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ABSTRACT
The applicability of aspects as a means of implementing run-
time contract checking has been demonstrated in prior work,
where contracts are identified as cross-cutting concerns [12,
13]. Checking contracts at runtime encounters a set of chal-
lenges within concurrent environments, such as the risk that
evaluation will introduce deadlock to code which is otherwise
deadlock-free. This paper presents a simple methodology
for generating runtime contract checking aspects targeted at
concurrent programs. The novel features of this approach
allow contracts to depend on active objects without race con-
ditions or deadlock, and addresses issues relating to timing
and blame assignment. The CoJava language is discussed
whose tool-supported aspect generation methodology allows
the correct checking of contracts predicated on active ob-
jects.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Concurrent, distributed,
and parallel languages;
D.3.3 [Language Constructs and Features]: Concurrent
programming structures—Classes and objects;
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification techniques

Keywords
Java, Active Objects, Concurrency, AOP, Runtime Asser-
tion Checking

1. INTRODUCTION
Checking assertions derived from a specification at run-

time is a useful formal means of testing a program’s correct-
ness. Specifications following the Design-by-Contract [21]
(DbC) approach are composed primarily of type invariant
predicates, method precondition predicates, and method post-
condition predicates. These have been identified as cross-
cutting concerns [12] which could be naturally expressed as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

aspect-oriented [13] advice.
In respect to Java [8] development, runtime checks can

be implemented using AspectJ aspects to express specifi-
cations defined with JML [15]. However aspects meant to
express contracts in sequential code may malfunction when
concurrency is introduced, in particular through the Active
Object design pattern [14]. Deadlock, for example, can be
introduced when the evaluation of a contract requires the
locking of resources that cannot be freed until the evalua-
tion is completed. The method the contract specifies may
not lock the resource, thus deadlock is created in a situation
that otherwise would function correctly.

This paper outlines an implementation of the aspect-based
runtime assertion checking (RAC) approach that is designed
for use with active objects. It employs a number of strategies
to deal with deadlock, race conditions, blame assignment,
and other issues.

A typical approach employs a tool to generate the aspects
from the contracts, which are then woven with a test build
of the program at hand. This serves as an alternative to the
jmlc [4] RAC tool included with the JML distribution. The
methodology and tools to do this has been both patented [18]
and well researched [3, 6, 19, 20, 23, 25].

The tool described in this paper implements such a method-
ology for the Java subset language CoJava. Its novel ap-
proach generates code necessary for the active object im-
plementation it uses, called threaded objects, such that it
uniquely provides concurrent features other approaches lack.

Active objects represent units of concurrency where the
invocation and execution of their methods happens asyn-
chronously. Using active objects in contracts poses new chal-
lenges when these are checked at runtime. Specifically, dead-
lock must not be introduced when checking contracts, nor
should assertion checking in general otherwise affect the pro-
gram’s behaviour. The CoJava tool generates aspect code
that checks contracts in a way expected for sequential code,
but also augments the internal implementation of threaded
objects to avert deadlock in specialized situations.

Applying RAC to active objects poses a number of issues
specific to the semantics of checking contracts that this pa-
per will examine, which are summarized here:

1. If contracts reference other active objects, does the
evaluation of the contract introduce deadlock, unac-
ceptable waiting, or other significant behaviour?

2. If a contract is violated when a method is called, how
is the caller informed of this?

3. If the call results in an exception being thrown, how is
the caller informed of this?



Deadlock and race conditions are prevented by construc-
tion, using the same methodology when evaluating contracts
answers the first question in part. Timeout events do oc-
cur when a caller waits too long, so if and when this hap-
pens in contracts there must be a mechanism to handle this
event. The second question becomes identical to the third if
contract violations result in exception throws, and they are
questions of how the caller is informed of such events.

CoJava’s mechanism for preventing deadlock allows the
querying for erroneous results, but it requires the program-
mer to explicitly check for such events. A less error-prone
solution is needed when contracts are violated however.

This paper will answer these questions in relation to the
threaded object model used in CoJava. Section 2 will outline
the CoJava language, including its ownership and threaded
object features. Section 3 will describe the aspect-based
RAC facility, detailing how active objects are correctly used
in contracts without race conditions or deadlock. Section 4
will conclude with results and future work.

2. COJAVA
CoJava represents a core subset of the Java language with

many features omitted. A small language like CoJava will
have a simpler formal definition and hence is more suited to
formal discussions. CoJava is not so small that techniques
and concepts developed for it cannot be easily extended to
the full Java language.

Initially CoJava was as a means for discussing the Col-
league Technique [10] that addresses invariant unsoundness
in the classical DbC approach. Ownership types are also
used in the language as part of this methodology for ensur-
ing the soundness of invariants, and this was used to enforce
deadlock freedom with threaded objects in [11]. The formal
definition of CoJava, as well as the CoJava Tool implement-
ing the discussed techniques, can be found at the project
website: http://devel.softeng.ox.ac.uk/cojava.

This section gives a brief outline of the ownership type sys-
tem and the Colleague Technique since they apply to how
the threaded object concurrent model works. In particular
the use of threaded objects changes depending on whether
they are owned or not, and colleague objects introduce the
possibility of deadlock when contracts are checked at run-
time. These details will be significant in the next section
that describes the methodology for generating RAC aspects.

CoJava is specified with a subset of the JML language.
This includes some annotations for types and members, in-
variant and contract predicate annotations, in addition to
CoJava-specific elements. Two important additional ele-
ments are applied to types to indicate special objects: The
owned annotation that indicates owned objects, and the
threaded annotation that indicates threaded objects.

An example class, Counter, is given below which demon-
strates CoJava code with JML specifications:

c lass Counter {
protected /*@ spec_public @*/

int value ,max;

//@ invariant value >=0 && value <=max;

//@ requires max >=0;
//@ ensures value ==0 && this .max ==max;
public Counter( int max)

{ value=0; this .max=max; }

//@ requires value <max;
//@ ensures value ==\ old(value +1);
public void inc() { value=value+1; }

//@ requires (value+n)>=0;
//@ requires (value+n)<= max;
//@ ensures value ==\ old(value+n);
public void add( int n){ value=value+n;}

//@ ensures \result == value;
public /*@ pure @*/ int get()

{ return value; }
}

2.1 Ownership
CoJava’s transitive ownership [1, 22] type system stati-

cally enforces encapsulation of objects. An object owns an-
other if it creates it with the /*@ owned @*/ annotation, or
has acquired its reference from another owned type. By re-
stricting what operations are correctly typed, an object can
expose owned objects only to its owners.

The CoJava type system has the following properties that
are enforced by type checking:

• Owned values cannot be assigned to non-owned vari-
ables and attributes, or vice versa.

• this has type /*@ owned @*/ T in methods of class T.

• Methods with owned arguments can be called, and
owned attributes assigned to, only through this.

• Methods returning owned objects and owned attributes
can only be accessed through an owned receiver.

As a result, the following properties are guaranteed by the
type system for well-typed CoJava programs:

• Objects cannot be aliased by owned and non-owned
references at once (excluding this).

• Owned objects are organized into tree structures en-
capsulated by their owners.

• If an object is aliased through a non-owned reference,
its owned objects are inaccessible to its clients .

• Clients cannot pass owned references to an object.

• Owners can access owned objects transitively, but they
cannot modify the object structures created by those
objects it owns.

Thus, for example, the class TwoCounters can guarantee
that only its owners can access its members. Consequently,
its invariant can rely on owned objects safely since they will
not be modified in adverse ways by arbitrary external clients.
Transitive owners may still modify them, but they can be
reasonably expected to adhere to the invariant’s conditions
since their relationship with the owned objects is much more
apparent.

c lass TwoCounters {
public /*@ owned @*/ Counter c1 , c2;

//@ invariant c1.get() == c2.get ();
...

}

2.2 Colleagues
Ownership cannot be used in certain situations when an

invariant of one object must rely on another that is freely



accessible to external clients. The Colleague Technique [10]
is used in CoJava as a mechanism to allow invariants to
do this soundly, such that any correct operation on either
object (the colleagues) will not violate the other’s invariant.

The technique is composed of tool-generated methods used
to construct bi-directional relationships between colleagues,
and a methodology for generating additional invariant con-
ditions. The added conditions ensure that the state of an
object will always satisfy the invariants dependent upon it.
Colleague objects use regular attributes to alias one another
rather than abstract specification variables. This makes the
relationship explicit between colleagues, and allows the use
of the technique in runtime checking and formal reasoning.

The Iterator design pattern [7] is an example of an object
that has to closely co-operate with another, namely the data
structure it iterates over. The Colleague Technique first en-
sures that the relationship between colleagues is constructed
properly such that they alias each other through attributes
bearing the collegial annotation. An invariant condition in
one colleague that depends on the other will then be trans-
lated into a mirror invariant that is incorporated into that
other type’s specification.

The iterator has a simple correctness requirement stating
that the data structure it iterates over must have as many
items as it expects there to be. The data structure must
then ensure that no correct operation will remove too many
items such that some iterator’s invariant is violated. This is
done with the mirror invariant that states the same property
from the data structure’s perspective:

c lass ListIterator implements Iterator {
private /*@ nullable

collegial List .iters; @*/ List list ;
private /*@ spec_public @*/ int pos;
private /*@ spec_public @*/ int last ;

//@ invariant pos <= last ;
//@ invariant list != null ==>
//@ list .size () >= last ;
...

}

c lass List {
private /*@ collegial

ListIterator .list ; @*/ Set iters;

// mirror invariant , generated by tool:
// (\ forall ListIterator i ;
// iters.contains(i); size ()>=i.last )
...

}

2.3 Threaded Objects
An active object is a special instance of a class whose

methods are executed in a separate thread or process from
those executing its clients. Typically there exists a mecha-
nism to characterize method calls as requests, queueing these
requests, and then executing them in sequence.

The CoJava threaded object model follows this approach
by using the tool’s code generation facilities to produce a
proxy type that encloses active objects. Objects instantiated
with the threaded annotation are automatically enclosed in
a proxy, as well as all instances of classes with the annota-
tion. These threaded objects contain an internal queue of
messages which are read by processor threads assigned to
the objects when needed by the internal scheduler.

The original pattern [14] has been the subject of exten-
sions and enhancements in subsequent research. The use of
futures [9], temporary holders for method call results, has
been combined to make the use of active objects more seam-
less with sequential code [17, 2]. Other models disallow the
sharing of mutable data so avoiding data races [24, 5].

Instances of threaded types exist within their own thread
context, or subsystem, which is disjoint from others. The
type system ensures that mutable data is not shared by al-
lowing only methods with certain argument and return types
to be called asynchronously. A method’s arguments and re-
turn value is the boundary between the threaded object and
the rest of the system, hence if mutable objects cannot pass
over this boundary, then race conditions do not occur.

A method may be called on a threaded receiver if its ar-
gument types and return type are admissible. Similarly an
attribute can be accessed and assigned to if its type is ad-
missible. An admissible type is a primitive type, threaded
object type, a subtype of the StringSerializable interface
that facilitates cloning, or an immutable type.

The annotation immutable can be applied to class types
to designate its instances as immutable objects. The meth-
ods and attributes of such a class must abide by certain rules
which guarantee the immutability of the instances.

When a method is called on a threaded receiver, the return
value is an instance of Result, which serves as a promise
object [16]. This object is used to query for the eventual
result of the method call, to check if the call has completed,
and to check for any errors the call might have produced.

The client can only wait for finite amounts of time for
the return value to come back before the Result instance
indicates a timeout event, hence deadlock caused by objects
waiting indefinitely on each other is averted. The method
Result.objectResult() accepts as an argument a timeout
value in milliseconds, and will wait for that period of time
expecting an object to be received as the result of the call
that created the Result instance.

The Producer-Consumer example given below demons-
trates these concepts. The type StringQueue is a threaded
type that maintains a queue of String instances. Since these
are immutable, they can be passed between threaded objects
without the need to clone. The method objectResult() is
used to query for the eventual result of the call. In the ex-
ample, it will wait 100 milliseconds before return null and
setting the internal flag to indicate a timeout has occurred.

/*@ threaded @*/ c lass Producer {
public void produce(StringQueue q) {

for ( int c=0; true;c=c+1)
q.add(""+c);

}
}
/*@ threaded @*/ c lass Consumer {

public void consume(StringQueue q) {
while(true){

Result r=q.get();
String i=( String)r.objectResult (100);

i f (r.hasTimedOut ()) // handle timeout
e l se i f (r.isError ()) // handle error
e l se ... // consume i

}
}

}
...
StringQueue i=new StringQueue (10);



Producer p= new Producer ();
Consumer c= new Consumer ();
p.produce (i); c.consume(i);

Ownership is used to allow calls on owned objects with-
out the use of Result. Deadlock occurs when two or more
objects are related through circular aliasing relationships, in
which case they may wait indefinitely on each other if a time-
out mechanism is not used. Owners can wait indefinitely for
owned objects to respond without the risk of deadlock due
to the hierarchy imposed by ownership [11]. Owned objects
can still alias their owners, directly or indirectly, through
regular references but are thus obliged to use Result.

For example, an owned threaded instance of Counter can
be queried directly for its current value. A void method
still produces a Result object, however this can be ignored
as the following demonstrates.

/*@ owned threaded @*/ Counter c=
new /*@ owned threaded @*/ Counter (10);

c.inc ();
int i=c.get ();

The next section will define the aspect-generation method-
ology used to implement RAC testing for these features of
CoJava. Special provisions have to be made to ensure that
the RAC instrumentation code does not introduce adverse
semantics to the program, especially in the case of threaded
colleague objects.

3. ASSERTION CHECKING
This section outlines the methodology for generating as-

pects that implement RAC for CoJava programs. The as-
pects are produced by the CoJava tool rather than by hand
as separate documents. Features related to the threaded ob-
jects concurrency model will also be discussed, in particular
how contracts involving owned, non-owned, and colleague
threaded objects are handled.

The generated aspects evaluate contract predicates and
throw exceptions when they evaluate to false or when an
exception was thrown during evaluation. CoJava does not
include exceptions in its language however, so any exception
throw is treated as a terminal state where the program exits
with a printed stack trace.

In the general case for Java exceptions can be caught and
dealt with, so this approach is feasible when applied to the
full language. However, exceptions thrown due to contract
violations indicate a fundamental error, in which case a pro-
gram should not ever catch them and attempt to recover.

3.1 Checking An Assertion
Given some predicate P , a standardized block of code

is generated by the tool to evaluate it. If an exception is
thrown during evaluation, this must be wrapped in another
exception that indicates the problem occurred at this stage.
If P results in false, a different exception must be thrown
that indicates where in the original code the P occurs, and
states what the original text of P was. The following is the
basic template for the code the tool generates:

boolean __c= f a l s e ;
try { __c = (P); } catch(Throwable t)
{ throw new ContractEvalException

(FILENAME ,LINE ,COL ,t,"P");}

i f (! __c)throw new PreconditionException
(FILENAME ,LINE ,COL ,CLASSNAME ,"P");

The type PreconditionException is thrown when P is a
precondition, otherwise PostconditionException or
InvariantException would be used as appropriate.
ContractEvalException indicates an error has occurred when
evaluating P . These are all subtypes of RuntimeException
which allows them to be thrown even when not mentioned
in the enclosing method’s throws clause.

3.2 Generating Advice
The contract elements checked are invariants, pre-, and

post-conditions. Inter-type methods and advice are gener-
ated to check these contracts.

3.2.1 Invariants
Given a type C, an inter-type method called CInvariant()

is created which contains the code for checking that type’s
invariant predicates. A type D that subtypes C will have
a method DInvariant() which calls CInvariant() before
performing its own checks.

Each class will also have an inter-type method called
checkInvariant() which calls the appropriate invariant
checking method. An interface InvariantObject is also de-
fined with this method which every class is declared to im-
plement. This allows one advice block to be defined which
checks the invariant before and after every method call. If
the aspect being generated is called A, then this advice would
be produced as such, where the pointcut colleagueHelper()
matches helper methods used by the Colleague Technique:

Object around( InvariantObject obj) :
this (obj) && execution (* *(..))
&& !cflow(call (void *Invariant (..)))
&& !colleagueHelper () && !within(A)

{
obj.checkInvariant ();
Object __result =proceed(obj);
obj.checkInvariant ();
return __result ;

}

The pointcut !cflow(call(void *Invariant(..))) is
used to prevent recursion by not allowing the advice to
be applied when within the flow of a method ending with
Invariant , such as checkInvariant() and CInvariant().
The pointcut !within(A) prevents invariants from being
checked when contract expressions are evaluated, and
execution(* *(..)) is used to match any method call.

Together these prevent recursive cases where calling meth-
ods in invariant or contract checks initiates a new invariant
check, which then repeats indefinitely. It also prevents the
recursive case where an invariant check performed on one
object initiates a check on its colleagues, which call it back
and initiate infinite recursion.

After advice is also defined which calls the CInvariant()

method after the constructor for class C completes. It’s im-
portant to call this method rather than checkInvariant()

so that super() calls in the constructors of subtypes do
not check the invariant defined in that type, which may not
yet be established. After advice is also defined which calls
checkInvariant() after any external client assigns to a pub-
lic attribute.

3.2.2 Method Contracts



Method contracts are checked in around advice, rather
than before advice for preconditions and after advice for
postconditions as in [23, 3, 19, 20]. Having one piece of
advice rather than two reduces the complexity of the gener-
ated aspects, and makes the storage of \old() values easier.
When an expression of the form \old(E) is present in a
postcondition, a local variable is created in the advice that
is assigned E, which then is substituted for the original ex-
pression in the postcondition predicates.

The generated advice to check the pre- and postcondi-
tions for the method Counter.inc() is given in Figure 1,
where the assertion checking blocks described in subsection
3.1 are omitted for brevity. Evaluation blocks described in
the previous subsection are used to evaluate the pre- and
postconditions and throw the appropriate exceptions when
necessary. This method returns void, thus the advice for
methods returning values would have a return value derived
from proceed().

3.3 Checking Contracts of Threaded Objects
This basic approach works for sequential CoJava, and by

extension Java in general, with behaviour similar to the
code jmlc [4] produces. Using threaded objects in contracts
however introduces timing and deadlock issues, in particu-
lar deadlock is unavoidable when threaded colleagues check
their invariants if special consideration is not taken.

Using Result instances in contracts is normally not pos-
sible since its result querying methods are not pure. Even if
they were, Result is cumbersome to use in contracts since
predicate methods would have to be used. Timeout events
in contracts also have an ambiguous meaning, since predi-
cates that define properties which are true given the system’s
current state may still wait too long for responses. The as-
pects generated to implement RAC employ two strategies to
address these issues:

• The first solution is to allow calling active object meth-
ods directly in contracts, without the explicit use of
promise objects. Code will be generated in the aspects
that use Result implicitly with a default timeout value
of one second. If a timeout event occurs, an exception
is thrown to indicate this.

This addresses the inelegant use of Result in contracts,
and allows the implicit use of non-pure methods in a
way that is ostensibly pure.

However there still is no means to differentiate between
timeouts cause by false assertions and those resulting
simply from busy objects. In general it is desirable
for contracts to be checked quickly, so timeout values
longer than the default are not reasonable, but there
also is no means to define shorter periods. It would
be preferable then to not predicate contracts on non-
owned threaded objects, and indeed an invariant can-
not rely on these.

• Ownership allows methods to be directly called with-
out Result objects being used, which never produces
deadlock since the relationship between owned and
owners is acyclic. Since timeout events do not occur, a
thrown exception will only indicate an error in contract
evaluation or a contract violation.

However this has reduced utility since methods with
owned arguments can only be called when the receiver
is this. Ownership is therefore suited primarily to
specifying invariants and internally-used methods which
operate on owned threaded objects.

These two approaches allow the use of active objects in
contracts such that timeout events, deadlock, and practi-
cability are addressed. Each has its own advantages and
drawbacks, so a judicious choice of which must be made de-
pending on the situation.

3.4 Colleagues and Deadlock
Two colleague objects are related in a way such that they

may soundly predicate their invariants on each other. They
are also guaranteed to alias each other through regular refer-
ences stored in colleague attributes. This works correctly in
sequential CoJava where both colleagues are non-threaded.

If the technique is extended to threaded objects, then it
is only valid when both colleagues are threaded classes, in
which case it allows an invariant between units of concur-
rency. Methods of colleagues need to be called directly in
invariants without the use of Result instances. Deadlock
arises if one colleague calls the method of another, since the
mutual aliasing between colleagues produces mutual method
calls, which will wait indefinitely for results. Modifications
to the message-passing and processing code is made by the
generated aspects to prevent this from happening.

Consider the StringQueue class whose iters attribute
aliases multiple collegial instances StringIterator:

/*@ threaded @*/ c lass StringQueue {
private /*@ spec_public owned @*/

ArrayList items;
private /*@ collegial

StringIterator .queue; @*/ Set iters;

//@ invariant maxSize >0;
//@ invariant items.size ()<= maxSize;
...
public /*@ pure @*/ int size (){...}
public StringIterator stringIter (){...}
}

/*@ threaded @*/ c lass StringIterator {
private /*@ collegial

StringQueue .iters; @*/ StringQueue queue;
private /*@ spec_public @*/ int pos;
private /*@ spec_public @*/ int last;

//@ invariant pos <= last && pos >=0;
//@ invariant queue != null ==>
//@ queue.size () >= last ();
...
//@ ensures \result == last ;
public /*@ pure @*/ int last () { ... }

//@ requires queue!= null ;
//@ ensures \result == (pos <last );
public /*@ pure @*/ boolean hasNext (){...}

//@ requires hasNext ();
//@ ensures pos ==\ old(pos )+1
//@ && \result ==\ old(queue.getAt(pos ));
public String next (){...}
}

When a StringQueue creates a new iterator, it also must
create the colleague association using helper methods gener-



void around(Counter obj) : this (obj) && execution (void Counter.inc(Object)) {
boolean __check;
// Assertion check block where P is (obj.value < obj.max)
int oldvar0 = obj.value + 1;
proceed (obj);
// Assertion check block where P is (obj.value == oldvar0)

}

Figure 1: Checking The Contract For Counter.inc()

ated by the tool. This will ensure that the iterator references
the queue through the attribute queue and that the itera-
tor’s reference will be stored in iters.

The evaluation of contracts however introduces deadlock
whenever invariants are checked. For example, when
stringIter() exits the invariant for the StringQueue in-
stance will be checked, which requires calling last() on all
iterators. Since the queue instance is busy checking its in-
variant, the iterators will never get a response when they
call size() as part of the invariant check that occurs be-
fore last() proceeds. All method calls made when checking
invariants occur without timeout mechanisms, therefore the
situation where two or more objects are deadlocked waiting
for one another has been reached.

The collegial relationship is a special case of mutual alias-
ing between objects, so aspects can be generated that aug-
ment the threaded object infrastructure to account for such
situations. Two modifications to the semantics of threaded
objects are introduced:

• Figure 2 outlines changes that prevent recursion. In-
stances of Message encapsulate the requests sent to
threaded objects. A boolean attribute is added to this
type that indicates when the message is sent by an ob-
ject currently checking its contracts. Advice is also de-
fined that match the methods of ThreadedObjectBase,
the base type of threaded proxies, so that this flag is
set when appropriate.

If an object processes a message whose flag is set, it
first calls the method receiveInvariant() that then
calls receiveMessage(), which does the actual mes-
sage processing. This ensures that the processing is
done in the control flow of a method ending with “In-
variant”. Consequently further invariant checks are not
performed, thus avoiding infinite recursion between
colleagues who would otherwise pass invariant-checking
messages back and forth endlessly.

When the invariant of StringQueue is subsequently
checked, the call to last() of every iterator will not
trigger an invariant check for those objects. Such a
check would produce deadlock, thus this mechanism
now allows the correct checking of method specifica-
tions.

• However, if StringQueue calls a method of a colleague
iterator within the body of a method, the iterator’s in-
variant will be checked and will again encounter dead-
lock. The call to the colleague will now always indicate
a timeout event in a situation that would otherwise
function correctly if contracts were not checked.

Any method call on a colleague object is a special case
of a visibility state. The caller will now check its invari-

ant, indicate that it is entering a visible state, perform
the call and wait indefinitely for a response. The col-
league will call a method of this object as part of its
invariant check, and which point messages associated
with contract evaluation must be processed concur-
rently. This is safe to do since the object has asserted
its invariant and so is in a consistent state, and will
not modify its state while it waits for a response from
its colleague.

The aspect implementing this, when a StringQueue in-
stance calls a method on a colleague StringIterator

instance, is the following where the boolean attribute
isVisible indicates whether the current object is con-
sistent and thus can safely be visible to others:

Object around(StringQueue caller ,
Threaded_StringIterator rec):

this (caller) && target(rec) &&
call (* *(..)) &&
!cflow(call (void *Invariant ())) &&
i f (caller.isAssociated (caller ,rec))

{
caller.checkInvariant ();
caller.__thread .isVisible =true;
Object r=proceed(caller ,receiver );
i f (r instanceof Result)

(( Result)r). waitForResult (0);
caller.__thread .isVisible = f a l s e ;
return r;

}

Finally, an override of sendMessage() is defined that
instructs the scheduler to perform a concurrent mes-
sage process operation. This happens when the mes-
sage has originated from a colleague object, but only
if the current object is busy (that is processing a mes-
sage) and also visible. For StringQueue this is given
in Figure 3.

Normally allowing a threaded object to process multiple
messages at once leads to race conditions, and the risk of
an object being accessible when its invariant does not hold.
Because the relationship between colleagues is known and
controllable, it can be determined when it is safe to allow
multiple messages to be processed. This is only safe when
the current object has checked its invariant to ensure con-
sistency, and then indicated that it is free for the internal
thread scheduler to allow concurrent processing. This does
induce a behaviour change compared to the uninstrumented
code, in that the call from one colleague to the other must
now block and wait for a response rather than continuing.

3.5 Reporting Errors
In a sequential setting, when a contracts evaluates to false

or an error occurs, an exception is thrown and the program



public boolean Message.isContractCheck = f a l s e ;

public void ThreadedObjectBase .receiveInvariant (Message m) { receiveMessage (m); }

void around(ThreadedObjectBase t,Message m) : this (t) && args (m)
&& execution (void sendMessage (Message )) && cflow( call (void *Invariant ()) ||

call (void ThreadedObjectBase .receiveInvariant (Message )) )
{ m.isContractCheck =true; proceed(t,m); }

void around(ThreadedObjectBase t,Message m) : this (t) && args (m) && i f (m.isContractCheck )
&& ! cflow(call (void *. receiveInvariant (..))) && execution (void receiveMessage (Message))

{ t.receiveInvariant (m); }

Figure 2: Identifying Contract-checking Messages

public synchronized void Threaded_StringQueue.sendMessage (Message m) {
i f (!m.isContractCheck ) { super.sendMessage (m); return; } // continue normally
StringQueue d=( StringQueue )delegate;
i f (isActive && isVisible && m.sender instanceof Threaded_StringIterator &&

d.isAssociated (null ,( Threaded_StringIterator)m.sender))
threads . activateSingleMessage( this ,m); // process concurrent message

e l se
super.sendMessage (m); // continue normally

}

Figure 3: Allowing Concurrent Messages

exits. In Java this exception could be caught and dealt with,
although it’s usually a bad idea. Either way the fact that
a contract violation occurred is reported in the thread that
caused it.

With threaded objects this is not the case. The sender
of a message that induces a contract violation will reside in
a different thread context from the receiver of the message,
where the exception will be thrown. A sender cannot be
expected to wait for the message to be processed to see if
an exception was raised, but there must still be some way
of knowing when calling code has induced an error.

By default when a message is processed by a threaded
proxy that causes an exception to be thrown, an error mes-
sage is sent through the Result instance associated with the
current message, and then the exception is rethrown. This
is caught by the thread assigned to that object, which prints
a report to the standard error device and then attempts to
continue processing messages.

The Result class includes the isError() method that re-
turns true when an error has been received rather than the
expected return value. When an error is received, query
methods such as objectResult() return null or a default
value as appropriate. The getError() method returns the
String representation of the exception that was received,
which can then be printed.

Unlike exceptions, using these facilities requires explicit
handling on the part of the calling code, such that errors
occurring during calls to other threaded objects can be ig-
nored. Similarly timeout events have to be handled if the
caller waits too long for a response. The consume() method
of the Consumer class given in Section 2.3 demonstrates this
in practise.

Checking for timeout and error events is necessary so that
blame for a precondition violation, for example, will fall on
the caller and not be ignored. Calls to owned objects that
return values must block and do not produce a Result ob-

ject, so when an error is received in these situations, it is
immediately rethrown.

Explicit checks or exception throws from owned calls are
important to replicate the behaviour found with sequential
code, where consequences of an incorrect call are immedi-
ately evident at the point of call rather than later in the
program’s execution. This is important in ensuring that the
caller is “blamed” for the incorrect call, thus pinpointing the
source of the error as that operation, rather than a future
one that discovers the system to be inconsistent.

Threaded objects introduce the complication that a call
and its consequences occur in different threads and at dif-
ferent times during execution. Callers must take care to ex-
plicitly assume blame for erroneous calls so that the source
of the problem can be identified. The aspect checking code
is generated with this in mind, where the throwing of ex-
ceptions to indicate contract violations still allows threaded
objects to attempt recovery while indicating these events
through the Result instances.

4. CONCLUSION
This paper has presented the aspect-based assertion check-

ing mechanism used with the CoJava language. Using the
tool-generated aspects allows the checking of JML contracts
at runtime whose behaviour and construction are relatively
straight-forward with sequential code. When concurrency
is introduced with threaded objects, the evaluation of con-
tracts at runtime can introduce deadlock if special cases of
object relationships are not taken into account.

The same architectural choices that ensure deadlock free-
dom by construction, that is the required use of promise
objects and ownership, ensure that contracts do not nor-
mally introduce deadlock or otherwise significantly impact
the behaviour of running programs. The special case of col-
league objects is handled by specialized aspects that modify
the underlying implementation of threaded objects.



The current CoJava implementation is not optimized for
efficiency or fairness between threads. Future implementa-
tions of active objects that use the techniques described here
may employ more efficient mechanisms and so have very dif-
ferent architectures. The RAC approach described here can
be adapted by migrating the intent of the aspects the tool
generates, in particular the solution to colleague deadlock is
to allow concurrent messages only in certain safe situations.

Active objects represent a simple and coherent method-
ology of introducing concurrency to modern object-oriented
languages. They can abstract away concepts of threads, data
locks, and synchronization, making it easier for design and
implement highly concurrent applications. This paper has
discussed as powerful technique for testing such designs at
runtime in a rigorous manner, extending the ideas JML has
pioneered successfully with sequential Java programs.
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