Computer Processable English and McLogic

Jana Sukkarieh and Stephen Pulman™

University of Cambridge Computer Laboratory,
New Museums Site,
Cambridge CB2 3QG, UK.
England
{Jana.Sukkarieh, Stephen.Pulman}@cl.cam.ac.uk

September 15th, 1998

Abstract

This paper describes an experimental system which uses an artificially restricted
subset of English (CPE) for knowledge representation and program specification, fol-
lowing a line of work described in Macias and Pulman 1995 [3], and Pulman 1996 [5].
The present work differs from its antecedents in several ways, the most obvious being
that the target representation language is a natural-language oriented logic developed
by McAllester [2], [4](which we call McLogic). We describe extensions to McLogic
designed to allow for greater expressivity in the dialect of CPE used; an inference
system for McLogic; and two experimental applications: the first is a well-known ex-
ample from the Z programme specification literature (‘Wing’s library problem’) and
the second a well-known test case for theorem provers (‘Schubert’s Steamroller’).

Keywords: controlled language, knowledge representation, theorem proving.

1 Introduction

Our eventual aim is to be able to use a simplified subset of English which is completely
syntactically and semantically processable by a machine to carry out various knowledge
representation and system specification tasks. We call this type of English ‘Computer
Processable English’ to distinguish it from the real thing, which is much more ambiguous,
elliptical, and difficult to process.

In the abstract, both of our intended application areas can be characterised as the
performance of the following task:

1 Given FEnglish utterances Uy, ..., U, and an Fnglish utterance C, a machine has to decide
whether C follows from Uy A ... AU,

*Also at SRI International, Cambridge

Obviously, undecidability and complexity issues mean that there is no completely general
solution for this problem. Therefore, we consider a variant problem, as follows:

2 Given a set of premises S={Uy,...,U,} (n > 1), where U;s belong to a restricted
dialect of English Language U, and a queried conclusion C € U for which it is guar-
anteed that it is possible to know whether C follows from S or is negated by S, the goal is
to reach the right answer and to formulate transparent arguments which prove
that the answer is valid (not a guess nor a reasoning mistake) in a reasonable time, by
using a representation language that is expressive and at the same time computationally
efficient.

The subset U is a dialect of Computer Processable English (CPE) [5]. The representation
language, which we call McLogic, is an extension of the one defined in [2], [4]. This
is a system for first-order logic (with one or two higher order extensions) which for our
purposes has two possible advantages: firstly, the syntax is relatively English-like, making
for transparency in the process of formulating and reasoning with specifications; and
secondly, it has a polynomial-time inference procedure.

In this paper, we present the system we have developed for translation of CPE expres-
sions to and from McLogic and the inference system associated with it. We briefly describe
two experimental applications: the first is a well-known example from the Z programme
specification literature (‘Wing’s library problem’) and the second the well-known test case
for theorem provers (‘Schubert’s Steamroller’). The motivation for choosing these was to
stick to relatively well-behaved benchmarks while developing the system.

One problem not addressed in this paper is the issue of restricting users in the field to
the appropriate dialect of CPE. While a significant issue in general, there is not space to
address it here.

2 English to and from McLogic

To simplify the interpretation and disambiguation task we exclude from this dialect of
CPE use of inter-sentence referring devices, and so texts are translated as if they are lists
of isolated sentences. Hence, the problem of inter-sentential links was avoided. However,
there are cases in both application areas that demand the use of intra-sentential references:
e.g. “Every animal eats some animal that is smaller than itself”. for which we adopted a
solution presented in [3], [5]. By introducing as part of CPE a bit of ‘logician’s English’
we translate sentences like this as: Fvery animal X eats some animal that is smaller than
X . The translation from CPE +— McLogic has been implemented as an interactive pro-
gram which receives as input Ss, that belong to CPE, which make use of purely linguistic
processing by the application of lexical entries and syntactic and semantic grammar inde-
pendently of the influence of context and which constructs expressions of McLogic. For
some constructs a kind of quasi-logical form is constructed which is then translated into
the appropriate McLogic expression: these include negation, conjunction, and temporal
clauses.

A standard left to right, bottom up Prolog chart parser and a feature-based unification
grammar, which were part of the Fracas Project!, were used to achieve the translation in
the McLogic direction. A head-driven generation algorithm based on the same grammar
was used to translate in the opposite direction.

The basic notion in McLogic is a class expression, i.e. an expression that denotes a
set. In general, any monadic predicate symbol of classical syntax can be used as a class
expression, and for any class expression s and binary relation R one can construct the
class expresssions (R (some s)) and (R (every s)). For example, if like is a binary relation
symbol and woman is a class symbol, then one can construct the class expressions (like
(some woman)) and (like (every woman)). These denote the set of all entities in the
domain that like some woman and the set of all those who like all women respectively.

Some constructs in CPE and their corresponding representation in McLogic follow:

e common nouns, intransitive verbs, predicate nominals, and intersective adjectives
are represented as monadic class expressions e.g. student, red, sleeps.

e NPs with determiners give rise to a formula like: (some X Y) or (every X Y) if in
subject position, but to a formula like (some X) if in a non-subject position. This
is a non-compositional feature of McLogic motivated by linguistic transparency, but
we shall see below that this prevents a one-step translation for conjunctions of noun
phrases to McLogic.

e Names are represented as a quantified expression e.g. (R (some/every john)) or
(some/every john X). Since we assume the ‘unique name’ requirement, then the class
denoted by ‘john’; ‘some john’ (or ‘every john’) will be identical, and formulating
inference rules is facilitated by taking the quantified form as standard.

e transitive verb phrases translate to a class expression of the form (R (some s))/ (R
(every t)) e.g. (own (some computer)) or (like (every mary))

For example, some student borrows every book is represented as (some student (borrow
(every book)) where (borrow (every book))= {y/Vz.x € book — y borrow x}. The
formula is true iff student N (borrow (every book)) # (. Formulas in McLogic then are
of the form (every s t), (some s t), (some s exists), (at_most_one s) where s, t are class
expressions. In addition, it is worth mentioning that a lambda class expression in McLogic
is of the form Az.¢(z) where ¢(z) is a formula in McLogic.

Ax.p(x) = {z/Pp(x)is true}.

We see an example of its use in section 5.2. A formula not containing a lambda expression
is called quantifier-free formula.

"ttp://www.cogsci.ed.ac.uk/ fracas/

3 Two applications

‘Schubert’s Steamroller’ was presented in 1978 by Lenhart Schubert as a challenge to
automated-deduction systems [7]. Its statement in CPE is as follows:

Every wolf is an animal. Every fox is an animal. Every bird is an animal.
Every caterpillar is an animal.Every snail is an animal. Some wolf exists.
Some fox exists. Some bird exists. Some caterpillar exists.

Some snail exists. Every grain is a plant. Some grain exists.

Every caterpillar 1s smaller than every bird.

Every snail is smaller than every bird.

Every bird is smaller than every fox.

Every fox 1s smaller than every wolf.

It is not true that some wolf eats some fox.

It is not true that some wolf eats some grain.

Every bird eats every caterpillar.

It is not true that some bird eats some snail.

Every caterpillar eats some plant.

Every snail eats some plant.

Every animal X eats every plant or every animal that is smaller than X and eats some
plant.

The conlusion to be proved is:
Some animal eats an animal that eats some grain.

‘Wing’s Library Problem’ (ref to Z textbook) concerns the specification of allowable
library operations originally informally described by Wing (1988). We will present here
only one transaction (as illustration) instead of the five transactions allowed by the system:
checking out and returning books:

3 Glven a user U, a copy of a book C and a member of the staff_-member M, the problem
s to find out whether U can borrow or return C and whether the transaction can be done
by M.

The following CPE sentences (partially) define the specification of the library operations:

Every copy is available or checked_out.

No copy is available and checked_out.

Every borrower is a registered user. Every registered user is a borrower.
Every staff_member 1s an administrator.

Every administrator is a staff_member.

No staff_member is a registered user.

Every staff_member 1s an authorised requestor.
Every authorised requestor is a staff_member.
Every borrowed copy is checked_out.

Every checked_out copy is borrowed.
The_University_Library owns every available copy.

Every registered user who has borrowed less than ten copies can borrow
everu available copy.

Every user who can borrow an available copy is a registered user and has
borrowed less than ten copies.

one copy is less than ten copies. two/.../nine copies are less than ten copies.
every authorised requestor can give every registered user some copy.

As will be seen from these examples, even this restricted fragment of English contains
several constructs which have no obvious translation into McLogic. Our first task therefore
was to extend the logic in order that the expressive power needed could be obtained.

4 Extensions to McLogic

In this section we will introduce a number of extensions to McLogic and provide English
examples that motivate them.

Adjectives

We simplify the interpretation of adjectives by treating them as class expressions. Nominal
modification, like “happy man” is thus treated intersectively. We define an operator +
between class expressions where s+t denotes s N t, the intersection of two sets.

VP modification

An Advp or a PP modifying a verb are not represented independently as sets. A construct
drives fast refers to a subset of entities who drive and a construct sees with some telescope
refers to a subset of entities who see. Hence, the introduction of a new operator, #, for
which (A # B) N A = A # B. drives fast, drives slowly, drives carefully, drives with a,
etc., all refer to subsets of the class expression drive. Asfor a complex adverbs as in drives
slowly and carefully, it would be translated into drive # slowly 4 drive # carefully?.

Relative clauses

A (subject) relative clause “who/which/that vp” is represented as (the representation
of) vp. every student who reads every article succeeds is represented as (every (stu-
dent+(read(every article))) succeed). Non-subject relatives are not treated yet.
Conjunction and Negation

We assume the usual boolean connectives to describe sentence level conjunction, disjunc-

tion, and negation. Other types of conjunction are translated as follows:

Adjectives:

Zadverbs and adjectives with a degree like very fast or very handsome can be considered by adding a
new operator. However, we did not deal with them yet.

Using the operator, +, defined earlier the intersection between class expressions is repre-
sented. For example, some book is new and shiny = (some book (new + shiny)).

For ’or’, we define an operator, $, between class expressions where s $ t denotes s U t,
the usual union between sets. $ represents an inclusive ’or’. To represent some book is
new or old (but not both), we need the disjoint union of two class expressions. Hence, the
introduction of the operator (-) such that s-t = { x/x € (sUt),x & (s Nt) }.

Verb phrase and nominal conjunction can now be handled:
John laughs and loves a funny girl = (some john (laugh + (love (some funny -+

girl)))).

every teacher and administrator snored = (every (teacher + administrator) snore).

NP conjunction:

To treat NP conjunction we need a meaning for NP independent of VP. McAllester and
Givan didn’t define such a meaning to simplify the exposition of their semantics. If NP is
in a subject position then the translation is done in one step. However, when NP is not
in a subject position such construct is mapped to a quasi-logic form first then mapped
(using simple equivalence relations) to a sentence in McLogic. For example,

(1) a. ’some teacher and every student snores’ is mapped into

b. ((some teacher snore) and (every student snore))

(2) a. ’some fox eats some grain or some plant ’ is mapped into
b. (some fox (eat or ((some grain) (some plant)))) then
c. (some fox (eat (some grain)) $ (eat (some plant)))

Note that when np is a predicative as in some man is a client or a manager then in
one step that sentence is represented as (some man client $ manager). Note that collective
predicates would not be correctly interpreted under such a treatment.

We also extend the negation operator to apply to class expressions:

Intuitively, in case of some teacher is not a borrower if x is not a borrower then we can
conclude that x could be anything in the domain, D, except a borrower. Define (not s)
with the meaning (not s) ={z/z € D and = ¢ s}. Hence, the sentence is represented as
(some teacher (not borrower)).

Ditransitive Verbs

In McAllester’s original language, a binary relation R can be transformed into a function
R’ from elements to sets such that y is an element of R'(2) = {y/(x,y) € R}. When we
consider sentences such as John gave Mary a book or the postman handed me a parcel, etc,
then we are no longer restricting the work to binary relations. If we extend the language

to account for ditransitive verbs and hence to 3-ary relations R then such an R can be
transformed into a function R’ from elements to functions from elements in the domain
to sets. Hence, given z; € Domain, R'(z;) = Rl : Domain — P(Domain) such that
R, (y) = {2/(x,z,y) € R} where x denotes the subject, z the direct Object(dO) and y
the indirect object(i0). In particular, the following hold:

(R(some s)(every t))={ y/Jx € sVz.z et — (y,z,2) € R }
(R(some s)(some t))={ y/dz € sATz €t A (y,z,2) € R }

(R(every s)(every t)) = { y/Ve.x € s — Vzz €t — (y,z,2) € R }
(R(every s)(some t)) ={ y/Ve.x € s — Jz.z € t A (y,z,2) € R }.

In all the above cases the representation is of the form (V’ (i0%) (dO”)).

John gave Mary a book will be translated to (some john (give (some mary) (some book))).
If the sentence John gave a book to Mary was considered then its representation should
be equivalent to that of John gave Mary a book. The representation will take the form
(V (dO) (t0,i0)) where (R (some s) (to,every t))={ y/3Jz € sVz.z €t — (y,z,2) € R }.
In the above case, the relation R is transformed into a function R’ such that R'(z;), where
x; is an element in the domain, is a function that takes an element in the domain y and
returns R, (y) = {z/(z,y, 2) € R}. The particle “to” doesn’t have a semantics on its own.
Instead, to reduce the need for more inference rules we can consider the form (V(dO
(t0,10)) as an intermediate form to be translated into (V (i0) (dO)).

Passives

We only considered the monotransitive and ditransitive verbs.

We define (R™!(some s)) = {z/Jy.y € s A yRx} and some book was borrowed by John
will be represented as (some book(borrow=!(some john))).

Can a similar concept hold for 3-ary relation?

For a ditransitive verb, it is always the first object that becomes subject in the passive.
We define R71(z,y,2) to be R(y,z,x). In that case,

(R~ (some s)(every t)) = {y/Jv € sVz.z €t — (z,2,y) € R™!

(if dO is first in the sentence) or (z,y,z) € R™! (if 10 is)}.

(3) a. John gave a book to some student

b. a book was given to some student by John

c. (some book (give™! ((some student) (some john))))
(4) a. John gave some student a book

b. Some student was given a book by John

c. (some student (give™! ((some book) (some john))))

Sentences like a book was borrowed, a book was given, a book was given to some client, a
client was given a book are yet to be considered.

Comparatives and Numerals

Comparatives are not treated compositionally. We assume a comparative version of ev-
ery adjective, thus: ’every bird is smaller than every horse’ is translated as (every bird
(smaller_than (every horse))). To deal with comparatives and numerals as in sentences
like Some man borrowed less than ten books, we need to define the following:

1. we first extend the language to represent sentences like Ten books are old. We
introduce:

(a) the class expresssion s* = P(s)= Power set of the class expression s

(b) A particular class expression, N, representing a positive integer N and denoting
the set { X/ X is a set of N objects in the domain }?.

(c) A special operator * between such two class expressions. * would have the same
meaning as '+’ i.e. intersection between sets. However, the introduction of a
new operator is to emphasize the fact that * is an intersection between sets of
sets and not sets of entities.

Hence, expressions like Nxt={ X/X is a set of N t’s }. The latter is a set of sets.
The formula (Nxs t) in this case is true iff some element of N x s, k, is a subset of
t i.e. when the formulas (every k t) and (some/every k Nxs) are true. Note that in
the first formula k is considered a set of elements while in the second it is considered
a singleton set consisting of one element which is itself a set.

ten books are old = (tenxbook old)*.
2. Then we define the following;:

(a) (R(less_than (N % s?))) =
{/3y € (N and sP) NJz.¢ C 2z CyAVi.(i € z +— zRi)} U{z/Vy.y € s —
<z,y>¢ R}.

(b) (R (greater_than N x s?)) =
{z/3y € (Nands?) ANJz.y C z AVi.(i € z «— zR))} U{z/Vy.y € s —
<z,y>¢ R}

(¢) (lessthan N sP t) true iff sN¢ C 2 for some 2 € N and 5P
i.e. 0 <card(snt) < N

(d) (greater_than N * s” t) true iff 2 CtNs for some x € N and s*

Hence, the representation (some man (borrow (less_than (tenxbook)))).

Time Reference

To represent sentences such as “Some student sleeps before the instructor begins the
lecture”, first we consider a particular kind of class expressions which denote elements in

®N does not have a semantics independently of entities in the domain.
“Note the p can be dropped from the representation of s?. It is understood from the existence of Nx.

the domain defining an interval of time which we call time class expressions. Let tq, t,
be two time class expressions then

t1 = [ay,b1] = {a/x < by and x > a1}

and
ty = [ag, by]

where a;, b; are positive integers denoting a; and b; units of time respectively. We have
defined earlier a positive integer N as { X/ X is a set of N objects in the domain }. In this
particular case, the objects are units of time. If, for example, t; = [4, 5] then 4= { X/X
is a set of 4 units of time (sec, mn, hours, etc) }. Second, we augment the arguments of
any relation, R, considered till now, by one argument, a time class expression.

read an article — (read (some t)(some article))

snore —» (snore (some t))

It is like introducing an event variable with each action verb for example see [1].

(5) a. Some student sleeps before the instructor begins the lecture

b. ((some student (sleep (some t1))) and (some instructor (begin (some t2)(some
lecture))) and (every t1 (before (every t2))))

(6) a. Some instructor examines Mary after the lecture is given by John

b. ((some instructor (examine (some t1) (some mary))) and (some lecture (give™!

(some t2) (some john))) and (every t1 (after (every t2))))

Similarly, states or facts like, some man is happy or the sun is round, are true at a
particular point of time. The same question may be addressed to nominals, a student is
so at a particular point of time. We will consider these issues later.

5 Current status of the implementation

Precis 1 Given rules of the form rule(Head, Body, Number) - which represent the 32
inference rules in [{] (+ their contrapositives) and additional rules that account for some
of the extensions - where Head and Body are expressions, written in McLogic, defining
respectively the conclusion and antecedants of each rule, and given the premises of some
problem (e.g. Schubert’s Steamroller) already translated to McLogic using the translation
process described above, a Prolog meta-interpreter shows that the conclusion of the con-
sidered problem is true and gives an explanation on how the conclusion was reached. One
can ask for the explanation if one wants to.

5.1 The inference mechanism

In [2], it was shown that for the quantifier-free fragment of the language, satisfiability is
polynomial time decidable. The inference procedure is characterised by the inference rules
in table 1. It was proved that the literal satisfiability problem® for this fragment of the
language is NP-complete and this arises from the fact that for any given class expression
appearing in the input, we may not know whether or not that expression denotes the
empty set. Hence, the claim:

Theorem 1 If for each class expression Cin the input, either [some, C,exists] or [not,[some, C,exists]]
is known then the satisfiability of a set of quantifier-free literals is polynomial time decid-

able.
This theorem is proved by showing:

1. if o is a set of quantifier-free literals where for each class expression C in o it is
known whether C is empty or not then o is satisfiable iff ¢ — F ¢

2. 0 — ¢ is determined in polynomial time.

where 0 — ¢ if ¢ can be proven using the rules in table 1 such that every class expression
appearing in the proof appears in o.

The above definition ensures that to determine whether ¢ — ¢ we need only consider
formulas all of whose class expressions appear in ¢. The number of such formulas is always
less or equal than K card(c)? where K is a constant and card(c) is the number of class
expressions in o since the inference rules allow only formulas of the form (every s t), (some
s t) and (at_most_one s) . Hence, one can determine in polynomial time in the size of o
whether or not ¢ — ¢ by enumerating all derivable formulas.

The rule set in [4] include the set in table 1 except for 5 rules. It is only conjectured but
not proved in [4] that though the syntax presented is more elaborate, the time complexity
of the proof process is still polynomial in the number of class expressions occuring in the
quantifier-free premises of the problem at hand.

The proof procedure is implemented as a backward (goal-directed) search procedure
using a simple Prolog meta-interpreter. Instead of generating all permissible class ex-
pressions for a certain problem and only allow variables to be instantiated to these class
expressions, we made sure that such variables are not instantiated to formulas. We are in
the process of improving the efficiency” of the proof system.

The extension of the language required the addition of more inference rules. However, we
have not proved that with these additions the proof procedure is still complete. Below,
we present a running example.

®A literal is an atomic formula i.e. of the form (every s t) or (some s t) or a negation of an atomic
formula.

®For a proof see Appendix B in [2].

"Solving Schubert’s steamroller is slow relative to other implementations in the literature e.g. [6].

10

Table 1: Inference rules for quantifier-free literals. r,s,t range over class expressions, ¢

ranges over constant symbols, and R ranges over relation symbols.
(every s t)
(every (R (some 5))(R (some t)))
(every s t)
(every (R (every t)) (R (every s)))
(every r s)A(every s t)
(every r t)

Jde
(at — most — one ¢)
I(R (some s))
B
3 r Alevery r t)
El
at—most—one tA(every r t)
at—most—one r

a(every r t)
Ir

3 s Aat—most—one t Alevery s t)
every t s
3 r Alevery r s)A(every r t)
(every (R (every s)) (R (some t)))

-3 s
(every t (R (every s)))

(at—most—one t)A(every s t)
(every(R (some s))(R (every t)))
(every r s)A(every r t)Ar

(some s t)
YAy
False

11

5.2 A running example

Given the NL specification in section 3, the program outputs the McLogic translation for
both Schubert’s Steamroller and the library transaction problems. Since McLogic is so
similar to Natural Language the proofs below should be transparent even with no prior
knowledge of the inference rules in [4] or the additional rules.

O Schubert’s Steamroller

(every, wolf, animal). (every, fox, animal). (every, bird, animal]. (every, cater-
pillar, animal). (every, snail, animal). (some, wolf, exists). (some, fox, exists).
(some, bird, exists). (some, caterpillar, exists). (some, snail, exists). (every,
grain, plant). (some, grain, exists). (every, caterpillar, (smaller_than, (every,
bird))). (every, snail, (smaller_than, (every, bird))). (every, bird, (smaller_than,
)
)

caterpillar))). (not, (some, (bird, (eat, (some, snail))))). (every, caterpillar, (eat,

(every, fox))). (every, fox, (smaller_than, (every, wolf))). (not, (some, wolf, (eat,

(some, fox)))). (not, (some, wolf, (eat, (some, grain)))). (every, bird, (eat, (every,
(some, plant))). (every, snail, (eat, (some, plant))).
(every,animal,(eat,(every,plant)) $ lambda(X,(every,X,(eat,(every,animal+
((smaller_than,(some, X))+ (eat,(some,plant)))))))).

Conclude: (some,animal,(eat,(some, animal+(eat,(some,grain))))).

Note that only the last premise is not quantifier-free (or lambda-free).

The full proof is automatically done but its trace is long and at the moment not
very illuminating. We plan to provide a compact version but here is an illustration,
reconstructed by hand, of a part of the proof.

Problem 1 Given: the above premises and (every x,, wolf) and (focus_on z,,)?,
conclude that It_is_not_the_case_that some wolf eats every plant and hence, every
wolf X eats every animal that is smaller than X and eats some plant.

Proof

some grain exrists
some grain grain

(every (eat (every grain))(eat (some grain))) a;

In addition,
—(some wol f (eat (some grain)))

—(some (eat (some grain)) wol f) ay
ap, O

—(some (eat (every grain)) wol f) as

Moreover,
(every grain plant)

(every (eat (every plant))(eat (every grain))) a4

8This formula restricts the instantiation of the A-quantifier to z., and has no semantic content [4].

12

a3, Q4
—(some (eat (every plant))wolf)

—(some wol f (eat (every plant)))as

(every wol f animal), (every animal ((eat (every plant)) U Az.¢(z)))
(every wol f ((eat (every plant)) U Az.¢(z))) o

where,
¢(z) = (every, z, (eat, (every, animal+((smaller than, (some, x))+(eat, (some, plant)))))).

as, Qg

(every wolf Az.¢p(x)) ar

(every x,, wolf), ar
(every ., Az.¢(z)) as

ag, focus_on x,,

O(2y) = 24 (eat (every animal N (smaller than x,,) N (eat (some plant))) ag

O Wing’s library rules:

every,copy, (available,’or’ checked _out)).

not,(some,copy, (available,’and’ checked_out))).
every,registered+user,borrower). (every,borrower,registered-user).
every, staff_member,administrator). (every,administrator staff_member).
not, (some,staff_member,registered+user)).

every staff_member authorised+requestor).

every authorised+requestor staff_member).

(

(

(

(

(

(

(

((every,borrowed+copy,checked _out+copy).

(every,checked _out+copy, borrowed+-copy)).
(some, UL, (own,(every,available4-copy))).
(every,registered+user+(has_borrow (less_than (tenxcopy))),(can_borrow,(every,available+copy))).
(every user (can_borrow (some availabledcopy)) registered+user+(has_borrow
(less_than (tenxcopy)))).

(some staff_member authorised+requestor).

(onexcopy (less_than (tenxcopy))). (ninexcopy (less_than (tenxcopy))). (every
authorised4requestor (can_give ((every registered+user) (some+copy)))).

Problem 2 Given the set of premises:

{ John is a registered user. John has borrowed 9 books.
’Computational Linguistics: an intro’ is an available copy.
Anna is an authorised requestor }

translated into the set

13

{ (every/some john registered+user). (every/some john (has_borrow (ninexcopy))).
(every/some ‘computational linguistics: an intro” available+copy).
(every/some anna authorised+requestor) }

conclude that: John can borrow 'Computational Linguistics: an Intro’ or (some john
(can_borrow (some ’computational linguistics: an intro’))).

Proof

(some john (has_borrow (nine * copy))), (nine x copy (less_than (ten * copy)))
(every john (has_borrow (less_than (ten * copy))))dy

01, (every john registered + user)

(every john registered + user + (has_borrow (less_than (ten x copy))))d,

02, (every registered + user + (has_borrow (less_than (ten x copy)))
(can_borrow (every available + copy)))

(every john (can_borrow (every available + copy))) d3

(every 'computational linguistics : an intro’ available + copy), 3

(every john (can_borrow (every 'computational linguistics : an intro')))

The full paper will include more examples and output.

6 Future work

Our future aim is to be able to formulate knowledge in a form of English and to be
able to draw conclusions from that knowledge, also in English, in such a way that the
reasoning involved is completely transparent to the user. If people cannot see how some
conclusion does or does not follow from the knowledge base they will be unwilling to trust
advice or information provided by such a system, quite rightly. In order to avoid the
problems posed by the degree of ambiguity and vagueness found in real English, we use
an artificially restricted subset that can be fully processed. The trick here is to try to
define a dialect of Computer Processable English that is sufficiently restrictive to be able
to process accurately, while still being expressive enough to state what is required clearly
and naturally.

The work reported here has tried to develop some of the components of such a system.
We translate between a restricted subset of English and a logic capable of supporting
as a knowledge representation and reasoning system. The translation is transparent: as
we hope will be apparent from some of the examples above, a McLogic formulation of a
problem is quite succinct and English-like, and certainly a lot easier to read and follow
than, say, a first order predicate calculus formulation of the same problems. This is an
important property for developers, but also perhaps for some of the eventual users of such
a system. Many people would like to be able to translate between natural languages and
formal languages (like Z), but for most of these formal languages the expertise required in

14

order to judge the translation accurate is sufficient to make the need for translation less
than compelling.

We have tested our implementation on two standard benchmarks: one to test the ability
of Computer Processable English to formulate a standard problem of the type that formal
specification languages are designed to deal with; and one to test the ability of the inference
mechanism to deal with natural but complex chains of inference.

Two components need further work: the first is the user interface: keeping the user to
the requisite dialect of English is not easy unless they are prepared to undergo a certain
amount of training. The second is the output of the inference system. Translating inference
steps one at a time back into English does not usually make for an informative description
of what is going in it. We plan to experiment with proof manipulation techniques to try
to turn long tedious proofs into compact informative ones before generating the natural
language justification of the inference.

References

[1] Davidson D. The Logic of Decision and Action (ed. N. Rescher), chapter The Logical
Form of Action Sentences, pages 81-95. University of Pittsburgh Press, 1967.

[2] McAllester D. and Givan R. Natural language syntax and first-order inference. Arti-
ficial Intelligence, 56:1-20, 1992.

[3] B. Macias and S.G. Pulman. A method for controlling the production of specifications
in natural language. The Computer Journal, 38(4):310-318, 1995.

[4] Givan R. McAllester D. and Sameer Shalaby. Natural language based inference proce-
dures applied to schubert’s steamroller. AAAL 1991.

[5] S.G. Pulman. Controlled language for knowledge representation. In First International
Workshop on Controlled Language Applications, Katholieke Universiteit Leuven, Bel-
gium, pages 233-242, 1996.

[6] Manthey R. and Bry F. Satchmo: A theorem prover implemented in prolog. In CADFE
88 (9th Conference on Automated Deduction), pages 1-17, May 1988.

[7] Mark E. Stickel. Schubert’s steamroller problem: Formulations and solutions. Journal
of Automated Reasoning, 2:89-101, 1986.

15

