
A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE ∗

Nick I. M. Gould† Daniel P. Robinson‡

Oxford University Computing Laboratory
Numerical Analysis Group

Technical Report 08-21

December 2008

Abstract

In [19], we gave global convergence results for a second-derivative SQP method for minimizing
the exact ℓ1-merit function for a fixed value of the penalty parameter. To establish this result,
we used the properties of the so-called Cauchy step, which was itself computed from the so-called
predictor step. In addition, we allowed for the computation of a variety of (optional) SQP steps
that were intended to improve the efficiency of the algorithm.

Although we established global convergence of the algorithm, we did not discuss certain aspects
that are critical when developing software capable of solving general optimization problems. In
particular, we must have strategies for updating the penalty parameter and better techniques for
defining the positive-definite matrix Bk used in computing the predictor step. In this paper we
address both of these issues. We consider two techniques for defining the positive-definite matrix
Bk—a simple diagonal approximation and a more sophisticated limited -memory BFGS update. We
also analyze a strategy for updating the penalty paramter based on approximately minimizing the
ℓ1-penalty function over a sequence of increasing values of the penalty parameter.

Algorithms based on exact penalty functions have certain desirable properties. To be practical,
however, these algorithms must be guaranteed to avoid the so-called Maratos effect. We show
that a nonmonotone varient of our algorithm avoids this phenomenon and, therefore, results in
asymptotically superlinear local convergence; this is verified by preliminary numerical results on the
Hock and Shittkowski test set.

Key words. Nonlinear programming, nonlinear inequality constraints, sequential quadratic
programming, ℓ1-penalty function, nonsmooth optimization

AMS subject classifications. 49J52, 49M37, 65F22, 65K05, 90C26, 90C30, 90C55

∗Research supported by the EPSRC grants EP/E053351/1 and EP/F005369/1.
†Rutherford Appleton Laboratory, Numerical Analysis Group, Chilton, Didcot, Oxfordshire, OX11 0QX, UK

(N.I.M.Gould@rl.ac.uk ).
‡Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

(daniel.robinson@comlab.ox.ac.uk).

1



2 A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE

1. Introduction

In [19], we presented a sequential inequality/equality constrained quadratic programming algorithm
(an SIQP/SEQP “hybrid”) for solving the problem

(ℓ1-σ) minimize
x∈Rn

φ(x) = f(x) + σ‖[c(x)]−‖1,

where the constraint vector c(x) : Rn → Rm and the objective function f(x) : Rn → R are assumed to
be twice continuously differentiable, σ is a positive scalar known as the penalty parameter, and we have
used the notation [v]− = min(0, v) for a generic vector v (the minimum is understood to be component-
wise). The motivation for solving this problem is that solutions of problem (ℓ1-σ) correspond (under
certain assumptions) to solutions of the nonlinear programming problem

(NP) minimize
x∈Rn

f(x) subject to c(x) ≥ 0.

An outline of this paper is as follows. In Section 2 we provide methods for defining the positive-
definite matrix associated with the so-called predictor step subproblem, while in Section 3 we discuss a
strategy for updating the penalty parameter. In Section 4 we discuss the local convergence properties of
a nonmonotone variant of the algorithm described in [19] that culminates with two rate-of-convergence
results. The first applies when the so-called SQP step is computed from an equality constrained
subproblem based on the predictor step, while the second applies when the SQP step is computed from
an inequality constrained subproblem based on the so-called Cauchy step [19, Sections 2.3.1 and 2.3.2].
Finally, in Section 5, we provide preliminary numerical results for the proposed algorithm.

Before proceeding, we catalogue essential notation and provide an outline of the algorithm presented
in [19]. The outline is relatively brief and, therefore, we recommend a careful reading of [19] since this
paper is essentially a continuation of that work.

1.1. Notation and definitions

Most of our notation is standard. We let e denote the vector of all ones whose dimension is determined
by the context. A local solution of (NP) is denoted by x∗; g(x) is the gradient of f(x), and H(x) its
(symmetric) Hessian; the matrix Hj(x) is the Hessian of cj(x); J(x) is the m × n Jacobian matrix
of the constraints with ith row ∇ci(x)T . The Lagrangian function associated with (NP) is L(x, y) =
f(x)−yT c(x). The Hessian of the Lagrangian with respect to x is ∇2

xxL(x, y) = H(x)−
∑m

j=1 yjHj(x).

For a general vector v, the notation [v]− = min(0, v) is used, where the minimum is understood
to be component-wise, and diag(v) represents a diagonal matrix whose ith diagonal entry is vi; given
two general vectors v and w, the notation v · w represents the vector whose ith component is viwi;
given a general symmetric matrix A the notation A � λ means that the smallest eigenvalue of A is
bigger than or equal to λ; and given a set of of matrices A1, A2, . . . , Ap for some p ≥ 1, we define
diag(A1, A2, . . . , Ap) to be the block-diagonal matrix whose ith block is Ai.

Given a vector v ∈ Rn and scalar ε we define Bε(v) = {x ∈ Rn : ‖x − v‖2 < ε} and B̄ε(v) = {x ∈
Rn : ‖x− v‖2 ≤ ε} to be the open and the closed ball centered at v of radius ε, respectively.

We often consider problem functions evaluated at a specific point xk. To simplify notation we define
the following: fk = f(xk), ck = c(xk), gk = g(xk) and Jk = J(xk). Given a pair of values (xk, yk),
we let Hk and Bk denote symmetric approximations to H(xk, yk) in which Bk is required additionally
to be positive definite. Similar notation is used for a solution x∗; we define f∗ = f(x∗), c∗ = c(x∗),
g∗ = g(x∗), and J∗ = J(x∗). When a primal-dual solution (x∗, y∗) is given, we define H∗ = H(x∗, y∗).
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Given the symmetric matrix Hk, we define

MH

k(s)
def
= MH

k(s ;xk) = fk + gT
k s + 1

2sT Hks + σ‖[ck + Jks]
−‖1 (1.1)

to be the faithful model of φ and

∆MH

k(s)
def
= ∆MH

k(s ; xk) = MH

k(0 ; xk)−MH

k(s ; xk) (1.2)

to be the change in the faithful model. We mention that this notation does not allude to their
dependence on the penalty parameter σ.

Given a solution x∗, we use the indexing sets A
def
= {i : ci(x

∗) = 0} and I
def
= {i : ci(x

∗) > 0} , which
are the set of active and inactive constraints, respectively, at x∗. Given a generic vector v, a generic
matrix V , and a generic indexing set S, the notation vS and VS will denote the rows of v and V that
correspond to the indices in S; if v and V are functions of x, then we sometimes write vS(x) and VS(x)
instead of [v(x)]S and [V (x)]S .

We use the following definitions related to a solution of problem (NP).

Definition 1.1. (First-order KKT point) We say that the point (x∗, y∗) is a first-order KKT point
for problem (NP) if

g∗ − J∗Ty∗ = 0, c∗ ≥ 0, y∗ ≥ 0, and c∗ · y∗ = 0. (1.3)

Definition 1.2. (Second-order sufficient conditions) A point (x∗, y∗) satisfies the second-order
sufficient conditions for problem (NP) if (x∗, y∗) is a first-order KKT point and if there exists λH

min
> 0

such that sTH∗s ≥ λH
min

sTs for all s satisfying J∗
As = 0.

Definition 1.3. (Strict complementarity) We say that strict complementarity holds at a KKT
point (x∗, y∗) for problem (NP) if y∗A > 0.

Definition 1.4. (Linear independent constraint qualification) We say that the linear indepen-
dent constraint qualification (LICQ) holds at a KKT point (x∗, y∗) for problem (NP) if J∗

A has full row
rank.

Definition 1.5. We say that the strong second-order sufficient conditions hold at a point (x∗, y∗) if it
satisfies Definitions 1.1 – 1.4.

1.2. Algorithm Overview

We now give a brief description of the algorithm we proposed in [19] for minimizing problem (ℓ1-σ);
the algorithm has been restated as Algorithm 1.1. First, the user supplies an initial guess (x0, y0) of
a solution to problem (ℓ1-σ). Next, “success” parameters 0 < ηS ≤ ηVS < 1, a maximum allowed
predictor trust-region radius ∆U, expansion and contraction factors 0 < ηc < 1 < ηe, sufficient model
decrease and approximate Cauchy point tolerances 0 < η ≤ ηACP < 1, and SQP trust-region radius
factor τf are defined. With parameters set, the main “do-while” loop begins. First, the problem
functions are evaluated at the current point (xk, yk). Next, a symmetric positive-definite matrix Bk is
defined and the predictor step sP

k is computed as a solution to

minimize
s∈Rn

fk + gT
k s + 1

2sTBks + σ‖[ck + Jks]
−‖1 subject to ‖s‖∞ ≤ ∆P

k . (1.4)
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By introducing elastic variables [15], this problem is equivalent to

minimize
s∈Rn

fk + gT
k s + 1

2sTBks + σeTv subject to ck + Jks + v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ∆P

k . (1.5)

Strategies for defining the positive-define matrix Bk are discussed in Section 2. Next, we define the
Cauchy step as sCP

k = αks
P

k , where αk is the solution to

minimize
0≤α≤1

MH

k(αsP

k), (1.6)

and then compute ∆MH

k(sCP

k ). We then have the option of computing an SQP step sS

k as the solution
of any of the subproblems discussed in [19, Section 3.2]. The trial step computation is completed by
defining the full step sk so that the condition

∆MH

k(sk) ≥ η∆MH

k(sCP

k ) (1.7)

is satisfied for some constant 0 < η < 1 independent of k (see [19, Section 2.3] for more details). Next,
we evaluate φ(xk + sk) and ∆MH

k(sk) and compute the ratio rk of actual versus predicted decrease in
the merit function.

The strategy for updating the trust-region radii and for accepting or rejecting candidate steps is
identical to that used by Fletcher [12] and is determined by the ratio rk (except we have the added
responsibility of updating the SQP trust-region radius). More precisely, if the ratio rk is larger than
ηVS , then we believe that the model is a very accurate representation of the merit function within the
current trust-region; therefore, we increase the predictor trust-region radius with the belief that the
current trust-region radius may be overly restrictive. If the ratio is greater than ηS , then we believe the
model is sufficiently accurate and we keep the predictor trust-region radius fixed. Otherwise, the ratio
indicates that there is poor agreement between the model MH

k and the merit function and, therefore,
we decrease the predictor trust-region radius with the hope that the model will accurately capture the
behavior of the merit function over the smaller trust-region. As for step acceptance or rejection, we
accept any iterate for which rk is positive, since this indicates that the merit function has decreased. We
note that the update used for the dual vector yk+1 is not important for proving global convergence, so
no specific update is provided. However, the update to yk is crucial when considering local convergence
and the multiplier vector from the SQP subproblem is the most obvious candidate. We consider this
further in Section 4. Finally, the SQP trust-region radius is defined to be a constant multiple of the
predictor trust-region radius, although the condition ∆S

k+1 ≤ τf · ∆
P

k+1 for some constant τf is also
sufficient.



1. Introduction 5

Algorithm 1.1. Minimizing the ℓ1-penalty function

Input: (x0, y0)

Set parameters 0 < ηS ≤ ηVS < 1, ∆U > 0, 0 < η ≤ ηACP < 1, and τf > 0.

Set expansion and contraction factors 0 < ηc < 1 < ηe.

k ← 0

do

Evaluate fk, gk, ck, Jk, and then compute φk.

Define Bk and Hk to be symmetric approximations to H(xk, yk) with Bk positive definite.

Solve problem (1.4) for sP

k .

Solve problem (1.6) for sCP

k and compute ∆MH

k(sCP

k ).

Possibly compute an SQP step sS

k.

Define a full step sk that satisfies condition (1.7).

Evaluate φ(xk + sk) and ∆MH

k(sk).

Compute rk =
(
φk − φ(xk + sk)

)
/∆MH

k(sk).

if rk ≥ ηVS [very successful]

∆P

k+1 ← min( ηe ·∆
P

k , ∆U ) [increase predictor radius]

else if rk ≥ ηS [successful]

∆P

k+1 ← ∆P

k [keep predictor radius]

else [unsuccessful]

∆P

k+1 ← ηc ·∆
P

k [decrease predictor radius]

end

if rk > 0 [accept step]

xk+1 ← xk + sk

yk+1 ← arbitrary

else [reject step]

xk+1 ← xk

yk+1 ← yk

end

∆S

k+1 ← τf ·∆
P

k+1 [update SQP radius]

k ← k + 1

end do

The following global convergence result applies to Algorithm 1.1.

Theorem 1.1. [19, Theorem 4.1] Let f and c be twice continuously differentiable functions, and
let {xk}, {Hk}, {Bk}, {∆

P

k}, and {∆S

k}, be sequences generated by Algorithm 1.1. Assume that the
following conditions hold:

1. {xk}k≥0 ⊂ B ⊂ Rn, where B is a closed and bounded set; and

2. there exists positive constants bB and bH such that ‖Bk‖2 ≤ bB and ‖Hk‖2 ≤ bH for all k ≥ 0.

Then, either xK is a first-order point for problem (ℓ1-σ) for some K ≥ 0, or there exists a subsequence
of {xk} that converges to a first-order solution of problem (ℓ1-σ).
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2. Defining Bk

The definition of the positive-definite matrix Bk is critical in developing an efficient algorithm. In
Section 2.1 we consider defining Bk as a diagonal matrix. Although this approach is simple to implement
and cheap to compute, it can not be expected to perform well in general. A more promising idea is
to update Bk using the well-known BFGS formula. This is an appealing alternative, but we must be
cautious since the matrix H(xk, yk) is generally indefinite and, therefore, the traditional BFGS update
may result in an indefinite matrix [2, 33]. In Section 2.2 we consider a limited-memory BFGS update
since we are interested in solving large-scale problems.

2.1. A diagonal approximation

Given scalars νi > 0 for i = 1 : n, we define the diagonal matrix Bk+1 = diag(ν1, ν2, . . . , νn). Possibly
the simplest choice is

νi = max
( ∣∣(sT

k H(xk, yk)sk

)
/
(
sT
k sk

)∣∣ , ε
)

(2.1)

for all i, where ε is a small pre-defined positive constant (ε has this meaning for the remainder of
this section). This strategy approximates the magnitude of the curvature of H(xk, yk) in the previous
direction sk.

A second possibility is to utilize more of the matrix H(xk, yk). Given any value 0 ≤ r ≤ n we may
define

νi = max



 1

ru − rl + 1

ru∑

j=rl

|[H(xk, yk)]ij |, ε



 , (2.2)

where rl = max(i− r, 1) and ru = min(n, i+ r). In other words, νi is the average of the absolute values
of the elements of H(xk, yk) in row i within band-width r. We note that if r = 0, then the curvature of
Bk+1 and H(xk, yk) will agree in those standard co-ordinate directions for which H(xk, yk) is sufficiently
positive definite as determined by the parameter ε.

2.2. A limited-memory BFGS update

Symmetric positive-definite approximations based on equations (2.1) and (2.2) are cheap to compute,
but can not be expected to approximate H(xk, yk) very well. An attractive alternative is to define
the matrix Bk+1 from the positive-definite matrix Bk by using a limited-memory quasi-Newton BFGS
update. This approach uses a fixed number of vectors, say l, to define a positive-definite approximation
to H(xk, yk) based on the most recent l iterations (for more details see [28, 2]). If we define dk =
∇xL(xk + sk, yk+1)−∇xL(xk, yk+1), then we may write the update as

Bk = B0
k +

k−1∑

i=k−l

(qiq
T
i − pip

T
i ), (2.3)

where B0
k denotes any initial positive-definite approximation to H(xk, yk) and

pi =
Bisi

(sT
i Bisi)1/2

, qi =
di

(dT
i si)1/2

, and Bi = B0
k +

i−1∑

j=k−l

(qjq
T
j − pjp

T
j ). (2.4)
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Note that in these definitions we have assumed that k ≥ l − 1 so that there are l vectors to use. This
formula is relatively simple, but one must be careful. It is tempting to store the vector-pairs (pi, qi).
However, as equation (2.4) illustrates, the vector pi is defined from Bi and the matrix Bi changes from
iteration to iteration since the “oldest” vector-pair (si, di) is removed from the set of l vector-pairs.
Hence, the vector pi must be recomputed at each iteration. The relationships given by equation (2.4)
suggest how this may be done since

Bisi = B0
ksi +

i−1∑

j=k−l

[
(qT

j si)qj − (pT
j si)pj

]
. (2.5)

Algorithm 2.1, which is [28, Procedure 7.6], computes the vector-pair (pi, qi) recursively.

Algorithm 2.1. Computing the vector-pairs (pi, qi)

for i = k − l, k − l + 1, . . . , k − 1

qi ← di/(d
T
i si)

1/2

pi ← B0
ksi +

∑i−1
j=k−l

[
(qT

j si)qj − (pT
j si)pj

]

pi ← pi/(s
T
i pi)

1/2

end (for)

During the kth iteration, Algorithm 2.1 computes the values qi for k− l ≤ i ≤ k−1 and qT
j si for all

k − l ≤ j ≤ i − 1. However, since qi only depends on the data (di, si), only the value qk−1 and values
qT
j sk−1 (k − l ≤ j ≤ k − 2) need to be computed (the other quantities should be stored from previous

iterations).

Once the vector-pairs (pi, qi) have been computed, we set Bk = B0
k − PP T + QQT where we have

defined P = [pk−l pk−l+1 . . . pk−1] and Q = [qk−l qk−l+1 . . . qk−1]. The predictor subproblem (1.5)
then becomes

minimize
s∈Rn,v∈Rm

fk + gT
k s + 1

2sT (B0
k − PP T + QQT )s + σeT v

subject to ck + Jks + v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ∆P

k.
(2.6)

If we define the 2l extra variables

wa = P T s and wb = QT s, (2.7)

then problem (2.6) is equivalent to

minimize
s,v,wa,wb

fk + gT
k s + 1

2 (sT B0
ks− wT

a wa + wT
b wb) + σeT v

subject to ck + Jks + v ≥ 0, P T s = wa, QT s = wb, v ≥ 0, ‖s‖∞ ≤ ∆P

k .
(2.8)

As a function of (s, v, wa, wb), the Hessian associated with subproblem (2.8) is given by

BA

k =





B0
k 0 0 0

0 0 0 0
0 0 −I 0
0 0 0 I



 , (2.9)
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which is not positive definite. This may seem strange since problem (2.8) is equivalent to the strictly
convex QP (2.6) (assuming that the updated matrix was positive definite). However, if the current
iterate is feasible for subproblem (2.8), then any step that maintains linear feasibility is guaranteed to
be a direction of positive curvature even though BA

k is indefinite. To see this, suppose that (s, v, wa, wb)
is a feasible point so that wa = P T s and wb = QT s. Furthermore, suppose that P T (s+∆s) = wa+∆wa

and QT (s + ∆s) = wb + ∆wb. Simplification yields P T ∆s = ∆wa and QT∆s = ∆wb . It then follows
that

(∆s,∆v,∆wa,∆wb)
T BA

k (∆s,∆v,∆wa,∆wb) = ∆sTB0
k∆s−∆wT

a ∆wa + ∆wT
b ∆wb

= ∆sTB0
k∆s−∆sTPP T ∆s + ∆sT QQT ∆s

= ∆sT (B0
k − PP T + QQT )∆s

= ∆sTBk∆s > 0,

since Bk is positive definite by construction. A great advantage in using subproblem (2.8) is that the
Hessian matrix has essentially the same sparsity as B0

k. In contrast, the Hessian matrix associated with
subproblem (2.6) is generally dense since it uses a sum of rank-1 updates. Note, however, that the 2l
extra constraints (2.7) are generally dense; fortunately a limited number of dense constraints can be
accommodated easily by modern sparse QP solvers such as QPA and QPB from the GALAHAD library [18].

Until this point we have assumed that the limited-memory BFGS update results in a positive-
definite matrix. However, it is well-known that this is true if and only if the quantity dT

k sk > 0
and this is not guaranteed to hold. We say that the vector-pair (sk, dk) will result in a sufficiently
positive-definite update if

sT
k dk ≥ ηSPDsT

k Bksk (2.10)

for some positive scalar 0 < ηSPD < 1. Since we want to reserve the notation sk for the solution of
kth iterate of Algorithm 1.1, we use the notation (s̄k, d̄k) to denote the (possibly) modified values of
(sk, dk) that satisfy condition (2.10).

When the estimate dT
k sk ≥ ηSPDsT

k Bksk fails, the simplest course of action is to skip the update.
Since we do not advocate this option, we use a damping technique introduced by Powell [33], which is
guaranteed to produce acceptable values for d̄k and s̄k by perturbing dk if necessary. This is accom-
plished by defining the “damped” vectors

d̄k = θkdk + (1− θk)Bksk, (2.11a)

s̄k = sk, (2.11b)

where the damping factor θk is defined as

θk =

{
1 if sT

k dk ≥ ηSPDsT
k Bksk,

(1− ηSPD)sT
k Bksk/(s

T
k Bksk − sT

k dk) if sT
k dk < ηSPDsT

k Bksk.
(2.12)

If θk 6= 1, it can be verified by computation that s̄T
k d̄k = ηSPDsT

k Bksk. Note that if θk = 0, then
d̄k = Bksk, pk = qk, and Bk+1 = Bk.

We finish this section by briefly mentioning other strategies that could be implemented. First, we
could approximate the reduced Hessian of the Lagrangian since it is this matrix that is known to be
positive definite at a minimizer satisfying the second-order sufficient conditions (see Gill, Murray and
Saunders [15]). It will be shown in Section 4 that if x∗ is a solution to problem (NP) that satisfies the
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strong-second order sufficient conditions, then the active constraints at x∗ will ultimately be identified
by the predictor step sP

k. If one examines the various SQP subproblems discussed in [19, Section 2],
then it is reasonable to expect that the solution of the kth SQP subproblem will be “close enough”
to the null space of the active constraints to be a direction of positive curvature. This observation
suggests that we define

s̄k = sS

k and d̄k = ∇xL(xk+1, yk+1)−∇xL(xP

k, yk+1), (2.13)

where xP

k = xk +sP

k and sS

k is the solution to any of the SQP subproblems considered in [19, Section 2.3].
The quantity s̄T

k d̄k approximates the curvature of the reduced Hessian and is likely to be positive
definite in the neighborhood of a solution. Note that this strategy requires an extra evaluation of the
first derivatives at xP

k . Second, we could approximate the curvature of the Augmented Lagrangian.
This has been studied by Han [21], Tapia [40], Byrd, Tapia, and Zhang [7], but we mention here the
approach used in the software package SNOPT [15]. The idea is to use the augmented Lagrangian
function to define a perturbation ∆d of dk such that (dk + ∆d)T sk = ηSPDsT

k Bksk. To obtain ∆d, we
consider the augmented Lagrangian function [32,22]:

LA(s, y,Ω(ω)) = f(x)− c(x)T y + 1
2c(x)Ω(ω)c(x), (2.14)

where ω ≡ (ω1, . . . , ωn)T ∈ Rm and Ω(ω) = diag(ω1, . . . , ωn). The gradient of the augmented La-
grangian with respect to x is given by

∇xLA
(
x, y,Ω(ω)

)
= g(x)− J(x)T

(
y −Ω(ω)c(x)

)
, (2.15)

so that

∇xLA
(
xk+1, yk+1, Ω(ω)

)
−∇xLA

(
xk, yk+1, Ω(ω)

)
= dk + ∆d(ω), (2.16)

where ∆d(ω) = J(xk+1)
T Ω(ω)c(xk+1) − JT

k Ω(ω)ck. The authors of SNOPT [15] suggest computing

an ω of minimal norm so that s̄k
def
= sk and d̄k

def
= dk + ∆d(ω) satisfy condition (2.10) by solving the

problem

minimize
ω∈Rn

‖ω‖22 subject to aT ω = b, ω ≥ 0, (2.17)

where b = ηSPDs̄T
k Bks̄k − dT

k s̄k, ai = ci(xk+1)ti − ci(xk)ri, t = J(xk+1)s̄k, and r = Jks̄k. If no solution
exists or if the norm of the solution is considered too large, then a different strategy should be used.

3. Updating the penalty parameter

The following theorem clarifies why it is essential to incorporate a strategy for updating the penalty
parameter (see [9, 10,31] for more details).

Theorem 3.1. [9, Theorem 14.5.1] Suppose that f and ci are twice continuously differentiable for
1 ≤ i ≤ m and that x∗ and y∗ are vectors such that c(x∗) ≥ 0 and σ ≥ ‖y∗‖∞. Then if (x∗, y∗) satisfies
the second-order sufficient conditions for problem (NP), x∗ also satisfies the second-order sufficient
conditions for problem (ℓ1-σ). In addition, if σ > ‖y∗‖∞ then the second-order sufficient conditions for
the two problems are equivalent.
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The updating scheme that we now discuss is based on the simple idea of calculating a sequence
of approximate solutions for problem (ℓ1-σ). After each approximate solution is computed, we check
the constraint violation and if sufficient improvement is not obtained, then the penalty parameter is
increased with the intent of driving the constraint violation to zero. Since the penalty parameter is
now allowed to change over a sequence of iterations, we let σk denote the penalty parameter during
the kth iterate. We accept the vector-pair (xk, πk) as an approximate solution for problem (ℓ1-σ) if it
satisfies

εD

k ≥
‖gk + σkJ

T
k πk‖∞

1 + ‖gk‖∞
(3.1a)

[πk]i =






[−
εC

k

σk
,

εC

k

σk
] if [ck]i > εP

k ,

[−1− εC

k ,
εC

k

σk
] if −εP

k ≤ [ck]i ≤ εP

k ,

[−1− εC

k ,−1 + εC

k ] if [ck]i < −εP

k ,

(3.1b)

where εP

k , εD

k , and εC

k denote the kth primal, dual, and complementary-slackness tolerances, respectively,
for problem (ℓ1-σ). These conditions are based on the optimality conditions for an exact minimizer
(x, π), which are given by g(x) + σkJ(x)T π = 0 for π ∈ ∂ ‖[c(x)]−‖1 (see [12, Section 14.3] for more
details). Perhaps the most natural way of generating a vector πk is to use the multipliers from either
subproblem (1.5) or any of the elastic SQP subproblems considered in [19, Section 3.3]. If we define yk

to be any of those choices, then the optimality conditions for their respective subproblems (assuming
that the TR constraint is inactive) suggest the definition πk = −yk/σk. Provided the sequence {yk}
converges to a Lagrange multiplier vector for the elastic version of problem (ℓ1-σ), this strategy will
eventually produce a vector-pair (xk, πk) satisfying equation (3.1). A second way of generating a vector
πk is by defining it to be a solution to the optimization problem

minimize
π∈Rm

1
2‖gk + σkJ

T
k π‖22 subject to π satisfying equation (3.1b). (3.2)

This will also eventually result in a vector-pair (xk, πk) satisfying equation (3.1), regardless of the
predictor and SQP multipliers. Therefore, for a fixed value of the penalty parameter, we have a
guaranteed method for computing a vector pair (xk, πk) that is an approximate critical point to problem
(ℓ1-σ).

Algorithm 3.1 provides the pseudo-code for updating the penalty parameter as well as the additional
parameter initiations that must be made.

Algorithm 3.1. Updating σ based on an approximate critical point to problem (ℓ1-σ).
begin (additions to preamble of Algorithm 1.1)

Choose σ0 > 0, η0 > 0, 0 < εc < 1, 0 < εP

0 < εcη0, 0 < ηc < 1, and 1 < σe.
Set εD

0 = εP

0 and εC

0 = εP

0 .
end (additions to preamble of Algorithm 1.1)
if (xk, πk) satisfies condition (3.1) then [an approximate critical point]

if c(xk) ≥ −ηke [successful]
ηk+1 ← ηcηk [decrease ηk]
εP

k+1 ← εcηk+1 [ensure that εP

k is less than ηk]

εD

k+1 ← εP

k+1, εC

k+1 ← εD

k+1
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σk+1 ← σk

else [unsuccessful]

ηk+1 ← ηk

εP

k+1 ← εcε
P

k

εD

k+1 ← εP

k+1, εC

k+1 ← εD

k+1

σk+1 ← σeσk [increase σk]

end if

else [not an approximate critical point]

ηk+1 ← ηk, εP

k+1 ← εP

k , εD

k+1 ← εD

k , εC

k+1 ← εC

k , σk+1 ← σk

end if

For simplicity, we have defined εD

k = εC

k = εP

k . However, all that is required is that limk→∞ εP

k =
limk→∞ εD

k = limk→∞ εC

k = 0.

For numerical considerations, it is generally not desirable to let the penalty parameter grow “too
large”. However, there are two situations in which the penalty parameter should converge to infinity.
The first is when the user supplies an optimization problem that is not well-defined. It is possible
that the user may formulate a set of nonlinear constraints c(x) ≥ 0 for which no feasible point exists.
Detecting this situation is difficult and is equivalent to showing that the global solution of

minimize
x∈Rn

‖[c(x)]−‖1 (3.3)

is strictly positive. The second situation occurs when the iterates converge to a critical point of
problem (3.3) for which ‖[c(x)]−‖1 > 0. This undesirable situation may occur for all penalty methods,
but it is rarely encountered in practice. Barring these two situations and under reasonable assumptions,
Theorem 3.2 below shows that the penalty parameter remains uniformly bounded and that we can
expect to generate an approximate solution to problem (NP) in a finite number of iterations. We use
the following definition.

Definition 3.1. A point x is a first-order critical point for problem (3.3) if it satisfies

J(x)Ty = 0 (3.4)

for some y ∈ ∂ ‖[c(x)]−‖1.

For given primal, dual, and complementary-slackness tolerances τp, τd, and τc, respectively, we say
that a vector-pair (xk, yk) is an approximate solution to problem (NP) if it satisfies

‖gk − JT
k yk‖∞

1 + ‖gk‖∞
≤ τd, (3.5a)

ck ≥ −τpe, (3.5b)

yk ≥ −τce, (3.5c)

max(|ck|, |yk|) ≤ τce, (3.5d)

where condition (3.5d) should be interpreted component-wise.
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Theorem 3.2. Let all the assumptions of Theorem 1.1 hold and let {xk} be the sequence of iterates
generated by Algorithm 1.1 with penalty parameter update given by Algorithm 3.1. Assume that at all
limit points x∗ of {xk}, the Jacobian of active constraints has full row rank and if x∗ is a first-order
critical point for problem (3.3) then ‖[c(x∗)]

−‖1 = 0. Then

(i) the penalty parameter remains uniformly bounded; and

(ii) if τp, τd, and τc denote positive primal, dual, and complementary-slackness tolerances, respec-
tively, for problem (NP), then the algorithm described in this theorem terminates in a finite
number of iterations with an approximate solution to problem (NP) as given by (3.5), where

yk
def
= −σkπk and (xk, πk) is an approximate solution to (ℓ1-σ) as given by (3.1) for the value σk.

Proof. We first note that

lim
k→∞

εP

k = lim
k→∞

εD

k = lim
k→∞

εC

k = 0, (3.6)

since Algorithm 1.1 is guaranteed to generate an infinite sequence {(xk, πk)} of approximate critical
points to problem (ℓ1-σ).

We now prove part (i) by contradiction. Suppose that {σk} → ∞. Examination of Algorithm 3.1
implies the existence of a subsequence K0 ⊆ N such that for each k ∈ K0 the vector-pair (xk, πk) is an
approximate critical point to problem (ℓ1-σ) as given by equation (3.1) for which ck � −ηke. Since {πk}
is bounded and {xk} belongs to the compact set B, we may pass to a further subsequence K1 so that
limk∈K1

(xk, πk) = (x∗, π∗). Equation (3.6) and condition (3.1b) then imply that π∗ ∈ ∂ ‖[c(x∗)]
−‖1,

while condition (3.1a) and equation (3.6) imply

lim
k∈K1

‖ gk

σk
+ JT

k πk‖∞

1 + ‖gk‖∞
≤ lim

k∈K1

εD

k

σk
= 0. (3.7)

Since g is continuous by assumption and limk∈K1
xk = x∗, we know that limk∈K1

gk/σk = 0 and we
may conclude from equation (3.7) that

J(x∗)
T π∗ = 0. (3.8)

Thus, x∗ is a first-order critical point for problem (3.3), and it follows from the assumptions of this
theorem that ‖[c(x∗)]

−‖1 = 0 so that c(x∗) ≥ 0. Define the index set of active constraints at x∗ to be

A∗
def
= A(x∗). Since π∗ ∈ ∂ ‖[c(x∗)]

−‖1 and c(x∗) ≥ 0, it follows that [π∗]i = 0 for all i /∈ A∗, and
therefore

JA∗(x∗)
T [π∗]A∗ = 0. (3.9)

Since JA∗(x∗) has full row rank by assumption, it follows that [π∗]A∗ = 0 and therefore π∗ = 0. Since
limk∈K1

πk = π∗ = 0, limk→∞ σk =∞, and limk→∞ εC

k = 0, we conclude from (3.1b) that c(xk) ≥ −εP

ke
for all k ∈ K1 sufficiently large. However, since k ∈ K1 we also know that c(xk) � −ηke. Combining
these two inequalities, we have ηk < εP

k which contradicts how Algorithm 3.1 constructs the sequence
{εP

k}. Therefore, {σk} is uniformly bounded.
We now prove part (ii) by contradiction. Suppose that Algorithm 1.1 does not terminate in a

finite number of iterations. We may then define the subsequence K2 ⊆ N such that for all k ∈ K2 the
vector-pair (xk, πk) is an approximate solution to problem (ℓ1-σ) as given by equation (3.1). Since {σk}
is uniformly bounded from part (i) and since σk is increased by a constant factor when it is increased,
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there exists a number σb such that σk = σb for all k sufficiently large. Consideration of Algorithm 3.1
then implies that limk→∞ ηk = 0. These observations and equation (3.6) imply the existence of an
integer kC such that the following estimates hold for all k ≥ kC:

σk = σb, εD

k ≤ τd, ηk ≤ min( τp, τc ), εC

k ≤ min(τc, 1) and εP

k ≤ τc. (3.10)

We then define the subsequence K3 to be the subsequence of K2 for which k ≥ kC.
We claim that the vector-pair (xk, yk) is an approximate solution to problem (NP) for all k ∈ K3,

where the auxiliary vector sequence {yk} is defined by yk = −σkπk. Condition (3.5a) follows from
equation (3.1a) and equation (3.10) since

‖gk − JT
k yk‖∞

1 + ‖gk‖∞
=
‖gk + σbJ

T
k πk‖∞

1 + ‖gk‖∞
≤ εD

k ≤ τd (3.11)

for all k ∈ K3. Next, since all k ∈ K3 are successful iterates by definition, we have

ck ≥ −ηke ≥ −τpe, (3.12)

where the second inequality follows from equation (3.10). Thus, condition (3.5b) is satisfied. Condi-
tion (3.5c) may be verified from equations (3.1b) and (3.10) since

yk = −σbπk ≥ −σb
εC

k

σb
= −εC

k ≥ −τc (3.13)

for all k ∈ K3. Finally, we verify condition (3.5d). Let k ∈ K3 and consider the ith component of ck

and πk. If |[ck]i| ≤ τc, then condition (3.5d) is satisfied. Therefore, we assume that |[ck]i| > τc. Since
k ∈ K3, it follows from equation (3.10) that

[ck]i ≥ −ηk ≥ −τc (3.14)

and, therefore,
[ck]i > τc ≥ εP

k , (3.15)

where the second inequality follows from equation (3.10). Condition (3.1b) and equation (3.10) then
imply

|[yk]i| = σb|[πk]i| ≤ εC

k ≤ τc. (3.16)

This verifies condition (3.5d). We have shown that the vector-pair (xk, yk) is an approximate solution
to problem (NP) with tolerances τp, τd, and τc for all k ∈ K3. This is a contradiction and, therefore,
the algorithm must terminate with an approximate solution to problem (NP) in a finite number of
iterations.

We close this section by mentioning two potential drawbacks associated with using Algorithm 3.1.
First, if the initial penalty parameter is substantially smaller than the threshold value required to
guarantee convergence (see Theorem 3.1), then Algorithm 3.1 may be laborious since it is based on
computing a sequence of approximate minimizers of the merit function. We also note that when the
penalty parameter is too small, the merit function may not even have a well-defined minimizer [5,
Example 1]. Second, even if the merit function does have a well-defined minimizer, there may not
exist a strictly decreasing path that connects a poor initial point x0 to this minimizer [5, Example 2].
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A possible way of avoiding these situations is to dynamically update the penalty parameter based on
linear infeasibility. The so-called “steering” method is based on this idea and has been studied by Byrd
et al. [4, 5]. Their algorithm is composed of essentially two stages that we now briefly describe using
our notation. If we denote the current penalty parameter by σC, then the first stage is to compute
a step s∞ that locally minimizes the linearized constraint violation; this can be viewed as essentially
solving the predictor subproblem with penalty parameter σ = ∞. The second stage is to compute a
predictor step sP

k and a new penalty parameter σN that satisfy the following conditions: (i) the decrease
in the linearized constraint violation obtained from sP

k must be at least a fixed multiple of the decrease
obtained from s∞; and (ii) the decrease in the faithful model must respect the progress made by sP

k on
the linearized infeasibility by satisfying

∆MB

k(s
P

k) ≥ −εaσN(‖[ck]−‖1 − ‖[ck + JksP

k]−‖1), (3.17)

where the constant εa satisfies 0 < εa < 1 (note that ∆MB

k(sk) depends on σN although the notation does
not make this explicit). The authors present three compelling examples that elucidate the strengths of
this approach. For this approach to be beneficial, however, the additional cost must be offset by the
“superior” values for the penalty parameter. This dynamic strategy is used in an SLQP method that
is part of the KNITRO software package [41] and the authors report results that are superior to static
penalty updating strategies.

We take the stance that both approaches should be available to the user. If the user has no
information about the size of the multipliers, then our experience has been that steering is generally
superior to finding a sequence of approximate minimizers. However, if a reasonable estimate for the
size of the multipliers is known in advance, then steering is likely to be less efficient because of the
potential overhead associated with the method.

4. Local convergence

This section considers the local convergence properties of Algorithm 4.1, which is a nonmonotone
implementation of Algorithm 1.1. The update to the Lagrange multiplier vector yk is now critical
and we must consider the sequence of vector-pairs (xk, yk). To simplify notation, we let w denote
the combined x and y vectors, i.e., w = (x, y), and we write wk = (xk, yk) for the current estimate
of a solution w∗ = (x∗, y∗), wP

k = (xP

k , yP

k ) for the solution to the predictor subproblem (1.5), and
wS

k = (xS

k, y
S

k) for the solution of the SQP subproblem (the precise definition of yS

k depends on which
SQP subproblem is used).

The primary result of this section is that if a successful iterate of Algorithm 4.1 gets close enough to
a local minimizer w∗ of problem (NP) that satisfies the strong second-order sufficient conditions, then
the sequence of iterates converges to w∗ with convergence properties derived from Newton’s Method
for zero-finding applied to the function

FN (x, yA) =

(
g(x) − JA(x)T yA

cA(x)

)
. (4.1)

We accomplish this by first showing that if wk is close enough to w∗, then the predictor step accurately
predicts the optimal active set and that the trust-region constraint is inactive. We then show that
specific SQP steps also identify the optimal active set and that their associated trust-region constraints
are inactive. Since these steps are then equivalent to one step of Newton’s Method for zero-finding
applied to FN , we deduce that wk+1 is closer to w∗ than was wk. This process is then repeated and
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results in the value wk+2. Since Algorithm 4.1 is a nonmonotone approach, the analysis given by Conn,
Gould and Toint [9, Section 15.3.2] shows that the ℓ1-merit function will accept the value xk+2 and it
follows that convergence may be described using classical results for Newton’s Method applied to the
function FN .

Algorithm 4.1 generates trial steps in exactly the same way as does Algorithm 1.1. In fact, if
every iteration is successful, then the two algorithms are identical. However, if a failure occurs then
Algorithm 4.1 still accepts the step with the hope that the next iterate will be successful; we say that
a “nonmonotone phase” has been entered. If we enter a nonmonotone phase, the ratio rk of actual to
predicted decrease in the merit function is computed based on the trial point xk +sk and the best-known
point, i.e., the solution estimate directly before the nonmonotone phase was entered. If the number of
consecutive failures reaches the maximum number allowed (as denoted by the parameter max fails),
then the algorithm reverts to the best-known point, reduces the predictor trust-region radius, and then
tries again. In less precise terms, the algorithm has “gone back in time” and proceeds as if we were
using Algorithm 1.1 until the next failure occurs.

We have also changed the update to the predictor trust-region radius. The new update ensures that
the radius following every successful/very successful iteration is at least as large as some pre-defined
positive number ∆R. We will see that this strategy allows us to prove that the trust-region constraints
are eventually inactive; more complicated alternatives are briefly outlined in [9, Chapter 15].

One final modification to Algorithm 1.1 is the introduction of the vector yF

k . Lemma 4.6 shows
that we may choose yF

k to be the multipliers from the predictor step, but any estimate satisfying the
conditions yF

k−y∗ = O(‖xk−x∗‖2) and [yF

k ]I = 0 may be used. We then define Hk to be any symmetric
approximation to H(xk, y

F

k), but for the local convergence results given by Theorems 4.1 and 4.2 we
choose Hk ≡ H(xk, y

F

k).

It may easily be verified that [19, Theorems 4.3, 4.4, and 4.7] are still true with these changes.
Thus, Algorithm 4.1 is globally convergent.

Algorithm 4.1. Nonmonotone algorithm.

Input: (x0, y0)

Set parameters 0 < ηS ≤ ηVS < 1, 0 < ∆R ≤ ∆U, 0 < η ≤ ηACP < 1, τf ≥ 1, and 0 ≤ max fails ∈ N.

Set expansion and contraction factors 0 < ηc < 1 < ηe and fail counter fails = 0 .

k ← 0

do

Evaluate fk, gk, ck, Jk and then compute φk.

Define Bk to be a symmetric positive definite approximation to H(xk, yk).

Solve problem (1.4) for predictor step and multipliers (sP

k , yP

k ).

Define yF

k to be any multiplier estimate for which yF

k − y∗ = O(‖xk − x∗‖2) and [yF

k ]I = 0.

Define Hk to be a symmetric approximation to H(xk, y
F

k).

Solve problem (1.6) for sCP

k and compute ∆MH

k(sCP

k ).

Compute an SQP step and multipliers (sS

k, y
S

k) (optional).

Define a full step sk that satisfies condition (1.7).

Evaluate φ(xk + sk) and ∆MH

k(sk).

if fails = 0 then

rk ←
(
φ(xk)− φ(xk + sk)

)
/∆MH

k(sk) [standard definition]

else



16 A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE

rk ←
(
φR − φ(xk + sk)

)
/∆H

R
[change in φ based on point xR]

end if

if rk ≥ ηVS then [very successful]

xk+1 ← xk + sk

yk+1 ← yS

k (yk+1 ← yF

k if SQP step not computed)

∆P

k+1 ← min
(
max(ηe ·∆

P

k , ∆R ) ,∆U

)
[increase ∆P

k and ensure ∆P

k ≥ ∆R ]

fails ← 0

else if rk ≥ ηS then [successful]

xk+1 ← xk + sk

yk+1 ← yS

k (yk+1 ← yF

k if SQP step not computed)

∆P

k+1 ← max(∆P

k , ∆R ) [ensure ∆P

k is bigger than ∆R]

fails ← 0

else [failure]

if fails ≤ max fails then

if fails = 0 then [save current point]

xR ← xk, yR ← yk, φR ← φk, ∆H

R
← ∆MH

k(sk)

∆P

R
← ∆P

k

∆P

k+1 ← ηc∆
P

k (optional)

end if

xk+1 ← xk + sk

∆P

k+1 ← ∆P

k

fails ← fails + 1

else [revert to saved point]

xk+1 ← xR, yk+1 ← yR

∆P

k+1 ← ηc∆
P

R
[decrease ∆P

k]

fails ← 0

end if

end if

∆S

k+1 ← τf ·∆
P

k+1 [update SQP radius]

k ← k + 1

end do

4.1. Optimal active set identification

The analysis that ensues requires a notion of “uniformity” for the underlying KKT systems within a
neighborhood of a solution w∗. This is generally not an an issue for systems involving Hk since it is
reasonable to expect that if wk converges to w∗ then Hk will converge to H∗; this certainly occurs if
Hk ≡ H(xk, yk) or Hk ≡ H(xk, y

F

k). A similar statement does not hold for systems involving Bk since
Bk is generally not a continuous function of w. Moreover, we certainly can not expect the positive-
definite matrix Bk to converge to H∗ since H∗ is normally indefinite. The optimality conditions for
problem (NP) suggest that we need the matrices Hk and Bk to be positive definite when restricted
to the null space of the active constraints (note that Bk is positive definite by construction); this is
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essentially the uniformity that we need. To develop a general framework, we define the following sets
that depend on the minimizer w∗:

S(x ; x∗) = {M ∈ Rn×n : M = MT, ‖M‖2 ≤ βmax and sTMs ≥ λmins
Ts ∀ s satisfying JA(x)s = 0}

(4.2)
and

Sε = ∪w∈B̄ε(w∗)S(x ; x∗) (4.3)

for given real numbers βmax and λmin > 0. Using this definition, we now state a result that supplies the
required uniformity.

Lemma 4.1. If w∗ is a KKT point for problem (NP) that satisfies the LICQ, then

(i) for any 0 ≤ ε <∞ the set

Sε = ∪w∈B̄ε(w∗)S(x ; x∗)

is compact;

(ii) if ν1 ≤ ν2, then Sν1
⊆ Sν2

;

(iii) there exists a positive number ε1 such that if w ∈ Bε1
(w∗) and M ∈ Sε1

, then sTMs ≥ (λmin/2)s
Ts

for all s satisfying JA(x)s = 0.

If in addition, strict complementarity holds at w∗, then

(iv) there exists a positive number ε2 such that ε2 ≤ ε1 and numbers β0 > 0 and β > 0 such that if
w ∈ Bε2

(w∗) and M ∈ Sε2
, then JA(x) has full row rank, cI(x) > 0, yA > 0, and the matrices

K̄M (x) =

(
M JA(x)T

JA(x) 0

)
and KM (w) =




M −JA(x)T −JI(x)T

diag(yA)JA(x) 0 0
0 0 diag(cI)





are nonsingular and satisfy

‖K̄M (x)−1‖2 ≤ β0 and (4.4a)

‖KM (w)−1‖2 ≤ β; (4.4b)

(v) if w ∈ Bε2
(w∗) and M ∈ Sε2

, then it follows that

s = O(‖x− x∗‖2), πA − y∗A = O(‖x− x∗‖2), and π − y∗ = O(‖x− x∗‖2), (4.5)

where s and πA satisfy

K̄M (x)

(
s
−πA

)
≡

(
M JA(x)T

JA(x) 0

) (
s
−πA

)
= −

(
g(x)
cA(x)

)
, (4.6)

and π is obtained from πA by “scattering” the components of πA into a zero-vector of length m
as indicated by A.
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Proof. We first prove part (i). Since it is clear that Sε is bounded, we only show that Sε is closed.
Let {Mk} be a sequence in Sε such that limk→∞ Mk = M̄ . This implies the existence of a sequence
{wk} ∈ B̄ε(w

∗) such that Mk ∈ S(xk;x
∗) and vT Mkv ≥ λminv

Tv for all v such that JA(xk)v = 0. The
set B̄ε(w

∗) is compact and, therefore, we can pass to a subsequence K1 such that limk∈K1
wk = w̄ ∈

B̄ε(w
∗). Since J is continuous and JA(x∗) has full row rank, [6, Theorem 2.3] implies the existence of a

locally continuous null space basis function Z(·) such that JA(xk)Z(xk) = 0, limk∈K1
Z(xk) = Z, and

JA(x̄)Z = 0. This implies that Z(xk)
T MkZ(xk) � λmin and upon taking limits that ZT M̄Z � λmin.

Since it is clear that M̄ is symmetric and satisfies ‖M̄‖2 ≤ βmax, we have M̄ ∈ S(x̄ ;x∗) ⊆ Sε. Thus,
Sε is closed.

Part (ii) follows immediately from the definitions of Sν1
and Sν2

.
We now prove part (iii). If part (iii) was not true, then there would exist a monotonically decreasing

and strictly positive sequence {δk} → 0 and associated sequences {wk}, {sk}, and {Mk} such that
wk ∈ Bδk

(w∗), Mk ∈ Sδk
⊆ Sδ1 , JA(xk)sk = 0, ‖sk‖2 = 1 and sT

kMksk < λmin/2. It follows from these
properties, part (i), and the fact that the sequence {sk} belongs to a compact set, that there exists a
subsequence K2, a matrix M∗ ∈ Sδ1 and a unit vector s∗ such that

lim
k∈K2

wk = w∗, lim
k∈K2

Mk = M∗, lim
k∈K2

sk = s∗, J∗
As∗ = 0, and s∗TM∗s∗ ≤ λmin/2. (4.7)

Since Mk ∈ Sδk
and {δk} → 0, there also exists a sequence {x̂k} → x∗ such that sTMks ≥ λmins

Ts for all
s satisfying JA(x̂k)s = 0. Using the same argument as in the first paragraph of this proof, we find that
Z∗TM∗Z∗ � λmin, where the columns of Z∗ form a basis for the null space of J∗

A. This contradicts (4.7)
and thus (iii) must be true.

To show that part (iv) holds, we first note that strict complementarity and the LICQ imply that
there exists a number εs such that 0 < εs ≤ ε1 and

ci(x) ≥ 1
2c∗i > 0 for i ∈ I , yi ≥

1
2y∗i > 0 for i ∈ A , and JA(x) has full row rank (4.8)

for all w ∈ Bεs
(w∗). Under the current assumptions, it follows from parts (ii), (iii) and [1, Lemma 1.27]

that
the matrix K̄M (x) is nonsingular for all w ∈ Bεs

(w∗) and M ∈ Sεs
. (4.9)

Assume that (4.4a) does not hold for any ε2 ≤ εs so that there exists a monotonically decreasing
sequence {δk} → 0 such that 0 < δk ≤ εs, and associated sequences {wk} ∈ Bδk

(w∗) and {Mk} ∈ Sδk
⊆

Sεs
such that

‖K̄Mk
(xk)

−1‖2 ≥ k for all k ≥ 0. (4.10)

Since {δk} → 0 and Sεs
is compact as a result of part (i), there exists a subsequence K3 such that

limk∈K3
wk = w∗ and limk∈K3

Mk = M∗ ∈ Sεs
. It then follows from (4.9) that K̄M∗(x∗) is nonsingular.

Since limk∈K3
K̄Mk

(xk) = K̄M∗(x∗), [16, Theorem 8.64] implies that the singular values of K̄Mk
(xk)

are uniformly bounded away from zero for k ∈ K3 sufficiently large. Therefore, ‖K̄Mk
(xk)

−1‖2 must be
bounded above for all k ∈ K3, which contradicts (4.10). Thus, (4.4a) holds for some ε1 ≥ εs ≥ ε2 > 0
and β0 > 0. It also follows from (4.8) that JA(x) has full row rank, cI(x) > 0, and yA > 0 for all
w ∈ Bε2

(w∗).
We now show that equation (4.4b) holds for ε2. Let w ∈ Bε2

(w∗) and M ∈ Sε2
. Equation (4.8)

implies that the matrices

NF =




I 0 JI(x)T diag

(
cI(x)

)−1

0 diag(yA)−1 0
0 0 I



 , NM =




M JA(x)T 0

JA(x) 0 0
0 0 diag

(
cI(x)

)



 ,
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and NS = diag(I,−I, I) are nonsingular ; they satisfy NF KM (w)NS = NM so that ‖KM (w)−1‖2 ≤
‖N−1

M ‖2‖NF ‖2. It is also clear from equation (4.8) that the quantity ‖NF ‖2 is bounded for all w ∈
Bε2

(w∗), so to bound ‖KM (w)−1‖2 we must bound ‖N−1
M ‖2, but it is sufficient to bound ‖K̄M (x)−1‖2

due to equation (4.8). The result follows from equation (4.4a) and, therefore, there exists a number
β > 0 such that ‖KM (w)−1‖2 ≤ β for all w ∈ Bε2

(w∗) and M ∈ Sε2
.

Finally, we prove part (v). Let wk ∈ Bε2
(w∗), and M ∈ Sε2

. Since c∗A = 0, it follows that
system (4.6) is equivalent to

(
M JA(x)T

JA(x) 0

)(
s

y∗A − πA

)
= −

(
g(x)− JA(x)T y∗A

cA(x)− c∗A

)
. (4.11)

Equation (4.4a), norm inequalities, and Taylor expansions for g(x), cA(x), and JA(x) at the point x∗

yield s = O(‖x−x∗‖2) and πA− y∗A = O(‖x−x∗‖2). The fact that π− y∗ = O(‖x−x∗‖2) follows since
πI = 0 by construction and y∗I = 0 from the optimality conditions for problem (NP).

Our next aim is to prove a result concerning active set identification. Given a vector w, we define
the function

FKKT(w) =

(
g(x)− J(x)T y

c(x) · y

)
. (4.12)

Lemma 4.2. Let w∗ be a solution to problem (NP) that satisfies strict complementarity and the LICQ.
Then there exist numbers µ > 0 and β > 0 such that if wk ∈ Bµ/2(w

∗), M ∈ Sµ/2, and 4β‖FKKT(wk)‖2 ≤
µ then there exists a unique closest minimizer

(
xk(M), yk(M)

)
= wk(M) to the point wk for the problem

minimize
x∈Rn

1
2(x− xk)

T M(x− xk) + gT
k (x− xk)

subject to ck + Jk(x− xk) ≥ 0
(4.13)

with the following properties:

(i) ‖xk(M)− xk‖∞ ≤ ‖wk(M)− wk‖2 ≤ 2β‖FKKT(wk)‖2;

(ii) the set of constraints active at xk(M) for problem (4.13) are the same as the indices in A;

(iii) the solution wk(M) satisfies strict complementarity; and

(iv) JA(xk) has full row rank.

Proof. We begin by letting ε1 ≥ ε2 > 0 and β > 0 be the constants guaranteed by Lemma 4.1. Given
any vector-pair (w, w̄) and symmetric matrix M , we define

FM (w ; w̄) =

(
M(x− x̄) + g(x̄)− J(x̄)T y(

c(x̄) + J(x̄)(x− x̄)
)

· y

)
. (4.14)

Differentiating (4.14) we have

F ′
M (w ; w̄) =

(
M −J(x̄)T

diag(y)J(x̄) diag
(
c(x̄) + J(x̄)(x− x̄)

)
)

.
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Choosing (w, w̄) = (w∗, w∗) we have

F ′
M (w∗ ; w∗) =




M −J∗

A
T −J∗

I
T

diag(y∗A)J∗
A 0 0

0 0 diag(c∗I)





since optimality conditions at w∗ imply c∗A = 0 and y∗I = 0. It follows from (4.4a) with the choice
w = w∗ that the matrix F ′

M (w∗ ;w∗) is nonsingular and satisfies

‖F ′
M (w∗ ;w∗)−1‖ ≤ β for all M ∈ Sε2

. (4.15)

Next, choose a number µ such that 0 < µ ≤ ε2 and if w and w̄ are contained in Bµ(w∗), then the
following conditions are satisfied:

C1. if c∗i > 0 then [c(x̄) + Jk(x− x̄)]i > 0;

C2. if y∗i > 0 then yi > 0;

C3. ‖F ′
M (w ; w̄)− F ′

M (w∗ ;w∗)‖2 ≤ 1/(2β) (this estimate holds for all M);

Let wk ∈ Bµ/2(w
∗) and M ∈ Sµ/2. Since µ < µ/2 ≤ ε2 ≤ ε1, it follows from parts (ii) and (iii) of

Lemma 4.1 that JA(xk) has full row rank and that estimate (4.15) holds for M ; thus part (iv) is true.
Using the argument by Robinson [35, Lemma 1], we now show that FM (w ; wk) has a unique zero in
B̄µ/2(wk). Note that

B̄µ/2(wk) ⊂ Bµ(w∗) (4.16)

since if w ∈ B̄µ/2(wk) then

‖w − w∗‖2 ≤ ‖w − wk‖2 + ‖wk − w∗‖2 < µ/2 + µ/2 ≤ µ.

Define the function

TM (w) = w − F ′
M (w∗ ;w∗)−1FM (w ;wk) (4.17)

so that

T ′
M (w) = I − F ′

M (w∗ ;w∗)−1F ′
M (w ;wk) = F ′

M (w∗ ; w∗)−1
(
F ′

M (w∗ ;w∗)− F ′
M (w ; wk)

)
.

It follows that

‖T ′
M (w)‖2 ≤ β‖F ′

M (w∗ ; w∗)− F ′
M (w ;wk)‖2 ≤

1
2

(
use (4.15), (4.16), and C3

)

for all w ∈ B̄µ/2(wk), which implies that TM is a contraction. It also follows that

‖TM (wk)− wk‖2 ≤ β‖FM (wk ;wk)‖2
(
use (4.17) and (4.15)

)
. (4.18)

Using the triangle inequality, the fact that TM (w) is a contraction with contraction factor 1/2, equa-
tion (4.18), and the assumption that 4β‖FM (wk ;wk)‖2 ≤ µ, we have that for all w ∈ B̄µ/2(wk) the
estimate

‖TM (w)− wk‖2 ≤ ‖TM (w)− TM (wk)‖2 + ‖TM (wk)− wk‖2 ≤
1
2‖w − wk‖2 + β‖FM (wk ;wk)‖2 ≤ µ/2,
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which implies TM : B̄µ/2(wk) → B̄µ/2(wk). We may now apply the well-known fixed point result [37,
Theorem 9.23]), which states that TM has a unique fixed point wk(M) in B̄µ/2(wk) and that

‖xk(M)− xk‖∞ ≤ ‖xk(M)− xk‖2 ≤ ‖wk(M)− wk‖2 (use norm inequalities)

≤ 2‖TM (wk)− wk‖2 (estimate from fixed-point theorem)

≤ 2β‖FM (wk ;wk)‖2 (use (4.18)),

which proves part (i). Since wk(M) is a fixed point for TM (w), equation (4.17) implies that

FM (wk(M) ; wk) = 0. (4.19)

Thus wk(M) satisfies the equality conditions for being a first-order KKT point for problem (4.13).
We now show that the point wk(M) is actually a first-order KKT point for problem (4.13). Since
wk(M) ∈ B̄µ/2(wk) ⊂ Bµ(w∗), we may deduce the following: if y∗i > 0 then C2 implies [yk(M)]i > 0 and
then (4.19) implies [ck +Jk

(
xk(M)−xk

)
]i = 0; and if c∗i > 0 then C1 implies [ck +Jk

(
xk(M)−xk

)
]i > 0

and then (4.19) implies [yk(M)]i = 0. Since strict complementarity holds at w∗ by assumption, one of
these two cases must hold and, therefore, wk(M) is a first-order KKT point for the problem (4.13) that
satisfies strict complementarity and correctly identifies the optimal active set; this establishes parts (ii)
and (iii). The fact that xk(M) is a minimizer follows from parts (ii) and (iii) of Lemma 4.1. Finally,
wk(M) is the unique closest solution since any other solution would be a KKT point and, therefore, a
zero of the function FM (w ; wk). However, wk(M) is the unique zero inside B̄µ/2(wk).

4.2. Local descent properties

In this section we show that, in a neighborhood of a solution w∗, directions related to the traditional
SQP step are descent directions for the underlying model functions; this result is critical for proving
that Algorithm 4.1 has a fast rate of convergence. We use the following definition.

Definition 4.1. Given a vector v ∈ Rn and a subspace V ⊆ Rn, we define

θ(v,V) =

{
tan−1 (‖vR‖2/‖vN‖2) if ‖vN‖2 6= 0;

π/2 otherwise.
(0 ≤ θ ≤ π/2) (4.20)

to be the angle between v and V, where v = vN + vR is the unique orthogonal decomposition of v such
that vN ∈ V and vR ⊥ V.

The next result essentially says how close a vector s must be to the null space of the active constraints
to guarantee positive curvature in a neighborhood of a solution.

Lemma 4.3. Let w∗ be a solution to problem (NP) that satisfies the LICQ. Then, there exists a number
ε2 > 0 such that if w, s, and M satisfy w ∈ Bε2

(w∗), M ∈ Sε2
, and

θ
(
s,null

(
JA(x)

))
≤ θ̄

def
= min

(
π/4, tan−1

(
λmin

24βmax

))
, (4.21)

then sTMs ≥ (λmin/8)s
Ts.



22 A SECOND DERIVATIVE SQP METHOD : LOCAL CONVERGENCE

Proof. Let ε2 be defined as in part (iv) of Lemma 4.1 so that JA(x) has full row-rank for all w ∈ Bε2
(w∗).

Suppose that w ∈ Bε2
(w∗), M ∈ Sε2

, and s satisfy (4.21). If we write s = sN + sR for sN ∈ null(JA(x))

and sR ∈ range(JA(x)T ), it follows from (4.20) and (4.21) that θ = θ
(
s,null

(
JA(x)

))
satisfies

‖sR‖2
‖sN‖2

= tan(θ) ≤ 1. (4.22)

Using the orthogonal decomposition of s, parts (ii) and (iii) of Lemma 4.1, the Cauchy-Schwarz in-
equality, definition of βmax, and equations (4.22) and (4.21), we have

sTMs

sTs
=

sN

T MsN + sR

T MsR + 2sN

T MsR

‖sN‖
2
2 + ‖sR‖

2
2

≥
(λmin/2)sN

TsN − βmax‖sR‖
2
2 − 2βmax‖sR‖2‖sN‖2

‖sN‖22 + ‖sR‖22
≥ λmin/4− βmax tan2(θ)− 2βmax tan(θ)

≥ λmin/4− 3βmax tan(θ) ≥ λmin/8,

which completes the proof.

We now show that in the neighborhood of a solution w∗, the (unique) solution to

minimize
s∈Rn

g(x)Ts + 1
2sTMs subject to cA(x) + JA(x)s = 0 (4.23)

satisfies a certain “descent” property for the underlying models (under certain assumptions).

Lemma 4.4. Let w∗ be a minimizer for problem (NP) that satisfies the LICQ and strict complemen-
tarity and suppose that σ > ‖y∗‖∞. It follows that there exist positive numbers c2 and ε3 such that if
w ∈ Bε3

(w∗) and M ∈ Sε3
then problem (4.23) is well-defined and the solution sT satisfies

(
g(x) + σJ(x)T z

)T
sT < −c2‖sT‖

2
2 for z =

{
0 if c(x) ≥ 0;

−1 otherwise.
(4.24)

Proof. Strict complementarity implies the existence of a scalar κS > 0 such that

y∗A ≥ κSe > 0. (4.25)

We define θ̄ as in Lemma 4.3 and choose positive scalars κJ and ε3 so that the following hold for all
w ∈ Bε3

(w∗) and M ∈ Sε3
:

1. ε3 ≤ ε2, where ε2 is defined in Lemma 4.3;

2. ‖J(x)T ‖2‖(J(x)J(x)T )−1‖2 ≤ κJ;

3. the system (
M JA(x)T

JA(x) 0

)(
s
−q

)
= −

(
g(x)− JA(x)T yA

cA(x)

)
(4.26)

has a unique solution (s, q) that satisfies
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a. (κS/2)e ≤ yA + q ≤ σ(1 − κσ)e for some κσ > 0;

b. ‖s‖2 ≤ min(1, c1), where

c1 =
κ sin(θ̄)

2κJβmax

> 0 and κ = min
(κS

2
, σκσ

)
> 0; and (4.27)

c. if c∗i > 0 then ci(x) +∇ci(x)Ts > 0.

Condition 2 can be satisfied since J∗
A has full row rank. Condition 1 is well-defined since the assumptions

of this theorem imply that the assumptions of Lemma 4.3 hold. Since ε3 ≤ ε2, parts (ii), (iii) and (iv)
of Lemma 4.1 combined with [1, Lemma 1.27] guarantee that problem (4.23) has a unique solution, say
sT, and the optimality conditions show that (sT, qT) satisfies system (4.26), where qT is the step from
y to the Lagrange multiplier vector for problem (4.23). Note that we can make the solution (sT, qT)
arbitrarily small in norm since the target vector in system (4.26) converges to zero as w converges to
w∗. This observation, equation (4.25), and the assumption σ > ‖y∗‖∞, guarantee that we can satisfy
conditions 3a and 3b for some κσ > 0.

Now let w ∈ Bε3
(w∗), M ∈ Sε3

, and (sT, qT) denote the solution to problem (4.23) so that it satisfies
system (4.26). For convenience we “scatter” the vector qT, which has length equal to the size of the
indexing set A, into a vector qTF ∈ Rm so that [qTF]i = 0 if i /∈ A. We also partition the constraints up
into four types: I, II, III, and IV (see Figure 1); 3a and the properties of sT guarantee that these are
the only possibilities.

[ck + Jks]i = 0

xk

F
sT

(a) Active - type I.

[ck + Jks]i = 0xk

F

sT

(b) Active - type II.

[ck + Jks]i = 0
F

sT

xk

(c) Active - type III.

[ck + Jks]i = 0

xk

F

sT

(d) Inactive - type IV.

Figure 1: The only four possibilities in a small enough neighborhood of the solution w∗. (a) For type
I, we have ci(xk) > 0, c∗i = 0, and ∇ci(xk)

TsT < 0. (b) For type II, we have ci(xk) = 0, c∗i = 0, and
∇ci(xk)

TsT = 0. (c) For type III, we have ci(xk) < 0, c∗i = 0, and ∇ci(xk)
TsT > 0 . (d) For type IV, we

have c∗i > 0.
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Note that ∇ci(x)T sT < 0 for i ∈ I, ∇ci(x)T sT = 0 for i ∈ II and ∇ci(x)T sT > 0 for i ∈ III. It then
follows from system (4.26), the definitions of qTF and z, condition 3a, and the definition of κ that

(
g(x) + σJ(x)T z

)T
sT = −sT

TMsT + (JA(x)sT)T[y + qTF]A + σzT (J(x)sT)

= −sT

TMsT +
∑

i∈I

(∇ci(x)T sT)[y + qTF]i +
∑

i∈III

(∇ci(x)T sT)[y + qTF − σe]i

≤ −sT

TMsT +
κS

2

∑

i∈I

(∇ci(x)T sT)− σκσ

∑

i∈III

(∇ci(x)T sT)

≤ −sT

TMsT − κ
∑

i∈I∪II∪III

|∇ci(x)T sT| = −sT

TMsT − κ‖JA(x)sT‖1. (4.28)

We now develop a lower bound on ‖JA(x)sT‖1.
Let sT = sR

T
+ sN

T
be the orthogonal decomposition of sT such that sR

T
∈ range(JA(x)T ) and sN

T
∈

null(JA(x)). It follows that there exists a vector r such that JA(x)T r = sR

T
and, therefore,

‖sR

T
‖2 ≤

∥∥JA(x)T
∥∥

2
‖r‖2 and JA(x)sT = JA(x)sR

T
= JA(x)JA(x)Tr. (4.29)

Using the nonsingularity of JA(x)JA(x)T and norm inequalities, we have

‖r‖2 ≤
∥∥∥
(
JA(x)JA(x)T

)−1
∥∥∥

2
‖JA(x)sT‖2. (4.30)

This inequality, equation (4.29) and condition 2, imply

‖JA(x)sT‖2 ≥
‖r‖2∥∥∥

(
JA(x)JA(x)T

)−1
∥∥∥

2

≥
‖sR

T
‖2∥∥∥

(
JA(x)JA(x)T

)−1
∥∥∥

2
‖JA(x)T‖2

≥
‖sR

T
‖2

κJ

. (4.31)

Using this inequality, norm inequalities, and the fact that ‖sR

T
‖2 = sin(θ)‖sT‖2, we have

‖JA(x)sT‖1 ≥ ‖JA(x)sT‖2 ≥
(
sin(θ)‖sT‖2

)
/κJ. (4.32)

Combining this with equation (4.28) we have

(
g(x) + σJ(x)T z)T sT ≤ −sT

TMsT −
(
κ sin(θ)‖sT‖2

)
/κJ. (4.33)

We consider two cases. First suppose that sT

TMsT ≥ (λmin/8)sT

TsT. Then it immediately follows from
equation (4.33) that (

g(x) + σJ(x)T z
)T

sT ≤ −(λmin/8)‖sT‖
2
2. (4.34)

Next, suppose that sT

TMsT < (λmin/8)sT

TsT. Lemma 4.3 then implies that 0 < θ̄ < θ and, therefore,
0 < sin(θ̄) < sin(θ). We can then use this fact, equation (4.33), the Cauchy-Schwarz inequality, the
definition of βmax, and condition 3b to conclude

(
g(x) + σJ(x)T z

)T
sT ≤ ‖sT‖

2
2‖M‖2 − (κ sin(θ̄)‖sT‖2)/κJ

≤ ‖sT‖2
(
βmax‖sT‖2 − (κ sin(θ̄))/κJ

)

≤ −
κ sin(θ̄)

2κJ

‖sT‖2 ≤ −
κ sin(θ̄)

2κJ

‖sT‖
2
2. (4.35)
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If we define

c2 = min

(
λmin

8
,

κ sin(θ̄)

2κJ

)
> 0, (4.36)

then it follows from equations (4.34) and (4.35) that

(
g(x) + σJ(x)T z

)T
sT ≤ −c2‖sT‖

2
2, (4.37)

which completes the proof.

With a little more effort, we can show that the step from the Cauchy step sCP

k to the solution of
problem (4.23) is a descent direction for the underlying models. Since the Cauchy step is computed
from the predictor step, it is imperative that we choose Bk so that sP

k has desirable properties. The
results in Section 4.1 suggest that we make the following assumption.

Assumption 4.1. There exists a number λB
min

> 0 such that the sequence of positive-definite matrices
{Bk} defined in Algorithm 4.1 satisfies

sTBks ≥ λB
min

sTs for all s ∈ Rn and all k ≥ 0.

We now show that in the neighborhood of a solution w∗, the (unique) solution to

minimize
s∈Rn

(gk + MsCP

k

)T
s + 1

2sTMs subject to cA(xk) + JA(xk)(s
CP

k + s) = 0 (4.38)

is a descent direction for the underlying model determined by the matrix M (under certain assump-
tions).

Lemma 4.5. Let w∗ be a minimizer for problem (NP) that satisfies the LICQ and strict complemen-
tarity and assume that σk > ‖y∗‖∞, that Assumption 4.1 holds, and ‖Bk‖2 ≤ bB for some bB > 0. It
follows that there exist positive numbers c2 and ε4 such that if iterate k− 1 is successful, wk ∈ Bε4

(w∗)
and M ∈ Sε4

, then problem (4.38) is well-defined and the solution sT satisfies

(gk + MsCP

k + σkJ
T
k zk)

T sT < −c2‖sT‖
2
2 for [zk]i =

{
0 if i ∈ Vk,

−1 if i ∈ Sk,
(4.39)

where Vk = {i : [ck + Jks
CP

k ]i < 0} and Sk = {i : [ck + Jks
CP

k ]i ≥ 0}.

Proof. Since the proof is very similar to Lemma 4.4, we only point out the differences. First, by
choosing λmin ≤ λB

min
, we have that Bk ∈ Sε for all ε > 0. Second, since σk > ‖y∗‖∞ the predictor

subproblem (1.4) is equivalent to problem (4.13) for the choice M = Bk provided that the trust-region
constraint is inactive. Third, Lemma 4.2 shows that the solution to problem (4.13) with M = Bk

correctly identifies the optimal active set if wk is sufficiently close to w∗, so that the solution satisfies
system (4.6). Equation (4.5) then shows that we can make the solution to problem (4.13) arbitrarily
small by choosing wk sufficiently close to w∗. Fourth, since iteration k−1 is successful by assumption, we
know that the predictor trust-region radius is at least as large as ∆R for iteration k (see Algorithm 4.1).
Combining all of this together, we know that there exists a positive number ε4 < µ/2 (µ is defined in
Lemma 4.2) such that if wk ∈ Bε4

(w∗) then the trust-region in the predictor step will be inactive, sP

k

correctly identifies the optimal active set (see Figure 2), and ‖sP

k‖2 is as small as we wish. The system
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[ck + Jks]i = 0

xk

F

s
P

k

s
CP

k

sT

(a) Active - type I.

[ck + Jks]i = 0xk

F

s
CP

k sT

(b) Active - type II.

[ck + Jks]i = 0

xk

F

s
P

k

s
CP

k

sT

(c) Active - type III.

[ck + Jks]i = 0

xk F

s
P

k

s
CP

k

sT

(d) Inactive - type IV.

Figure 2: The only four possibilities in a small enough neighborhood of the solution w∗. (a) For type
I, we have ci(xk) > 0, c∗i = 0, and ∇ci(xk)

TsT < 0. (b) For type II, we have ci(xk) = 0, c∗i = 0, and
∇ci(xk)

TsT = 0. (c) For type III, we have ci(xk) < 0, c∗i = 0, and ∇ci(xk)
TsT > 0 . (d) For type IV, we

have c∗i > 0.

that arises in place of (4.26) is

(
M JA(x)T

JA(x) 0

)(
s
−q

)
= −

(
g(x)− JA(x)T yA + MsCP

k

cA(x) + JA(xk)s
CP

k

)
, (4.40)

but since ‖sCP

k ‖2 ≤ ‖s
P

k‖2 we can ensure – by possibly decreasing ε4 – that parts 3a and 3b of Lemma 4.4
are once again satisfied. The rest of the proof is identical.

4.3. Local convergence with an SEQP step

Our first rate of convergence result for Algorithm 4.1 assumes that the SQP step is computed from
subproblem (SEQP) as discussed in [19, Section 2.3.2]. We restate this subproblem for convenience:

(SEQP) minimize
s∈Rn

f̄k + (gk + Hks
P

k)T s + 1
2sT Hks

subject to [Jks]A(sP

k ) = 0, ‖s‖2 ≤ ∆S

k,

where A(sP

k) = {i : [ck + Jks
P

k ]i ≤ 0} and f̄k = fk + gT
k sP

k + 1
2sP

k
T Hks

P

k . Since this subproblem only
defines multipliers for the constraints whose indices are in the set A(sP

k), we form yS

k by ”scattering”
the multipliers from subproblem (SEQP) into the appropriate locations of a zero-vector of length m.

Theorem 4.1. (SEQP local convergence result) Let w∗ be a minimizer for problem (NP) that
satisfies the strong second-order sufficient conditions as given by Definition 1.5. Let Assumption 4.1
hold and suppose that σk ≡ σb > ‖y∗‖∞ and ‖Bk‖2 ≤ bB for some bB > 0 and σb > 0 and for
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all k ≥ 0, the SQP step is computed from subproblem (SEQP) with the choice Hk ≡ H(xk, y
F

k), and
max fails ≥ 1 in Algorithm 4.1. It follows that there exists a positive number δ, such that if the SQP
step is computed for every iteration once the first successful iterate of Algorithm 4.1 is contained in
Bδ(w

∗) then the sequences of iterates {xk} and {yk} generated by Algorithm 4.1 converge to x∗ and y∗

at a Q-superlinear and R-superlinear rate, respectively. Moreover, if H(w) is Lipschitz continuous in
a neighborhood of w∗, then they convergence at a Q-quadratic and R-quadratic rate, respectively.

Proof. We begin by setting λmin = min(λH
min

/2, λB
min

) and βmax = max(bB , ‖H∗‖2 + 1) in the definition
of S(x ; x∗) as given by (4.2), and by letting β, ε1, ε2, and µ be the positive constants guaranteed
by Lemmas 4.1 and 4.2; note that they satisfy 0 < µ ≤ ε2 ≤ ε1 by construction, so that part (ii) of
Lemma 4.1 implies

Bµ/2(w
∗) ⊆ Bµ(w∗) ⊆ Bε2

(w∗) ⊆ Bε1
(w∗) and Sµ/2 ⊆ Sµ ⊆ Sε2

⊆ Sε1
, (4.41)

where Sε is defined by (4.2) and (4.3). By possibly decreasing µ, we can also guarantee that if w and
w̄ are contained in Bµ(w∗), then the following conditions are satisfied:

C1. ‖y − y∗‖∞ < σb − ‖y
∗‖∞;

C2. ‖H
(
x, yF(x)

)
‖2 ≤ ‖H

∗‖2 + 1, where yF(x) is any estimate satisfying yF(x)− y∗ = O(‖x− x∗‖2);

C3. sTH
(
x, yF(x)

)
s ≥ (λH

min
/2)sTs for all s satisfying J∗

As = 0;

C4. Newton’s Method applied to the function FN in equation (4.1) converges from the point w to
w∗; moreover, the Newton update w+ to w satisfies ‖w+ − w∗‖2 ≤ ‖w − w∗‖2 (see Dennis and
Schnabel [11, Theorem 5.2.1].

With µ defined, we now pick δ∆ > 0 so that

C5. δ∆ ≤ min
(
µ/2, ε4

)
, where ε4 is defined in Lemma 4.5; and

C6. δ∆ ≤ ηc∆R/2, where 0 < ∆R ≤ ∆U and ηc are used in Algorithm 4.1.

Finally, we choose δ > 0 so that

C7. δ ≤ min(µ/2, ε4), where ε4 is defined in Lemma 4.5; and

C8. if w ∈ Bδ(w
∗), then the following bound on the KKT equality conditions is satisfied:

‖fKKT(w)‖2 =

∥∥∥∥

(
g(x)− J(x)T y

c(x) · y

)∥∥∥∥
2

<
1

4β
min (δ∆, ηc∆R) .

Now let k − 1 be the first successful iterate generated by Algorithm 4.1 such that wk ∈ Bδ(w
∗). By

construction of Algorithm 4.1 and the fact that the SQP trust-region scale factor satisfies τf ≥ 1, we
have

∆P

k ≥ ∆R > 0 and ∆S

k ≥ τf∆R ≥ ∆R > 0. (4.42)

Since equation (4.41) and C7 imply that wk ∈ Bµ/2(w
∗), it follows from C8, Lemma 4.2, and (4.42)

that JA(xk) has full row rank and if M ∈ Sµ/2 then xk(M) correctly identifies the optimal active set
and satisfies

‖xk(M)− xk‖∞ ≤ 2β‖FM (wk ; wk)‖2 ≤
1
2 min(δ∆, ηc∆R) ≤ 1

2ηc min(∆P

k ,∆S

k). (4.43)
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We now observe that Bk ∈ Sµ/2 by construction and is, in fact, positive definite. Furthermore, since
C1 implies σk = σb > ‖yk(Bk)‖∞ and equation (4.43) implies ‖xk(Bk) − xk‖∞ ≤ (ηc/2)∆

P

k < ∆P

k, we
must have wP

k = wk(Bk). Thus the solution to the predictor subproblem satisfies sP

k = xk(Bk) − xk,
correctly identifies the optimal active set, and is not restricted by the trust-region constraint, i.e., sP

k

is the solution to (4.23) with M = Bk.

Next we observe that C2 and C3 imply that Hk ∈ S(x∗;x∗) ⊂ Sµ/2. Therefore, the point wk(Hk)
is well-defined, identifies the optimal active set, and is the unique minimizer of problem (4.13) in a
neighborhood of wk for M = Hk. Since JA(xk) has full row rank, it follows from (4.41), part (iii)
of Lemma 4.1, and [1, Lemma 1.27] that subproblem (SEQP) has sS

k as a unique solution. It follows
that if ‖xk(Hk) − (xk + sP

k)‖2 ≤ ∆S

k, then sS

k = xk(Hk) − (xk + sP

k) (see Figure 3). Using the triangle
inequality, the definition of wk(Bk), and equation (4.43), we have

‖xk(Hk)−(xk+sP

k)‖2 ≤ ‖xk(Hk)−xk‖2+‖s
P

k‖2 = ‖xk(Hk)−xk‖2+‖xk(Bk)−xk‖2 ≤ ηc∆
S

k ≤ ∆S

k. (4.44)

Thus, if sP

k + sS

k satisfies condition (1.7) then sk = sP

k + sS

k and it follows that xk + sk = xk(Hk) and
yS

k = yk(Hk). We now show that this is the case. If sT 6= 0 then C5 and Lemma 4.5 show that the
vector sT, which satisfies sCP

k + sT = xk(Hk), is a descent direction for the model MH

k. Therefore,
MH

k(sP

k + sS

k) < MH

k(sCP

k ) so that condition (1.7) is satisfied by sP

k + sS

k. On the other hand, if sT = 0
then it follows that sP

k = sCP

k and sS

k = 0, so that sP

k + sS

k = sCP

k trivially satisfies condition (1.7).

If xk + sk is a successful step, then xk+1 ← xk + sk; otherwise, the update xk+1 ← xk + sk is still
made since max fails ≥ 1 , but a nonmonotone phase is entered. In either case, the vector wk+1 is
the same vector that is obtained by performing one step of Newton’s Method on the function FN (see
equation (4.1)) from the point (xk, y

F

k) with the understanding that yk+1 is formed by “scattering” yS

k

into a zero-vector of length m. Since Algorithm 4.1 makes the assignment wk+1 ← wS

k, it follows from
C4 that wk+1 ∈ Bδ(w

∗) and so the same argument may be repeated starting from the point wk+1; this
results in a vector wk+2 that has the same properties as wk+1 and is, in fact, equivalent to performing
one step of Newton’s Method on the function FN from the point (xk+1, y

F

k+1) . The only difference in
the argument is that the predictor and SQP trust-region radii are only guaranteed to be bigger than
ηc∆R since the predictor trust-region radius may be contracted if the point wk+1 was not successful.
However, conditions C1–C8 were chosen to ensure that all the previous estimates still hold. It is shown
in [9, Section 15.3.2.3] that this process is sufficient for avoiding the Maratos effect provided the ratio
rk of actual to predicted decrease in the merit function is defined using the strategy in Algorithm 4.1;
therefore, wk+2 will be accepted by the ℓ1-merit function. This argument can clearly be repeated so
that every remaining step will be accepted. As for rate of convergence, we have from [28, Theorem 11.2]
and C2 that (

xk+1 − x∗

yk+1 − y∗

)
= o

(∥∥∥∥

(
xk − x∗

yF

k − y∗

)∥∥∥∥
2

)
= o (‖xk − x∗‖2) (4.45)

so that {x∗
k} and {yk} converge to x∗ and y∗ Q-superlinearly and R-superlinearly, respectively (see [29,

Chapter 9] for a description of Q and R convergence); C2 also shows that {yF

k} converges to y∗ R-
superlinearly. If H(w) is locally Lipschitz continuous then a similar argument shows that {xk} converges
to x∗ Q-quadratically and that {yk} and {yF

k} converge to y∗ R-quadratically.

Lemma 4.6. Let w∗ be a minimizer for problem (NP) that satisfies the LICQ and strict complemen-
tarity and suppose that σk > ‖y∗‖∞, that Assumption 4.1 holds, and ‖Bk‖2 ≤ bB for some bB > 0 and
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k
xk(Hk) [ck + Jks]i = 0
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x
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F

Figure 3: A depiction of the scenario in Theorem 4.1. The following quantities are displayed: xk is
the current iterate, sP

k is the predictor step, xP

k is the predictor point, sCP

k is the Cauchy step, sS

k is the
SQP step as computed from problem (SEQP), ∆S

k is the SQP trust-region radius, sT is the solution to
problem (4.38), xk(Hk) is the first n components of wk(Hk), which is the closest minimizer to wk for
problem (4.13) with the choice M = Hk, and F denotes the feasible side of the constraint [ck +Jks]i ≥ 0.

all k ≥ 0. Then there exists a scalar δP > 0 such that if iterate k − 1 is successful and wk ∈ BδP(w∗),
then

yP

k − y∗ = O(‖xk − x∗‖2) and [yP

k ]I = 0, (4.46)

where yP

k are the multipliers for the predictor subproblem (1.5).

Proof. Let δP be defined to satisfy conditions C5–C8 of Theorem 4.1. It follows, just as in the proof
of Theorem 4.1, that sP

k = xk(Bk) − xk and that sP

k is the unique solution to problem (4.23) with
the choice M = Bk. This implies that (sP

k , yP

k ) satisfies system (4.6) (π = yP

k ) so that (4.46) follows
from (4.5).

4.4. Local convergence with an SIQP step

We now consider the rate of convergence for Algorithm 4.1 when the SQP step is computed from
subproblem (SIQP-E) as described in [19, Section 2.3.1]. We restate this subproblem for convenience:

(SIQP-E) minimize
s∈Rn

f̄k + (gk + Hks
CP

k )T s + 1
2sTHks + σk‖[ck + Jk(s

CP

k + s)]−Vk
‖1

subject to [ck + Jk(s
CP

k + s)]Sk
≥ 0,

(gk + Hks
CP

k + σkJ
T
k zk)

T s ≤ 0, ‖s‖∞ ≤ ∆S

k,

where zk ∈ Rm is defined by (4.39), f̄k = fk + gT
k sCP

k + 1
2sCP

k
T Hks

CP

k , and (gk + Hks
CP

k + σkJ
T
k zk)

T s ≤ 0
is the so-called “descent-constraint”.

We begin by making two observations. First, since problem (SIQP-E) is generally a nonconvex
inequality constrained QP, we will need to assume that the solution sS

k is one of minimal norm; a
similar assumption is made by Robinson in [36, Section 3]. Although this assumption is not ideal,
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it is not too offensive within our setting; if we use an active-set QP solver with a hot start based
on the active set obtained from the predictor step, then the solution to subproblem (SIQP-E) will
ultimately be the same as the solution to subproblem (SEQP). Theorem 4.1 validates that this is a
good step and, therefore, if this strategy is used then the “minimum-norm solution” assumption is not
necessary. The second observation is that if the SQP step is chosen to be one of minimal norm, then
the proof of Theorem 4.1 carries over since 1) the Cauchy step sCP

k satisfies ‖sCP

k ‖∞ ≤ ‖s
P

k‖∞; 2) the
vector xk(Hk) − sCP

k is a solution to subproblem (SIQP-E); and 3) Lemma 4.5 guarantees that the
descent-constraint does not interfere with the step from sCP

k to xk(Hk).

Theorem 4.2. (SIQP-E local convergence result) Let w∗ be a minimizer for problem (NP) that
satisfies the strong second-order sufficient conditions as given by Definition 1.5. Let Assumption 4.1
hold and assume that σk ≡ σb > ‖y∗‖∞ and ‖Bk‖2 ≤ bB for some bB > 0 and σb > 0 and all
k ≥ 0, the SQP step is computed from subproblem (SIQP-E) with the choice Hk ≡ H(xk, y

F

k), and
max fails ≥ 1 in Algorithm 4.1. It follows that there exists a positive number δ, such that if the SQP
step is a solution of minimal-norm and is computed for every iteration once the first successful iterate of
Algorithm 4.1 is contained in Bδ(w

∗), then the sequences of iterates {xk} and {yk} converge to x∗ and
y∗ at a Q-superlinear and R-superlinear rate, respectively. Moreover, if H(w) is Lipschitz continuous
in a neighborhood of w∗, then they converge at a Q-quadratic and R-quadratic rate, respectively.

Proof. Follows from the proof of Theorem 4.1, the discussion above, and Lemma 4.4.

5. Numerical results

We tested Algorithm 4.1 on the Hock-Schittkowski (HS) [23] test problems. The HS test suite is
comprised of generally small and dense problems that are very useful during early stages of code
development; the small size of the problems allows for relatively careful inspection of each problem.
We note that problem HS87 has been removed from the test set since the objective function is not
continuous.

Table 1 on page 35 gives our preliminary numerical results for Algorithm 4.1; column Prob is the
name of the test problem, column #fc is the number of function evaluations, and column #gJ is the
number of gradient evaluations. If the quantity #fc - #gJ is positive, then its value represents the
number of unsuccessful iterations, i.e., the number of times that the trust-region radii were necessarily
decreased in order to obtain good agreement between the faithful model MH

k and the merit function φ.
The only failure was problem HS116 and we denote this with an F.

The following parameters were used: primal/dual/complementarity slackness tolerances τp = 1.0e−5,
τd = 1.0e−5 and τc = 1.0e−5; successful/very successful tolerances ηS = 0.01 and ηVS = 0.7; maximum
predictor trust-region radius ∆U = 1000; trust-region “reset” radius ∆R = 1.0e−4; SQP trust-region
scale factor τf = 4.0; number of nonmonotone steps allowed max fails = 1; and trust-region contraction
and expansion factors ηc = 0.1 and ηe = 5.0. Since the problems in the test set are of small dimension,
we chose to update the positive-definite matrix Bk by using the BFGS update. To perform this update,
we used the vectors sk and dk = ∇xL(xk + sk, yk+1)−∇xL(xk, yk+1). If these vectors did not result in
a sufficiently positive-definite update, then we used the damped vectors given by equations (2.11) and
(2.12). For simplicity, we chose B0 = I.

In [19], we developed a globally convergent algorithm that allows much flexibility in how the SQP
step is computed—it may be computed from any of the three subproblems discussed in [19, Section 2.3].
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In this paper we have shown that if the SQP step is computed from either subproblem (SEQP) on
page 26 [19, Section 2.3.2] or subproblem (SIQP-E) on page 29 [19, Section 2.3.1], then we may expect
superlinear convergence; it remains an open question of whether the predictor step may be combined
with an appropriate “correction step” [19, Section 2.3.3] and still avoid the Maratos effect. This
deserves further investigation since if this is the case, then fast convergence would be guaranteed
without the need for a nonmonotone approach. However, for the preliminary results given here, we
chose to solve subproblem (SIQP-E) for the SQP step with the choice Hk ≡ H(xk, y

P

k ), where yP

k is
the multiplier vector from the predictor subproblem. This initial choice was made to examine whether
“solving” (potentially) indefinite quadratic programs with the additional so-called descent-constraint is
a reasonable strategy; the results are promising. We solved both the (convex) quadratic program (1.5)
and the (generally indefinite) quadratic program (SIQP-E) using the GALAHAD [18] package QPC, which
is a “cross-over” QP solver. In the first phase, QPC calls the GALAHAD interior-point QP solver QPB [8]
to compute an approximate solution and an estimate of the optimal active set. In the second phase,
QPC calls the GALAHAD active-set QP solver QPA [20] to “refine” the approximate solution from the first
phase. We should mention that most of the GALAHAD packages, including the QP solvers mentioned
above, use the sparse solvers MA48, MA57, and MA61 from [24] to handle the required unsymmetric,
symmetric, and positive-definite systems. The modular design of all the GALAHAD packages makes it
easy to call these subroutines as needed.

The better understood alternative of solving subproblem (SEQP) for the SQP step has not yet been
implemented, but we fully expect good results for two reasons. First, Theorem 4.1 shows that under
certain assumptions the resulting iterates are guaranteed to converge fast. Second, in essentially simul-
taneous work, Morales, Nocedal, and Wu [27] have been developing an ℓ1-SQP line-search algorithm
based on subproblem (SEQP) in which the optimal active set is predicted by solving a convex QP.
During initial testing, the authors have reported that this additional equality constrained subproblem
has substantially improved performance.

6. Conclusions and future work

In [19], we proved global convergence of a second-derivative SQP method for minimizing the ℓ1-penalty
function for a fixed value of the penalty parameter. This algorithm requires the definition of a positive-
definite matrix that approximates the Hessian of the Lagrangian; in Section 2 we considered two
possibilities. The first was a simple diagonal approximation that attempted to crudely estimate the
size of the Hessian of Lagrangian. The second approach used a limited-memory BFGS update. We
proceeded to show how the resultant dense QP could be transformed into an equivalent QP whose
sparsity is essentially the same as the initial approximation (which will be sparse in practice). In
Section 3 we gave details on a simple strategy for updating the penalty parameter based on minimizing
the ℓ1-penalty function over a sequence of increasing values of the penalty parameter. This idea is
certainly not new [34,25,38,30,42,3,26], but the details are rarely (if ever) published. The main result of
that section is that the penalty parameter will stay uniformly bounded and that an approximate solution
to the nonlinear programming problem will be computed in a finite number of iterations. However, the
primary purpose of this paper was to study the local convergence properties of a nonmonotone variant
of the algorithm given in [19]. In Section 4 we gave two local convergence results—the first applies when
the SQP step is computed from an equality constrained subproblem (the so-called SEQP approach)
and the second applies when the SQP step is computed from an inequality constrained subproblem
(the so-called SIQP approach). Both results show superlinear convergence of the iterates to a solution
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satisfying the strong second-order sufficiency conditions; under slightly stronger assumptions on the
second-derivatives, the convergence is quadratic. We note that the second convergence result required
that the so-called “descent-constraint” be inactive at a “minimum-norm” solution to problem (SIQP-
E) on page 29; this result was presented as Lemma 4.5. In Section 5 we gave preliminary numerical
results for the Hock-Schittkowski test problems for the case that the SQP step is computed from the
inequality constrained subproblem (SIQP-E). Although this requires “solving” an indefinite quadratic
program, which is generally perceived as a bad idea, the results we have obtained are very promising.

There are still many ideas to be explored and options to be added to our evolving and (soon to
be) freely available Fortran 95 GALAHAD [18] package S2QP. First, we plan to implement the equality
constrained SQP subproblem (SEQP) on page 26. We anticipate that this step will be crucial for
solving very large problems efficiently since they are generally inexpensive to solve. Second, we want
to explore whether solving an SQP subproblem with perturbed constraints (a “correction step”) is
sufficient for avoiding the Maratos effect. If this is the case, then the nonmonotone algorithm discussed
in this paper would not be necessary. Third, we plan on experimenting with modern approaches for
adjusting/defining the trust-region radius [13,14,39] as well as exploring new possibilities. Fourth, we
plan on exploring the impact of removing the trust-region constraint from the predictor step compu-
tation; the problem is strictly convex and, therefore, well-defined without this constraint. Fifth, we
want to investigate the notion of “steering”, as it pertains to our setting, as a reliable strategy for
dynamically updating the penalty parameter. Finally, we plan on extensively testing the package on
larger problems from the CUTEr [17] test set.
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Table 1: Numerical results for Algorithm 4.1 on the Hock-Schittkowski (HS) test problems. Column
Prob is the name of the test problem, #fc the number of function evaluations, and #gJ the number of
gradient evaluations.

Prob #fc #gJ Prob #fc #gJ Prob #fc #gJ

HS1 46 25 HS39 12 11 HS78 4 4

HS2 11 8 HS40 4 4 HS79 5 5

HS3 3 3 HS41 2 2 HS80 7 7

HS4 3 2 HS42 6 6 HS81 6 6

HS5 10 6 HS43 7 7 HS83 6 6

HS6 3 3 HS44 2 2 HS84 4 4

HS7 10 9 HS45 3 3 HS85 8 8

HS8 6 6 HS46 16 16 HS86 4 4

HS9 3 3 HS47 15 15 HS88 20 18

HS10 10 10 HS48 2 2 HS89 23 21

HS11 6 6 HS49 16 16 HS90 44 33

HS12 7 7 HS50 9 9 HS91 43 32

HS13 15 12 HS51 2 2 HS92 35 25

HS14 5 5 HS52 2 2 HS93 18 15

HS15 7 7 HS53 2 2 HS95 3 3

HS16 4 4 HS54 9 9 HS96 3 3

HS17 7 7 HS55 2 2 HS97 4 4

HS18 9 8 HS56 110 82 HS98 4 4

HS19 6 6 HS57 8 6 HS99 5 5

HS20 8 8 HS59 10 9 HS100 10 9

HS21 2 2 HS60 7 7 HS101 34 27

HS22 2 2 HS61 5 5 HS102 28 21

HS23 6 6 HS62 12 6 HS103 26 20

HS24 3 3 HS63 7 7 HS104 17 14

HS25 1 1 HS64 15 15 HS105 21 14

HS26 17 17 HS65 6 6 HS106 103 101

HS27 12 11 HS66 4 4 HS107 6 6

HS28 2 2 HS67 7 7 HS108 12 9

HS29 6 6 HS68 27 20 HS109 9 9

HS30 10 10 HS69 24 19 HS110 9 5

HS31 8 8 HS70 21 17 HS111 28 23

HS32 3 3 HS71 5 5 HS112 11 11

HS33 5 5 HS72 16 15 HS113 5 5

HS34 9 8 HS73 3 3 HS114 142 142

HS35 2 2 HS74 8 8 HS116 F F

HS36 3 3 HS75 8 8 HS117 10 10

HS37 5 5 HS76 2 2 HS118 3 3

HS38 84 38 HS77 12 12 HS119 7 7
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