infrastructure.

3.2 Privacy

The process of remote attestation is based upon the
root of trust for reporting: this is implemented as the
Endorsement Key (EK). The credentials accompanying
the EK are the proof for a third party that the platform
they are interacting with is indeed a trusted platform.
We would expect to find credentials from the TPM man-
ufacturer (to say that it has implemented the specifica-
tion), the platform manufacturer (to say the it has fol-
lowed the specification in the way that the TPM is em-
bedded in the platform), third party evaluators, local IT
services, and so on. There are pure software implemen-
tations of TPMs available, of course — and then most
of those credentials will be missing, or limited in their
assertions.

This is a crucial feature of the design: there is no
master secret here, nor licensing authority. It is for the
relying party to decide which credentials are acceptable,
and so which platforms, which manufacturers, etc., are
are trustworthy.

However, if the EK were simply used to sign each
PCR quote operation, it would be a trivial matter to
track all the remote interactions of a particular platform,
and feasible for the platform manufacturer to tie those
interactions to a named customer. This is unaccept-
able for many privacy-sensitive activities. Therefore,
the TPM’s design allows for a level of indirection in
the creation of arbitrarily many attestation identity keys
(AIKs) — and, indeed, prevents the EK from being used
as a signature key.

In order to establish an AIK, the TPM generates a
key pair, and then runs a protocol with a Certification
Authority (a ‘Privacy CA’). The EK is used to demon-
strate that this is a bona fide trusted platform, but then

its details do not need to be transcribed into the AIK cre-
dential: the AIK certificate binds a key to a trusted plat-
form, but does not report to third parties which trusted
platform this is. The user or application may, then, gen-
erate fresh AIKs as often as required — per application,
per session, per protocol, etc.

It has been objected that the Privacy CA retains
power because it is capable of associating a particular
AIK with a particular platform. (The platform/owner
is at liberty to select a different Privacy CA for each
AIK, but that does not negate this point.) For those with
stronger privacy requirements, an elaborate protocol
called ‘direct anonymous attestation’ (DAA) (Brickell,
Camenish and Chen, 2005), based upon advanced cryp-
tography, is defined (but optional in implementation).

4 Other platforms

4.1 Mobile phone

The mobile platform is instructive because it comes
with much stronger trust requirements than the PC. The
radio frequency component is subject to substantial reg-
ulation: it is not acceptable to allow arbitrary software
to change its operating parameters. Airtime is charge-
able, and so must be unambiguously linked to the sub-
scriber’s identity. Moreover, the platform is subject to
a much more complex pattern of ownership. The mar-
ket has developed in such a way that end users are of-
ten given subsidized phones, either in a hire purchase
agreement, or within some other contractual arrange-
ment: the operator retains an interest, then, in the se-
lection of network and services. Finally, mobile phones
are far more subject to casual theft than full-sized com-
puters, and a key to preventing this is seen as having the
phone retain a fixed, unchangeable (and hence, black-
listable) identity reported to the network.

These platforms, then, have more interested stake-
holders than PC platforms, and need to broker multiple
trust relationships. From the perspective of the end user,
they also wish to run arbitrary applications, in much the
same way as a PC platform owner does.

In order to allow such patterns of trusted use, the de-
signers of mobile phone platforms are in many ways
ahead of the PC platform designs. There are widely
adopted products in the market already (such as ARM
TrustZone (Alves and Felton, 2004)) which provide
trusted execution environments, whereby the RF and
network stack can be strongly partitioned away from
user space, and boot known good configurations.

There are also specifications for a mobile trusted
module (MTM), which draws upon the TPM described
above. Using the pre-existing trusted execution envi-
ronments, it may optionally be implemented entirely
in software — though an MTM chip may also emerge.
The architecture allows for two separate suites of func-
tionality: a ‘remote owner’ MTM (MTRM) and a ‘lo-
cal owner’ MTM (MTLM). The latter is intended to of-
fer TPM-like capabilities to user-level applications, and



so is virtually indistinguishable from the current TPM
specification (for example, it allows the user’s applica-
tions multiple pseudonymous identities via AIKs).

The MTRM requires a more constrained set of func-
tionality: identity must be fixed, for example, since a
design goal is to avoid having the phone masquerade
as a different device. A small set of AIKs can there-
fore be fixed before delivery, and an EK may not even
be needed. This aspect of the phone also requires ‘se-
cure boot’ rather than the previously-described authen-
ticated boot: if erroneous network software is detected,
the boot must be aborted rather than allowed to proceed
(else we run the risk of breaking regulatory compliance,
and indeed becoming a local network jamming device).
Secure boot requires a means to test acceptable code
hashes (reference integrity metrics, ‘RIM’s), and so the
MTRM needs recourse to two further roots of trust. A
root of trust for verification (of RIM values; RTV) is the
means by which the RIM values are reliably checked.
A root of trust for enforcement (RTE) enables the con-
struction of trustable components where dedicated de-
vices do not exist. Again, we must build these in such a
way as to make them tamper-resistant, but we have no
independent way to check their validity in the field —
hence their role as roots.

4.2 Virtualized platforms

For a range of reasons, whole system virtualization is
becoming a popular way to manage server environ-
ments, and increasingly desktop systems too. Running
virtual machines can be migrated and copied, and allow
for both good utilization of resources and also strong
isolation among the contents of the virtualized contain-
ers.

The latter is a valuable security property. We often
find it desirable to isolate software with different de-
grees of criticality, and different degress of trustworthi-
ness. A game and an online banking application, for
example, have little reason to interact with each other,
so it is desirable to try to ensure that rogue software in
the former cannot interfere with the correct operation of
the latter.

Such isolation can be strengthened with the technolo-
gies described here. First, the ‘late launch’/dynamic
root of trust capabilities we described above can be used
to launch a measured, trustworthy virtual machine mon-
itor. Secondly, this VMM can measure a whole vir-
tual machine before instantiating it. Taken together,
these two ideas dramatically shorten the chain of trust:
the DRTM launches the measured VMM the measured
VMM launches the measured VM. Of course, many ap-
plications require the VM to update its own state, and
store this prior to shutdown. Many, however, require
the VM to be brought up in the same state each time it
is launched (or will only ever launch it once): for these,
this approach is perfect.

In principle this approach can also help to limit the
impact a platform administrator may have upon the data

contained in a virtual machine: on some emerging de-
signs, if the VMM is capable only of starting and stop-
ping VMs, and allocating resources to them, then from
outside the VM, there is no possibility of access to its
internal state. That is, the contained VM may have ac-
cess to secrets (confidential data, signing keys) not ac-
cessible to any other party using the (physical) platform.

This approach causes considerable complexity to the
use of the TPM, however. The virtual machine will rea-
sonably expect to address a (virtual) TPM: the guar-
antees on offer will depend upon how this is bound
to the (physical) TPM. This problem becomes partic-
ularly complex when virtual machines are permitted to
migrate from one physical host to another.

5 Impact of Trusted Computing

The approaches described above have the potential to
alter radically the design both of end-user desktop sys-
tems, and distributed applications. It is certainly novel
to have a strong guarantee of what software is running
— locally and remotely — coupled with the necessary
underlying cryptography to incorporate that guarantee
into strong signatures.

Whether they will have such an impact or not de-
pends of course on many factors, not least the com-
mercial issues of whether there is demand for systems
refactored into a number of relatively constrained com-
ponents, communicating over well-defined interfaces,
and having determinable trust characteristics. Across
the broad sweep of computing technologies, such de-
compositions have been advocated for many different
reasons, with mixed success.

The stated goal of the trusted platform approach is
to prevent all software-based attacks — that is, there
should be no way that the trusted platform can be com-
promised simply through participating in network pro-
tocols, say. Certain critical operations can be invoked
only with the assertion of ‘physical presence’: the TPM
can be configured, for example, so that physical pres-
ence is required to turn it on. The means by which
physical presence is asserted is up to the platform de-
signer, but could be accomplished by holding down
a button, or through a BIOS set-up screen which is
available only in a pre-boot environment.® No for-
mal verification is on offer to demonstrate the achieve-
ment of the goal of defeating all software-based attacks,
but the prospects seem good. Moreover, the absence
of software attacks broadly implies a lack of class at-
tacks: if one TPM is compromised through an expen-
sive, equipment-intensive intervention, compromising
subsequent TPMs will require the same amount of ef-
fort. Likewise, there are no ‘global secrets’ to be com-
promised: manufacturers’ signing keys for TPM and

60f course, many servers are configured to offer all such func-
tions over a controlled network, or are connected to third party devices
which achieve this, since in large server farm, it would be infeasible
to configure each box by standing in front of it. Such concerns impact
the design of a Server profile for Trusted Platforms.



platform endorsements are perhaps the most valuable,
and these can be managed quite effectively in a PKI
with revokation mechanisms. In order to mitigate the
compromise of any endorsement key, relying parties
(i.e. Privacy CAs) must be able to reject AIK requests
based upon ‘known bad’ EKs.

Of course, there remains a gap between the low-
level protections described in the foregoing account,
and the architectures required by current network-based
services in the cloud, and so on — see ‘Active Research’
below. The fragility of remote attestation is one of the
biggest challenges. However, some further building-
blocks which begin to raise the level of abstraction are
described in Sections 5.2 and 5.3 below.

A number of authors have asked whether the ap-
proach taken here addresses the real security prob-
lems encountered today (Oppliger and Rytz, 2005; Ar-
baugh, 2002; Marchesini, Smith, Wild and MacDonald,
2003; Vaughan-Nichols, 2003). Although the trusted
platform ideas have largely arisen in the context of the
PC platform, it may be in embedded devices and envi-
ronments that they find their best application: the mo-
bile phone is a primary example. Environments like
automotive and avionic systems are increasingly based
around simple bus-based and network communications,
where the correct (or trusted) operation of each compo-
nent is critical. As more-controlled environments than
a general-purpose PC, these have much better prospects
of being able to manage configurations sufficiently well
as to make attestation feasible.

5.1 Counter-arguments

Trusted Computing has attracted much criticism, not
least from the open source community (Stallman,
2002). Some of the major themes of discussion are
mentioned below. A bullish defence of Trusted Com-
puting has been written by Safford (2002).

Privacy We have discussed privacy in Section 3.2.
Those technologies seem to have addressed most of the
stated concerns — although some authors seem yet to
realise this. Of course, the question of whether vendors
will choose to implement schemes such as DAA is a
different matter entirely.

Vendor control The capability of the TPM to ‘seal’
data to a particular platform configuration raises the
possibility that a software vendor could lock content
(third-party content or user-generated content) to a par-
ticular application. This would give rise to much
stronger ‘vendor lock-in’ than proprietary data formats
ever have. An operating system vendor could exercise
control over which applications could be run on that
platform — as, indeed, several mobile phone operat-
ing systems have done. An application vendor could
prevent migration to a competitor’s product.

Anderson (2003) argues that such approaches have
the potential to alter profoundly the economics of soft-

ware production — probably to the detriment of the
consumer and the stagnation of the market. It must be
admitted that this is a possibility: it is by no means an
inevitable consequence of trusted computing, however,
and any such locked solutions would need to convince
an increasingly discerning market that they offered, on
balance, worthwhile benefits (as purchasers of Apple’s
iPhone, for example, appear to believe).

Digital Rights Management A related concern is
that Trusted Computing is entirely designed to enforce
‘Digital Rights Management’: a trusted execution en-
vironment is certainly a good candidate location for the
critical, key-handling parts of DRM. We have noted that
the TCG design for trusted platforms is designed to de-
feat all software-based attacks. It is inherently weaker
at protecting against hardware-based attacks.” Another
way to view this is to say that the design is very good
for convincing the platform owner that their own plat-
form is in an untainted state (since they have not taken
the cover off and interfered with it): it can never be as
good at proving to some party across the network that a
platform is untainted, since, with hardware access and
enough resources the protections can be defeated.

It remains to be seen how the risk profile for such
protections may play out: it is crucial to understand the
ratio of the value of the data being protected to the cost
of defeating the rights management regime. In the con-
text of digital mass media (music, movies, games), the
rewards associated with being able to unlock protected
content may be very great, so it may be cost-effective to
produce compromised hosts to receive licenced content
and strip off the protections. Some other data (patient
records, say, or medium-grade corporate secrets) may
have a higher unit value, but a much smaller market,
and a much smaller exploitation opportunity, and the
degree of cost-effectiveness may differ.

Attestation The approach we have described to re-
mote attestation is exceedingly fragile. Hundreds of
components contribute to the high-level operating state
of a PC platform. Subtle timing issues affect the order
in which they are executed — and so the order in which
they are measured and extended into PCRs. Some con-
figuration components may be critical, and yet updated
at each boot. The system, its drivers and applications,
may be subject to patching on a regular basis: there
is an immense combinatorial explosion of possible ac-
ceptable configurations (well as an enormous collection
of known bad ones).

The question of what, then, to attest, and how to attest
the semantics of software — its behaviour, rather than

"That is not to say that it is ‘weak’. The TPM is intended to be
sufficiently strong that a well-equipped physics lab is needed to defeat
its protections. The intention of a trusted PC platform is that ‘corner-
shop’ attacks should fail, although version 1.1 of the TPM has been
subject to a few of these, prompting some careful re-evaluation of
version 1.2 — and ongoing consideration of the best location for this
functionality within the PC architecture. The absence of class attacks
is intended to keep the costs high for each TPM attack.



its binary signature — is a topic for active research. The
‘late launch’ capabilities we described above, with a dy-
namic root of trust, help to simplify some parts of the
attestation challenge, but their main design goal is to
facilitate the use of whole system virtualization, which
adds complexities all of its own.

Symmetric Cryptography The TPM design dis-
cussed above, despite implementing many elements of
a cryptographic co-processor, exposes no symmetric
(bulk) cryptographic functions. This is necessary, in or-
der to satisfy many countries’ import/export controls,
but relates also to the issue below.

Law Enforcement Trusted Computing is part of a big
shift towards greater use of encryption for everyday se-
crets. This has significant benefits for the individual and
corporate user, especially in an ever-increasingly hos-
tile network environment; indeed, it seems unavoidable.
Used well, however, the technologies of encryption are
exceptionally strong, and this benefits criminal and ter-
rorist conspiracy, as well as legitimate users. When this
was anticipated in the 1990s, western governments con-
templated key escrow for a while, before rejecting it as
unworkable or unduly injurious to privacy and/or the
development of commercial solutions. Finding an ac-
ceptable balance between law enforcement, practical-
ity, privacy, and innovation continues to be the topic of
much debate, and many would expect responsible sys-
tems designers to take account of the legitimate needs
of law enforcement when designing architectures. It is
worth noting that the TPM specification intentionally
requires that there be no ‘back door’ built into com-
pliant devices (Trusted Computing Group, 2005, Sec-
tion 3).

5.2 Trusted Network Connect

With more and more mobile and portable devices seek-
ing intermittent access to networks, the problem of net-
work access control is increasingly acute. Connection
to a particular network segment often conveys — or
helps to convey — access privilege for local resources
(or, for example, in the case of publishers locking ac-
cess to IP address ranges, to licensed remote resources).
Moreover, a rogue device may introduce malware to the
local network, or implicate the network owner in crim-
inal activity elsewhere.

Trusted Network Connect (TNC) (TCG, 2008) is an
architecture and suite of protocols to facilitate policy-
based network access control. The variety of those poli-
cies is in the hands of the system designer and network
manager. Of interest for our present purposes, an option
exists to allow that policy to refer to the attested state
of the platform seeking a connection.

In the first instance this allows a strong assertion of
platform identity — something missing from most other
connection protocols, since the MAC address of most

ethernet cards, for example, is software-settable. More-
over, it allows the network owner to specify that con-
necting clients must run an approved operating system,
with specified patches, approved anti-virus, personal
firewall, and so on, with good and up-to-date configura-
tions. In other settings, a supplicant could mis-represent
its state in order to gain access. Requiring an attested
platform state removes this possibility.

The network policy enforcement point (the switch)
has the capability to route traffic from the supplicant
onto its main, unrestricted network, or onto a special
remediation network where it can obtain the necessary
patches, anti-virus signatures, and so on, necessary to
meet the policy requirements for connection to the main
network.

5.3 Trusted Storage

There are many products on the market which will en-
crypt one’s storage devices (whether discs, tapes, mem-
ory sticks, etc.), and increasingly many application do-
mains are seeing a need for this. The approach outlined
above can strengthen such approaches quite substan-
tially, and are increasingly doing so. We explore two
major lines of investigation.

Operating System-based Encryption One approach
is to implement drivers and supporting paraphernalia to
enable all data to be encrypted as it is written to disc.
The novelty that a Trusted Platform can bring to this
approach is that the key for encrypting the drive can
be stored using the TPM, and sealed so that it is re-
leased only when the legitimate platform configuration
is seen. This is intended to mean that a stolen disc (or
a disc extracted from a laptop) cannot be decrypted, be-
cause the correct context to do so will not exist at the
attacker’s system. The stolen laptop will still boot, but
the attacker needs login credentials in order to access
the disc’s contents.® This is the approach taken by Mi-
crosoft’s Bitlocker.

Encrypting Disc Drives An alternative is to build a
bulk encryption capability into the firmware of the disc
drive. Data may travel to the drive unencrypted on the
host’s bus, but will be encrypted on the drive itself. The
latter would be of no benefit if the drive could be at-
tached to any host of an attacker’s choosing, so the
drive runs a protocol with the host (and in particular,
the host’s TPM): a key protecting the encryption on the
device is released for use in the drive only when it is
connected to a host with which it has been registered.
A lost/stolen drive will be of no value, even if the chas-
sis is disassembled and the platters used in a different
context.

Both of these approaches offer an added benefit that
when the disc is to be decommissioned (at end of life,

8 Attacks against login credentials usually entail extraction of the
‘password’ file from an un-booted disc, or its replacement prior to
boot. Such attacks fail here.



or upon passing to a new owner), in order to prevent its
secrets being divulged, it suffices to destroy the disc’s
encryption key: no elaborate erasure or reformatting
process is needed.

6 State of the Art

As of late 2008, more than 200m TPM chips have been
shipped in laptops, worldwide. It is estimated that a
large majority of all new ‘business class’ laptops are
now equipped with this device, and a large proportion
of those sold in the last three years.’

Windows Vista offers limited support for the TPM:
those instances of Vista which incorporate Bitlocker
will at least populate the PCR values during the boot
process. A few OEM-specific tools use the TPM to
provide a strong storage location for passwords and
keys. Linux drivers for most TPM devices are avail-
able, together with a kernel patch which supports mea-
sured boot, a ‘Trusted GRUB’ boot-loader, capable of
establishing the PCR values in the chain of trust, and a
DRTM-enabled boot-loader OSLO (Kauer, 2007).

It must be remarked that some estimates suggest that
as few as 5% of TPMs are turned on: the major vendors’
investment over a ten year period in developing these
technologies has yet to pay off.

Fully encrypting disc drives are now on the market,
and are expected to dominate within a few years. Some
interoperable TNC implementations have been devel-
oped, including an Open Source version from THH
Hanover.

7 Active Research

Although we have remarked that this paradigm of
trusted computing is at its strongest when assuring local
owners (or users) of the state of their platforms, it is no-
table that much of the active research in this area relates
to the use of remote attestation in one form or another.

Perhaps there are two reasons for this: one, the in-
tegrity of the local platform is largely a matter for the
operating system. This, in turn, is a relatively special-
ist area, not particularly amenable to those who are not
deeply involved in it. Secondly, as we have remarked,
attestation is a much more novel concept than integrity,
and so as a new primitive gives rise to a range of gen-
uinely innovative lines of inquiry.

A project which aims to address the operating system
integration issues (in the open source arena) and thereby
to facilitate remote attestation based upon trusted virtu-
alization, is the European project OpenTC!. In doing
80, it is developing prototype implementations: for ex-
ample its first demonstration was for a home banking
scenario: a specialized virtual machine was launched
to host the home banking client. This VM would

9TCG Marketing WG anticipates TPMs in over 70% of laptops in
2008; almost 90% in 2009.

1030w . opentc.net

be attested by the bank (and the bank by the VM)
to prevent not merely impersonation attacks (which
mutual authentication would solve) but also invidious
interference in the network stack or keyboard driver
(Kuhlmann, Lo Presti, Ramunno, Vernizzi, Bayer, Ka-
trcolu and Gngren, 2008).

A similar scenario involves building a virtual ma-
chine to sit at the client end of a VPN. Most VPN solu-
tions are intended to prevent mis-behaving clients from
compromising the server, but this is hard to ensure. An
attested client, perhaps fully isolated from the rest of the
host system, is potentially much better able to enforce
the security policy required by the server.

A more complex realization of this kind of think-
ing comes in the High Assurance Platform (HAP) Pro-
gramme'!. This is aiming to build, using trusted virtual-
ization, a secure client execution environment, capable
of participating in multiple isolated virtual security do-
mains. A goal — which the government and industry
partners appear to believe is achievable — is to enable
operation to be sufficiently partitioned as to able sys-
tems safely to process material classified ‘Top Secret’
on a host also connected to the Internet. This has been
an aspiration of high-assurance systems for decades.

Our own aims have been at a rather more modest
level of assurance. We have seen the technologies de-
scribed here as ideal for implementing something we
might call a ‘trusted grid’, or, in the broader sense of
service orientation, trusted services. Grid computing
implies having work done on a possibly-distributed col-
lection of hosts, outside one’s direct control. The full
abstraction of the grid would mean not knowing where
one’s job (or service) might be executed. In such a set-
ting, questions of data and code confidentiality, and of
results integrity become difficult.

The author came to this problem whilst considering
the security properties for climateprediction.net. This
system, in the style of SETIQhome, distributed hun-
dreds of thousands of climate modelling tasks to users
around the world. It was under a duty to protect the
climate model code, but also, of course, needed to of-
fer reassurance that the data collected really arose from
genuine climate model runs. Although there are more
actors involved in such a system than in the kind of grid
constructed from supercomputers and clusters, the same
kind of questions arise.

We have explored the requirements (Martin and Yau,
2007), and the architecture necessary to isolate and at-
test grid jobs (Cooper and Martin, 2006a), and to en-
force access control policies on data as it travels within
the grid (Cooper and Martin, 2006b). Finally, as an
example of how to undertake privileged processing of
sensitive data, we are investigating how to undertake
logging in a trustworthy manner in such distributed set-
tings (Huh and Martin, 2008). Some of these ideas are
presently being prototyped.

Uhttp://www.nsa.gov/ia/industry/HAP/HAP.cfm?
MenuID=10.2.1.6


www.opentc.net
http://www.nsa.gov/ia/industry/HAP/HAP.cfm?MenuID=10.2.1.6
http://www.nsa.gov/ia/industry/HAP/HAP.cfm?MenuID=10.2.1.6

8 Closing remarks

For the reasons discussed above, the greatest strength
of trusted computing is in providing components which
can be used to give assurances to desktop users about
the integrity of their operating environments. This may
be achieved through providing extra capabilities for the
local operating system and applications to test whether
they are running in untainted configurations. The idea
of factorizing a computing platform into a ‘trusted com-
puting base’ and the rest is far from new. Now, there is
growing evidence that we need this, not just in the high
assurance domains where the TCB concept has been
widespread, but in every-day end-user systems also.

Concerns of security and trying to create a trusted
execution environment have re-invigorated interest in
operating system designs. We may not yet be able to
design out the all-powerful administrators, but trusted
components can help to reduce the extent to which they
must be wise, and help to show them up when they are
not good.

Security properties are famously non-compositional,
in general. And in common speech, trust is not tran-
sitive. But components like TPMs, trusted virtualiza-
tion, and trusted storage devices do have the capacity to
weaken the cross-linkages among components, to allow
meaningful and testable chains of trust to be created,
and thereby to remove some of the present fragility in
operating systems, where a single exploited vulnerabil-
ity leads to the whole platform being ‘owned’ by an at-
tacker.

Remote attestation is genuinely a new security prim-
itive. The ability to gain a medium-strong guarantee
of the software running on a different host is novel and
has many potential applications. Hardware attacks may
be theoretically feasible, but the number of contexts in
which they will prove cost-effective seems small.

As we saw in Section 6, the approaches described
in this document are far from inevitable at present: the
massive installed base of TPMs may turn out to be a
proverbial white elephant. This would seem a shame
to the author: security technologies tend to be thought
of as preventing actions; there are novel concepts and
ideas here which have the potential to enable many new
patterns of interaction: this is a much more compelling
concept.

Acknowledgements

The author’s understanding of these topics has been aided by discus-
sion with many people, not least Graeme Proudler, David Grawrock,
Andy Cooper, Jun Ho Huh, John Lyle, and Joe Loughry, together with
a number of excellent books on this subject. Review comments from
Luc Moreau also helped to focus the text. This tutorial was partly
written with the support of the eScience Institute’s Theme on Trust
and Security in Virtual Communities. It forms a basis for a number of
courses and introductory lectures on this topic.

Thank you also to Robert and Anna Booy for providing a peaceful
cottage in the Blue Mountains in which to write without distractions.

Bitlocker is a trademark of the Microsoft corporation.

10

References

Alves, T. and Felton, D. (2004). TrustZone: integrated hardware and
software security, White paper, ARM.

Anderson, R. (2003). Cryptography and competition policy: Issues
with trusted computing., Proceedings of the Workshop on Eco-
nomics and Information Security.

Arbaugh, B. (2002). Improving the TCPA specification, I[EEE Com-
puter 35(8): 77-79.

Brickell, E., Camenish, J. and Chen, L. (2005). The DAA scheme in
context, in Mitchell (2005), chapter 5.

Cooper, A. and Martin, A. (2006a). Towards a secure, tamper-proof
grid platform., CCGRID, IEEE Computer Society, pp. 373-380.

Cooper, A. and Martin, A. (2006b). Towards an open, trusted dig-
ital rights management platform, DRM ’'06: Proceedings of
the ACM workshop on Digital rights management, ACM Press,
New York, NY, USA, pp. 79-88.

DoD (1985). Department of Defense Trusted Computer System Eval-
uation Criteria, DoD Standard 5200.28-STD, DoD.

Gollman, D. (2004). Why trust is bad for security.
http://www.sics.se/policy2005/Policy_Pres1/dg-policy-trust.ppt

Grawrock, D. (2008). Dynamics of a Trusted Platform: A building
block approach, Intel Press.

Heasman, J. (2006). Implementing and detecting an acpi bios rootkit,
presentation.
https://www.blackhat.com/presentations/bh-federal-06/BH-
Fed-06-Heasman.pdf

Huh, J. H. and Martin, A. (2008). Trusted logging for grid comput-
ing, 3rd Asia-Pacific Trusted Infrastructure Technologies Con-
ference, China.

Kauer, B. (2007). Oslo: Improving the security of trusted computing,
Proceedings of the 16th USENIX Security Symposium, Boston,
Mass., USA.
http://os.inf.tu-dresden.de/papers_ps/kauer07-oslo.pdf

Kuhlmann, D., Lo Presti, S., Ramunno, G., Vernizzi, D., Bayer, E.,
Katrcolu, M. A. and Gngren, B. (2008). Private electronic trans-
action (pet) proof-of-concept prototype documentation, Deliv-
erable 10c.3, Open Trusted Computing Project.

Marchesini, J., Smith, S., Wild, O. and MacDonald, R. (2003). Exper-
imenting with TCPA/TCG hardware, or: How I learned to stop
worrying and love the bear, Technical Report TR2003-476, De-
partment of Computer Science, Dartmouth College, Hanover,
New Hampshire.

Martin, A. and Yau, P.-W. (2007). Grid security: next steps, Informa-
tion Security Technical Report 12(3): 113-122.

Mitchell, C. (ed.) (2005). Trusted Computing, The Institution of Elec-
trical Engineers, London.

Oppliger, R. and Rytz, R. (2005). Does trusted computing rem-
edy computer security problems?, IEEE Security and Privacy
3(2): 16-19.

Safford, D. (2002). Clarifying misinformation on TCPA.
http://www.research.ibm.com/gsal/tcpa/tcpa_rebuttal.pdf

Stallman, R. M. (2002). Can you trust your computer?, in J. Gay
(ed.), Free Software, Free Society: Selected Essays of Richard
M. Stallman, GNU Press, chapter 17, pp. 117-120.
http://www.gnu.org/philosophy/fsfs/rms-essays.pdf

Strongin, G. (2005). Trusted computing using AMD ‘Pacifica’ and
‘Presidio’ secure virtual machine technology, Information Se-
curity Technical Report 10(2): 120-132.

TCG (2008). TCG TNC architecture for interoperability, Specifica-
tion Version 1.3, Trusted Computing Group.
https://www.trustedcomputinggroup.org/specs/TNC/TNC_Ar-
chitecture_v1_3_r6.pdf

Trusted Computing Group (2005). Tpm main: Part 1, design princi-
ples, TCG Specification Version 1.2, Level 2 Revision 85.

Vaughan-Nichols, S. J. (2003). How trustworthy is trusted comput-
ing?, Computer 36(3): 18-20.



	Introduction
	Trust
	Trusted Computing Platforms
	Trusted Platform Module
	Privacy

	Other platforms
	Mobile phone
	Virtualized platforms

	Impact of Trusted Computing
	Counter-arguments
	Trusted Network Connect
	Trusted Storage

	State of the Art
	Active Research
	Closing remarks

