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Abstract. We consider the problems of conjunctive query answering
and rewriting for information integration systems in which a Description
Logic ontology is used to provide a global view of the data. We present
a resolution-based query rewriting algorithm for DL-Lite+ ontologies,
and use it to show that query answering in this setting is NLogSpace-
complete with respect to data complexity. We also show that our al-
gorithm produces an optimal rewriting when the input ontology is ex-
pressed in the language DL-Lite. Finally, we sketch an extended version
of the algorithm that would, we are confident, be optimal for several
DL languages with data complexity of query answering ranging from
LogSpace to PTime-complete.

1 Introduction

The use of ontologies as conceptual views over data repositories has proven
to be useful in a variety of different scenarios. In Information Integration (II)
[15], Enterprise Application Integration (EAI) [14], and the Semantic Web [11],
ontologies are used to represent the domain of a given application. This provides
users with a coherent global view of the information, thus hiding the details of
data organization. In this paper, we focus on II systems in which an ontology is
used to provide transparent access to several independent information sources.
Typically, such a system consists of a global ontology, representing the structure
of the application domain, a set of (relational) schemas representing the structure
of the local information sources, and a set of mappings that relates the global
ontology to the local schemas.

The global ontology is often expressed in a Description Logic (DL). DLs are
a family of knowledge representation formalisms that model a given domain in
terms of concepts (unary predicates), roles (binary predicates), and individuals
(constants) [2]. A DL Knowledge Base (KB) consists of a terminological com-
ponent T called the TBox, and an assertional component A called the ABox.
In analogy to databases, the TBox can be seen as a conceptual schema and
the ABox as a (partial) instantiation of the schema. The syntax of DLs can be
restricted in a variety of ways to trade off the expressive power against computa-
tional complexity, and thus to obtain a representation language that is suitable
for the application at hand.
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The main task of an II system is to provide a service for answering a query
Q over the global ontology using information in the local sources. This service
can be realized via query rewriting: the query over the global ontology can be
rewritten into a query that is then evaluated over the local sources [10]. Cal-
vanese et al. [5] showed that query rewriting in global-as-view II systems—that
is, systems in which concepts and roles from the global ontology are mapped
to the local sources by a query over one or more sources [15]—can be solved in
two stages. Given a global ontology T expressed in the description logic DL-Lite
[7] and a query Q over T , we can first eliminate T—that is, we can compute
a query Q′ (which depends on Q and T ) such that, for every ABox A, the an-
swers of Q over T and A, and the answers of Q′ over A coincide; this problem
is known as query rewriting w.r.t. DL TBoxes. We can then deal with the map-
pings by unfolding—that is, by replacing each atom in Q′ with its definition
in the mappings. Assuming mappings are as in [5], this second step is rather
straightforward; in contrast, the rewriting of Q and T into Q′ is the main tech-
nical problem in the overall algorithm. Therefore, in the rest of this paper, we
consider the problem of query rewriting w.r.t. DL TBoxes; the application of our
results in an II setting is then straightforward and can be done as in [5].

The rewriting algorithm by Calvanese et al. for the DL-Lite family of lan-
guages has been used to show that query answering in DL-Lite is in LogSpace
w.r.t. data complexity [7]. Similarly, Rosati used a rewriting algorithm for DL
TBoxes expressed in the EL family of languages [1] to show that query answering
in EL is PTime-complete [18].

In this paper we explore the gap between these two results, and investigate
the case where the TBox is expressed in DL-Lite+—a language for which query
answering is known to be NLogSpace-hard [7]. We present a query rewriting
algorithm for DL-Lite+ and use it to show that query answering in DL-Lite+

can be implemented in NLogSpace, thus closing an open problem from [7].
Moreover, we show that our algorithm exhibits “pay-as-you-go” behavior: it
produces an optimal rewriting for TBoxes expressed in a subset of DL-Lite+ for
which query answering is in LogSpace. Finally, we provide a sketch showing
how this algorithm could be straightforwardly extended to deal with members
of the EL family and beyond. In fact, we are confident that such an algorithm
would not only deal with the full spectrum of languages from DL-Lite to EL
extended with inverse roles, universal quantifier, and functionality assertions,
but would be optimal with respect to data complexity for all such languages.

2 Preliminaries

2.1 Description Logic DL-Lite+

For A an atomic concept and P an atomic role, a DL-Lite+ basic concept has
the form A, ∃P , or ∃P.A. A TBox is a set of inclusion assertions of the form
B1 v B2 or P1 v P2, where B1 and B2 are basic concepts, and P1 and P2

are atomic roles. Without loss of generality, we assume that no TBox contains
assertions of the form ∃P.A v ∃S.B: without affecting satisfiability of the TBox,
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Table 1. Semantics of DL-Lite+

Semantics of concepts: Semantics of assertions:

(∃P )I = {x | ∃y.〈x, y〉 ∈ P I}
(∃P.A)I = {x | ∃y.〈x, y〉 ∈ P I ∧ y ∈ AI}

I |= A(a) iff aI ∈ AI

I |= P (a, b) iff (aI , bI) ∈ P I

I |= B1 v B2 iff BI
1 ⊆ BI

2

I |= P1 v P2 iff P I
1 ⊆ P I

2

each assertion of this form can be replaced with ∃P.A v C and C v ∃S.B, for C
a fresh atomic concept. An ABox is a set of membership assertions of the form
A(a) or P (a, b), where A is an atomic concept, P is an atomic role, and a and b
are constants. A DL-Lite+ knowledge base (KB) K is a tuple 〈T ,A〉, where T is
a TBox and A is an ABox.

An interpretation I = (4I , ·I) consists of a nonempty interpretation domain
4I and a function ·I that maps each concept C to a subset CI of 4I , each role
P to a subset P I of 4I × 4I , and each constant a to an element aI of 4I .
The function ·I is extended to concepts as shown in the left part of Table 1. An
interpretation I is a model of an inclusion or membership assertion α, written
I |= α, if I and α satisfy the conditions shown in the right part of Table 1. An
interpretation I is a model of a KB K = 〈T ,A〉, written I |= K, if I satisfies
each of the inclusion assertions in T and each of the membership assertions in
A. A KB K is satisfiable if it has at least one model; furthermore, K logically
implies an assertion α, written K |= α, if all models of K are also models of α.

DL-Lite is obtained from DL-Lite+ by disallowing concepts of the form ∃P.A
on the left-hand side of inclusion assertions B1 v B2. The definition of DL-Lite
in [7] additionally allows for inverse roles. Extending DL-Lite+ with inverse roles
results in a logic with a PTime-hard query answering problem [7]. Since our goal
in this paper is to investigate NLogSpace-complete DLs, we do not consider
inverse roles in this paper.

2.2 Conjunctive and Datalog Queries

We use the well-known notions of a first-order signature, terms, variables, and
atoms. A Horn clause is an expression of the form H ← B1 ∧ · · · ∧Bm, where
H is a possibly empty atom and {Bi} is a set of atoms. H is called the head
and the set {Bi} is called the body. With � we denote the empty clause that
has no body atoms and whose head atom is ⊥. A Horn clause C is safe if all
variables occurring in the head also occur in the body. A Horn clause is a fact if
it is safe and does not contain body atoms; instead of H ←, we usually denote
such clauses as H. With var(C) we denote the number of variables in a clause C.
The depth of a term is defined as depth(t) = 0 for t a constant or a variable and
depth(f(s1, . . . , sm)) = 1 + max(depth(s1), . . . , depth(sm)); the depth of an atom
is defined as depth(R(t1, . . . , tn)) = max(depth(t1), . . . , depth(tn)); and the depth
of a Horn clause C is depth(C) = max(depth(H), depth(B1), . . . , depth(Bm)).
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A datalog program P is a set of function-free, safe Horn clauses. The exten-
sional database (EDB) predicates of P are those that do not occur in the head
atom of any Horn clause in P ; all other predicates are called intensional database
(IDB) predicates. Furthermore, P is linear if each Horn clause in P contains at
most one IDB predicate in the body.

A datalog query Q is a tuple 〈QP , P 〉, where QP is a query predicate and P is
a datalog program. A datalog query Q = 〈QP , P 〉 is called a union of conjunctive
queries if QP is the only IDB predicate in P and the body of each clause in P
does not contain QP ; furthermore, Q is a conjunctive query if it is a union of
conjunctive queries and P contains exactly one Horn clause; finally, Q is a linear
datalog query if P is a linear datalog program. A tuple of constants ~a is an answer
of a datalog query Q = 〈QP , P 〉 on a DL-Lite+ knowledge base K = 〈T ,A〉 if
and only if K ∪ P |= QP (~a), where P is considered to be a set of universally
quantified implications with the usual first-order semantics; the set of all answers
of Q on K is denoted by ans(Q,K).

2.3 Resolution with Free Selection

Resolution with free selection is a well-known calculus that can be used to decide
satisfiability of a set of Horn clauses N [4]. The calculus is parameterized by a
selection function S that assigns to each Horn clause C a nonempty set of atoms
such that either S(C) = {H} or S(C) ⊆ {Bi}. The atoms in S(C) are said to
be selected in C. The resolution calculus with free selection R consists of the
following resolution inference rule.

A← B1 ∧ · · · ∧Bi ∧ · · · ∧Bn C ← D1 ∧ · · · ∧Dm

Aσ ← B1σ ∧ · · · ∧Bi−1σ ∧Bi+1σ ∧ · · · ∧Bnσ ∧D1σ ∧ · · · ∧Dmσ

As usual, we make a technical assumption that the premises do not have variables
in common. The atoms Bi and C must be selected in the corresponding premises
by a selection function and σ = MGU(Bi, C); that is, σ is the most general unifier
of Bi and C as defined in [3]. The two clauses above the inference line are called
the premises and the clause below the line is called the resolvent.

An inference is an application of an inference rule to concrete premises. A
set of Horn clauses N is saturated by R if, for any two premises P1, P2 ∈ N ,
the set N contains a clause that is equivalent to the resolvent of P1 and P2

up to variable renaming. A derivation by R from a set of Horn clauses N is a
sequence of sets of Horn clauses N = N0, N1, . . . such that, for each i ≥ 0, we
have that Ni+1 = Ni∪{C}, where C is the conclusion of an inference by R from
premises in Ni. A derivation is said to be fair if, for any i and any two Horn
clauses P1, P2 ∈ Ni to which resolution is applicable, some j ≥ i exists such that
R ∈ Nj , where R is the resolvent between P1, P2. The limit N∞ of a (possibly
infinite) fair derivation from a set of Horn clauses N is defined as N∞ =

⋃
i Ni. It

is well known that N∞ is saturated by R and does not depend on the derivation
[4]. A set of Horn clauses N is satisfiable if and only if � 6∈ N∞. A clause C is
said to be derivable from N iff C ∈ N∞.
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3 Answering Conjunctive Queries in DL-Lite+

Given a DL-Lite+ TBox T and a conjunctive query Q = 〈QP , {QC}〉, our goal is
to compute a rewriting rew(Q, T )—that is, a query such that, for each ABox A,
evaluating rew(Q, T ) overA and evaluating the query Q directly over K = 〈T ,A〉
produces exactly the same answers. We derive this algorithm in two steps. In
this section, we first show how to compute the set of answers ans(Q,K) directly;
then, in Section 4 we use this result to derive the rewriting algorithm.

It is well known that ~a ∈ ans(Q,K) if and only if Ξ(K) ∪ {QC , ⊥ ← QP (~a)}
is unsatisfiable, where Ξ(K) is the set of clauses obtained by transforming K as
shown in Table 2. Therefore, to answer Q over K, we need a decision procedure
for checking satisfiability of the latter set of clauses. We derive this procedure
using the principles outlined by Joyner [12].

Given K and Q, with N we denote the set of clauses of the forms shown in
Table 2 that can be constructed using the signature of K and Q. It is not difficult
to see that N is finite assuming that K and Q are finite. Furthermore, clearly,
if we translate K into a set of clauses Ξ(K), then Ξ(K) ∪ {QC} ⊆ N . Finally,
we saturate Ξ(K) ∪ {QC , ⊥ ← QP (~a)} using RDL—a suitably parameterized
resolution with free selection calculus. Since RDL is sound and complete, in
order to obtain a decision procedure we only need to show that each saturation
terminates. This is done in the key Lemma 2, which shows that the resolvent of
any two premises in N by RDL is also a clause in N . This immediately implies
termination: in the worst case, the saturation derives the entire set N , which is
finite.

We now formalize our calculus. We first define the set of clauses N and
parameterize suitably the calculus of resolution with free selection.

Definition 1. Let K be a DL-Lite+ knowledge base and Q = 〈QP , {QC}〉 a con-
junctive query. The set of clauses Ξ(K) is obtained by transforming K as shown
in Table 2. Furthermore, the set of DL-Lite+ clauses N is the set of all clauses
of types shown in Table 2 constructed using the symbols in QC and Ξ(K).

With RDL we denote the resolution calculus with free selection parameterized
with the following selection function S.

– In a clause C of type A1–K2, the selection function S selects the atoms that
are underlined in Table 2.

– In a clause C of type Q1, the selection function S selects the head atom if C
contains functional terms in the head or if the body of C is empty; otherwise,
S selects all deepest body atoms of C.

For N a set of clauses, N∞ is the limit of a fair derivation from N by RDL.

The principles outlined before Definition 1 allow us only to check whether
some tuple ~a is an answer to Q over K. Often, however, we need to com-
pute the entire set ans(Q,K). This can be done using the answer literal tech-
nique [9]: instead of saturating Ξ(K) ∪ {QC , ⊥ ← QP (~a)}, we can saturate just
Ξ(K) ∪ {QC} by RDL. The following lemma shows that by doing so we shall
compute all answers to Q over K.
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Table 2. Clause Set N for Q = 〈QP , {QC}〉 and K

Type DL-Lite+ clause DL-Lite+ axiom

A1 A(a) A(a)

A2 P (a, b) P (a, b)

T1 B(x)← A(x) A v B

T2 P (x, f i
A(x))← A(x) A v ∃P.B

T3 B(f i
A(x))← A(x)

T4 B(x)← P (x, y) ∃P v B

T5 B(x)← P (x, y) ∧A(y) ∃P.A v B

T6 S(x, y)← P (x, y) P v S

K1 B(a)← A(b)

K2 B2(x)← B1(f
i
A(x)) ∧A(x)

Q1 QP (~t)←
∧

Li(~ti)

Note 1. We use A and B to denote atomic concepts, P and S for atomic roles, Li for
atomic concepts or roles, and ~t (possibly subscripted) for a tuple of terms. Each axiom
of the form A v ∃P.B is uniquely associated with a function symbol f i

A. For each
clause C of type Q1, (i) var(C) ≤ var(QC), (ii) depth(C) ≤ max(1, var(QC)− var(C)),
and (iii) if a variable x occurs in a functional term in C, then x occurs in all functional
terms in C.

Lemma 1. Let K be a DL-Lite+ knowledge base, Q = 〈QP , {QC}〉 a conjunctive
query, and ~a a tuple of constants. Then, we have ~a ∈ ans(Q,K) if and only if
QP (~a) ∈ (Ξ(K) ∪ {QC})∞.

Proof. Clearly, K ∪ {QC} |= QP (~a) iff K ∪ {QC , ⊥ ← QP (~a)} is unsatisfiable;
we now prove that the latter is the case iff QP (~a) ∈ (Ξ(K) ∪ {QC})∞. The (⇐)
direction is trivial. For the (⇒) direction, note that Ξ(K) ∪ {QC} does not con-
tain a clause with the empty head, so a saturation of Ξ(K) ∪ {QC} by RDL

cannot derive the empty clause. Furthermore, the predicate QP does not occur
in the body of any clause in Ξ(K) ∪ {QC}; hence, RDL can derive the empty
clause from Ξ(K) ∪ {QC , ⊥ ← QP (~a)} only if QP (~a) ∈ (Ξ(K) ∪ {QC})∞. ut

Thus, to compute ans(Q,K), we simply need to saturate Ξ(K) ∪ {QC} by
RDL. The following key lemma shows that such a saturation terminates.

Lemma 2. For each two clauses C1, C2 ∈ N and Cr the resolvent of C1 and
C2 by RDL, we have that Cr ∈ N .

Proof. Let C1 and C2 be some clauses of N , and let Cr be a resolvent of C1 and
C2 by RDL. The possible inferences by RDL on C1 and C2 are summarized in
Table 3. As can be seen from the table, if C1 and C2 are of types A1–K2, then
Cr is also of type A1–K2.

Assume that C1 is of type Q1, satisfying properties (i)–(iii) of Table 2. If the
head atom QP (~t) of C1 is selected, then resolution is not possible, since no clause
in N contains QP in the body. If a unary body atom A(t) of C1 is selected, then
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Table 3. Inferences of RDL on N

A1 + T1 = A1:

A(a) B(x)← A(x)

B(a)

T2 + T4 = T1:

P (x, f i
A(x))← A(x) B(x)← P (x, y)

B(x)← A(x)

A2 + T4 = A1:

P (a, b) B(x)← P (x, y)

B(a)

T2 + T5 = K2:

P (x, f i
A(x))← A(x) B(x)← P (x, y) ∧ C(y)

B(x)← C(f i
A(x)) ∧A(x)

A2 + T5 = K1:

P (a, b) B(x)← P (x, y) ∧A(y)

B(a)← A(b)

T2 + T6 = T2:

P (x, f i
A(x))← A(x) S(x, y)← P (x, y)

S(x, f i
A(x))← A(x)

A2 + T6 = A2:

P (a, b) S(x, y)← P (x, y)

S(a, b)

K1 + A1 = A1:

B(a)← A(b) A(b)

B(a)

T1 + T3 = T3:

C(x)← B(x) B(f i
A(x))← A(x)

C(f i
A(x))← A(x)

K2 + T3 = T1:

C(x)← B(f i
A(x)) ∧A(x) B(f i

A(x))← A(x)

C(x)← A(x)

Q1 + A1 = Q1:

QP (~u)← A(t) ∧
∧

Li(~ti) A(a)

QP (~u)σ ←
∧

Li(~ti)σ

Q1 + A2 = Q1:

QP (~u)← P (s, t) ∧
∧

Li(~ti) P (a, b)

QP (~u)σ ←
∧

Li(~ti)σ

Q1 + T3 = Q1:

QP (~u)← A(t) ∧
∧

Li(~ti) A(f i
B(x))← B(x)

QP (~u)σ ← B(x)σ ∧
∧

Li(~ti)σ

Q1 + T2 = Q1:

QP (~u)← P (s, t) ∧
∧

Li(~ti) P (x, f i
A(x))← A(x)

QP (~u)σ ← A(x)σ ∧
∧

Li(~ti)σ

Note 2. The notation A + B = C denotes that “resolving a clause of type A with a
clause of type B produces a clause of type C.”
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C2 can be of type A1 or T3; we now show that Cr satisfies properties (i)–(iii)
of Table 2.

– If C2 is of type A1, unification is possible only if the term t is either a constant
a or a variable y. In the former case, the unifier σ is empty; in the latter case,
σ = {y 7→ a}. Clearly, var(Cr) ≤ var(C1) and depth(Cr) = depth(C1), so Cr

satisfies (i) and (ii). Furthermore, since A(t) is the deepest atom in C1, the
clause C1 does not contain functional terms, so Cr does not contain them
either; hence, Cr satisfies (iii) vacuously.

– If C2 is of type T3, unification is possible only if the term t is a variable or
a functional term.
• If t is a variable y, then σ = {y 7→ f i

B(x)}. Clearly, var(Cr) = var(C1),
so Cr satisfies (i). Furthermore, depth(C1) = 0 and depth(Cr) ≤ 1, so Cr

satisfies (ii). Finally, every occurrence of y is replaced with f i
B(x), and

C1 does not contain functional terms, so (iii) holds as well.
• If t is a functional term f i

B(s), the unifier is of the form σ = {x 7→ s}.
Clearly, var(Cr) = var(C1), so Cr satisfies (i). Furthermore, since no term
in C1 is deeper than f i

B(s), we have depth(Cr) ≤ depth(C1), so Cr satis-
fies (ii). Finally, the inference does not introduce new functional terms,
so Cr satisfies (iii).

If a binary atom P (s, t) is selected in C1, then C2 can be of type A2 or T2.
We now show that Cr satisfies properties (i)–(iii) of Table 2.

– If C2 is of type A2, the unification is possible only if the terms s and t are
not functional terms. If they are both constants, the substitution σ is empty;
otherwise, σ maps s, t, or both to the corresponding constants in C2. Clearly,
var(Cr) ≤ var(C1), so Cr satisfies (i). Furthermore, depth(Cr) = depth(C1),
so Cr satisfies (ii). Finally, since P (s, t) is the deepest atom in C1, the clause
C1 does not contain functional terms, so Cr satisfies (iii) vacuously.

– If C2 is of type T2, unification is possible only if the term t is a variable or
a functional term.
• If t is a variable xt, then σ = {xt 7→ f i

A(s), x 7→ s}. Due to the occurs-
check in unification, xt cannot occur in s. The inference thus decreases
the number of variables of C1 in Cr by one: var(Cr) = var(C1)− 1, so
Cr satisfies (i). Furthermore, C1 satisfies (iii), so xt does not occur in
a functional term in C1 (because it does not occur in s). Hence, even
though xt is mapped to a functional term, depth(Cr) = depth(C1) + 1,
so Cr satisfies (ii). Finally, since every occurrence of xt is replaced with
f i

A(s), Cr satisfies (iii) as well.
• Assume that t is a functional term f i

A(t′). If s does not occur in t′, then
s is a variable xs and σ = {x 7→ t′, xs 7→ t′}. If s occurs in t′, the
only way for the inference to be possible is if t′ = s, so σ = {x 7→ t′}. In
both cases, var(Cr) ≤ var(C1) and depth(Cr) ≤ depth(C1), so Cr satisfies
properties (i) and (ii). Furthermore, the inference does not introduce
new functional terms, so Cr satisfies (iii) as well.
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This covers all possible forms of C1 and C2, so the lemma holds. ut

This lemma now straightforwardly implies that a saturation of Ξ(K) ∪ {QC}
terminates, so we can use it to compute ans(Q,K).

Lemma 3. For K a DL-Lite+ knowledge base and Q = 〈QP , {QC}〉 a conjunc-
tive query, the saturation of Ξ(K) ∪ {QC} by RDL terminates.

Proof. The clause set N for Q and K is finite. Moreover, no clause is ever deleted
during the saturation process and, by Lemma 2, N is closed under RDL. Hence,
in the worst case, RDL derives all clauses in N and then terminates. ut

We believe that the result in this section can relatively easily be extended
to more expressive DLs, such as EL extended with inverse roles, universal quan-
tifiers in the implication consequent, and functionality assertions. The key to
achieving this is to extend the clause set in Table 2 to cover the new construc-
tors, and to prove that Lemma 2 still holds. We believe we can do this along
the lines of [17, 16]; the main technical difficulty is to precisely describe the in-
teraction between the new types of clause and clauses of type Q1. Once this
is done, however, the rest of this paper (i.e., the material in the following two
sections), should hold with only minor changes. The resulting algorithm would
deal with the full spectrum of languages from DL-Lite to extended EL, and we
are confident that it would still be optimal with respect to data complexity for
all such languages.

4 Rewriting Conjunctive Queries in DL-Lite+

The algorithm from the previous section allows us to compute the answers to
a conjunctive query Q = 〈QP , {QC}〉 over a DL-Lite+ knowledge base K. If we
ask the same query over different ABoxes, the algorithm will repeat a lot of
unnecessary work, since the query answering algorithm depends on both T and
A. In this section, we present an algorithm for query rewriting : given Q and a
TBox T , we compute a datalog query rew(Q, T ) such that, for any ABox A,
the sets of answers of Q over 〈T ,A〉 and of rew(Q, T ) over A are the same.
Thus, our algorithm eliminates the TBox and reduces the problem of answering
conjunctive queries in DL-Lite+ to the problem of answering datalog queries.

A distinguishing feature of our algorithm is that it exhibits “pay-as-you-go”
behavior: the resulting datalog program rew(Q, T ) is optimal for the input TBox
T . If T is in DL-Lite+, then rew(Q, T ) consists of a union of conjunctive queries
and a linear datalog program. We use this fact in Section 5 to establish novel
data complexity bounds for conjunctive query answering. Furthermore, if T is in
DL-Lite, then rew(Q, T ) is a union of conjunctive queries. Hence, our algorithm
generalizes the approach from [7].

We derive the rewriting algorithm in two phases: in Section 4.1, we show
how to convert Ξ(T ) into a nonoptimal datalog program by eliminating function
symbols; then, in Section 4.2 we present an additional step that ensures that the
rewritten query is of optimal form.
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4.1 Elimination of Function Symbols

The following definition summarizes the first step of our rewriting algorithm.

Definition 2. For Q = 〈QP , {QC}〉 a conjunctive query and T a DL-Lite+

TBox, ff(Q, T ) is the set that contains exactly all function-free clauses contained
in (Ξ(T ) ∪ {QC})∞.

We next show that, for each ABox A, we have {QC} ∪ T ∪ A |= QP (~a) if and
only if ff(Q, T ) ∪ A |= QP (~a). Thus, ff(Q, T ) is a rewriting of Q and T , albeit
not necessarily an optimal one. We prove the claim proof-theoretically: we show
that QP (~a) is derivable from {QC} ∪ T ∪ A if and only if it is derivable from
ff(Q, T ) ∪ A. To this end, we first prove that we can always “postpone” the
inferences with the ABox clauses in the saturation of Ξ(T ) ∪ {QC} ∪ A—that
is, we can first perform all inferences with nonground clauses only, and then
perform the inferences involving a ground clause.

Lemma 4. Let Q = 〈QP , {QC}〉 be a conjunctive query, T a DL-Lite+ TBox,
and A an ABox. For each clause C of type Q1 derivable from Ξ(T ) ∪ {QC} ∪ A,
a clause C ′ of type Q1 is derivable from Ξ(T ) ∪ {QC} such that, for G the subset
of all clauses of type A1 and A2 in (ff(Q, T ) ∪ A)∞, we have {C ′} ∪G |= C.

Proof. We prove the claim by induction on the height of a derivation tree by
which C is derived from Ξ(T ) ∪ {QC} ∪ A. If the derivation tree has height
zero, then C must be the clause QC , so the claim follows trivially for C ′ = QC .
Assume that the claim holds for each clause derived from Ξ(T ) ∪ {QC} ∪ A by
a derivation tree of height n, and consider a clause C derived by a derivation tree
of height n + 1. The clause C is obtained by resolving some clauses C1 and C2.
According to Table 3, one of the premises has to be of type Q1, so we denote it
by C1; the other premise C2 can be of type A1, A2, T2, or T3. By the induction
hypothesis, some clause C ′

1 of type Q1 is derivable from Ξ(T ) ∪ {QC} such that
{C ′

1} ∪G |= C1. We now consider the different forms that C2 can have.
Assume that C2 is of type A1 or A2. From Table 3 we can see that each

derivation of a clause of type A1 or A2 involves only function-free clauses, so
C2 ∈ G. The inductive claim now trivially holds for C ′ = C ′

1.
Assume that C2 is of type T2 or T3. We assume that it is of the form

L(~t)← A(x); then, C1 must contain in the body a counterpart atom L(~q). By
examining the inferences between DL-Lite+ clauses shown in Table 3, we can
see that C2 is derivable from Ξ(T ). Note that G contains only ground clauses
of types A1 and A2; thus, since {C ′

1} ∪G |= C1, a subset {Gi(~ai)} ⊆ G exists
such that resolving C ′

1 on body literals {Gi(~gi)} with the elements of {Gi(~ai)}
produces C1. Furthermore, all such resolution inferences just remove body atoms.
Therefore, if C1 is to contain the atom L(~q) in the body, the clause C ′

1 must
contain an atom L(~s) in its body. Hence, C ′

1 is of the form (1), and C1 is of
the form (2), where δ maps some variables to constants in {Gi(~ai)} such that
L(~s)δ = L(~q). Finally, resolving C1 and C2 produces the clause C, which is of
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the form (3) for σ = MGU(L(~s)δ, L(~t)).

C ′
1 = QP (~u)← L(~s) ∧

∧
Gi(~gi) ∧

∧
Mj( ~mj) (1)

C1 = QP (~u)δ ← L(~s)δ ∧
∧

Mj( ~mj)δ (2)

C = QP (~u)δσ ← A(x)σ ∧
∧

Mj( ~mj)δσ (3)

Note that no inference used to derive C1 changes the number of function symbols
of C ′

1; therefore, L(~s) is the deepest literal of C ′
1. Furthermore, each variable of

C ′
1 that is replaced by δ with a constant clearly does not occur in L(~s)δ; hence,

the substitutions δ and σ have disjoint domains, and σ = δσ.
We now transform this derivation into a derivation in which all inferences

with ABox clauses are performed after all inferences with only TBox clauses.
Let C ′ be the clause obtained by resolving C ′

1 and C2; we can assume that C ′

has the form (4), where σ′ = MGU(L(~s), L(~t)).

C ′ = QP (~u)σ′ ← A(x)σ′ ∧
∧

Gi(~gi)σ′ ∧
∧

Mj( ~mj)σ′ (4)

Since L(~s) is the deepest literal of C ′
1, the inference between C ′

1 and C2 satisfies
the selection function of the calculus RDL. Since both C ′

1 and C2 are derivable
from Ξ(T ) ∪ {QC}, the clause C ′ is derivable from Ξ(T ) ∪ {QC} as well. Let
x be a variable that occurs in L(~s) and that is replaced by δ with a constant.
Clearly, σ does not contain such x; hence, without loss of generality, we can
assume (*) that σ′ does not contain such variables either—that is, instead of
mapping x to a term in L(~t), we can assume that the corresponding term is
mapped to x.

Let D now be the clause obtained by resolving the literals Gi(~gi)σ′ in C ′ with
the ground clauses {Gi(~ai)}. This inference is possible due to assumption (*),
so D has the following form, where δ′ maps some variables of C ′ to constants.

D = QP (~u)σ′δ′ ← A(x)σ′δ′ ∧
∧

Mj( ~mj)σ′δ′ (5)

Due to (*), σ and σ′ have the same domain which is disjoint with the domain
of δ, so σ = σ′δ. None of the variables occurring in {Gi(~gi)} is in the domain of
σ′, so δ = δ′. Since σ = σ′δ and δ = δ′, we have σ = σ′δ′. Moreover, since σ = δσ,
we have σ = δσ = σ′δ′, so C = D, which proves our claim. ut

This lemma now allows us to prove the desired relationship between the
answers of Q on T and A and the answers of ff(Q, T ) on A.

Lemma 5. Let Q = 〈QP , {QC}〉 be a conjunctive query, T a DL-Lite+ TBox,
and A an ABox. Then, ~a ∈ ans(Q, 〈T ,A〉) if and only if ff(Q, T ) ∪ A |= QP (~a).

Proof. (⇐) Note that ff(Q, T ) ∪ A ⊆ (Ξ(T ) ∪ {QC} ∪ A)∞, which trivially im-
plies this direction of the claim.

(⇒) Assume that QP (~a) is derivable from Ξ(T ) ∪ {QC} ∪ A. Since QP (~a) is
of type Q1, by Lemma 4, a clause C ′ of type Q1 is derivable from Ξ(T ) ∪ {QC}
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such that, for G the subset of all clauses of type A1 and A2 in (ff(Q, T ) ∪ A)∞, we
have {C ′} ∪G |= C. Since QP (~a) does not contain function symbols, C ′ cannot
contain function symbols either, so C ′ ∈ ff(Q, T ). Thus, QP (~a) is implied by
ff(Q, T ) ∪G so, by the definition of G, we have ff(Q, T ) ∪ A |= QP (~a). ut

4.2 Optimizing the Rewriting through Unfolding

By Lemma 5, the datalog program ff(Q, T ) is a rewriting of Q w.r.t. T ; however,
it is not necessarily optimal for the TBox T at hand. In particular, the program
ff(Q, T ) can contain clauses of type T1, T4, and T6; hence, we must assume that
each predicate in ff(Q, T ) can be an IDB predicate, so a clause of type T4 is not
a linear datalog rule. Our goal, however, is to ensure that the rewriting consists
of a linear datalog program and a union of conjunctive queries; furthermore, if
T is a DL-Lite TBox, the rewriting should be a union of conjunctive queries
only. Thus, in this section we introduce a further unfolding step that transforms
ff(Q, T ) into a datalog program of an optimal form.

Definition 3. The unfolding of L(~x)←
∧

Mi( ~mi) in N(~n)← L(~x′) ∧
∧

Pj(~pj)
is the clause N(~n)σ ←

∧
Mi( ~mi)σ ∧

∧
Pj(~pj)σ, where σ = MGU(L(~x), L(~x′)).

Given two sets of safe Horn clauses R and U , let RU be the smallest set
such that R ⊆ RU and, for each unfolding Cr of a clause C1 ∈ R ∩ U in a
clause C2 ∈ R, we have that Cr ∈ RU . The unfolding of R w.r.t. U is defined
as unfold(R,U) = RU \ U .

We shall apply the unfolding step for R = ff(Q, T ) and U the set of all
clauses of types T1, T4, and T6. Since unfolding eliminates all clauses of type
T6, all atomic roles thus become EDB predicates; thus, the resulting set of
clauses, apart from the clauses of type Q1, is a linear datalog program. Moreover,
since all clauses of types T1 and T4 are also eliminated, the resulting set of
clauses becomes a union of conjunctive queries whenever T is a DL-Lite TBox.
Before proceeding, however, we show that unfolding does not change the set of
“relevant” consequences of a datalog program.

Lemma 6. Let R and U be sets of safe Horn clauses. For any set of facts A
and for any predicate F that does not occur in U , we have R ∪A |= F (~a) if and
only if unfold(R,U) ∪A |= F (~a).

Proof. (⇐) Note that R |= RU and unfold(R,U) ⊆ RU ; therefore, for each clause
C, if unfold(R,U) ∪A |= C then R ∪A |= C.

(⇒) Let H be the hyperresolution calculus—that is, the resolution calculus
in which all the body literals are selected whenever possible, and in which all
selected literals are resolved in one step. It is well known that, if R |= F (~a), then
a derivation tree T for F (~a) from R by H exists [4]. We represent such a tree T
as a tuple 〈TN , δ, λ〉 for TN the set of nodes where we denote with t.i the i-th
child of t ∈ TN and with ε the root node; δ is a function that maps each node
t ∈ TN to a fact δ(t); and λ is a function that maps each node t ∈ TN to a clause
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λ(t) such that δ(t) is derived by hyperresolving each δ(t.i) with the i-th body
literal of λ(t). If t is a leaf node, then δ(t) ∈ A and λ(t) is undefined.

We now inductively define a function σ(t) as follows: starting from the leaves
upwards, for each t ∈ TN , we set σ(t) to be the clause obtained from λ(t) by
unfolding each σ(t.i) in the i-th body atom of λ(t) provided that σ(t.i) /∈ U or
δ(t.i) ∈ A; furthermore, we call t a surviving node iff σ(t) /∈ U or δ(t) ∈ A.
We say that a node t2 is the closest surviving node to t1 if t2 is a surviving
node, if it is a descendent of t1, and no node on the path between t1 and t2
is a surviving node. By the inductive definition of σ, it is easy to see that, for
each node t, the fact δ(t) can be derived by hyperresolving σ(t) with the set
of facts {δ(t1), . . . , δ(tn)}, where t1, . . . , tn are exactly all the closest surviving
nodes to t. Note that, for every node t ∈ TN , we have σ(t) ∈ RU . Moreover, if t
is a surviving node, then σ(t) ∈ unfold(R,U). Therefore, if t is a surviving node,
the fact δ(t) can be derived from unfold(R,U) ∪A.

Since the predicate F does not occur in U , we have F (~a) /∈ U . Furthermore,
δ(ε) = F (~a), so the clause σ(ε) contains F in the head, and σ(ε) /∈ U . Thus, ε is
a surviving node, so δ(ε) can be derived from unfold(R,U) ∪A. ut

We are now ready to define the rewriting of a conjunctive query Q with
respect to a TBox T expressed in DL-Lite+.

Definition 4. The rewriting rew(Q, T ) of a conjunctive query Q = 〈QP , {QC}〉
w.r.t. a DL-Lite+ TBox T is the query 〈QP , unfold(R,U)〉, where R = ff(Q, T )
and U is the subset of N of all clauses of type T1, T4, and T6.

We now state the main property of the reduction algorithm.

Theorem 1. For a conjunctive query Q, a DL-Lite+ TBox T , and an ABox A,
we have ans(Q, 〈T ,A〉) = ans(rew(Q, T ),A).

Proof. Without loss of generality, we can assume that QP does not occur in
Ξ(T ). Then, the claim of this theorem follows straightforwardly from Lemmata
5 and 6. ut

We now prove two important properties about the structure of the rewriting.
We use these properties in Section 5 to prove complexity results about answering
conjunctive queries over DL-Lite+.

Lemma 7. Let Q = 〈QP , {QC}〉 be a conjunctive query, T a DL-Lite+ TBox,
and rew(Q, T ) = 〈QP , P 〉. Then, P can be split into disjoint subsets UQ and UC

such that 〈QP , UQ〉 is a union of conjunctive queries and 〈QP , UC〉 is a linear
datalog query.

Proof. Let UQ ⊆ P be the set of all clauses of type Q1 in P . By the definition of
clauses of type Q1, QP is the head predicate of every clause in UQ, and QP does
not appear in the body of a clause in UQ, so 〈QP , UQ〉 is a union of conjunctive
queries. Let UC = P \ UQ. The program ff(Q, T ) contains clauses of types T1,
T4, T5, and T6. Hence, UC is obtained by unfolding clauses of types T1, T4, and
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T6 in clauses of types T1, T4, T5, and T6, and then by removing all clauses of
types T1, T4, and T6. Thus, UC contains clauses of type T5 and clauses of the
form B(x)← P (x, y) ∧ S(y, z) that are obtained by unfolding a clause of type
T4 in a clause of type T5. Clearly, no clause in UC contains a role predicate in
the head, so all role predicates are EDB predicates. Furthermore, clauses of type
T5 can contain a unary predicate in the head, so unary predicates can be IDB
predicates; however, IDB predicates can occur only in a clause of type T5 in the
body, so all such clauses are linear. Thus, UC is a linear datalog program. ut

Lemma 8. For Q = 〈QP , {QC}〉 a conjunctive query and T a DL-Lite TBox,
rew(Q, T ) is a union of conjunctive queries.

Proof. Let rew(Q, T ) = 〈QP , P 〉. Since T is a DL-Lite TBox, the set Ξ(T ) does
not contain clauses of type T5. Thus, ff(Q, T ) contains only clauses of types Q1,
T1, T4, and T6. Clauses of types T1, T4, and T6 are unfolded in clauses of type
Q1, so rew(Q, T ) is a union of conjunctive queries. ut

5 Complexity Analysis

It is well known that the problem of deciding P |= A(~a) for P a linear datalog
program is NLogSpace-complete with respect to data complexity [8]. We were
not able to find in the literature a generalization of this result for the case
where P consists of a linear datalog program and a union of conjunctive queries;
therefore, before proceeding, we show that this is indeed the case.

Lemma 9. For Q = 〈QP , QC〉 a union of conjunctive queries, P a linear datalog
program, and A a set of facts, deciding P ∪QC ∪A |= QP (~a) can be performed
in NLogSpace in the size of A.

Proof. If P ∪QC ∪A |= QP (~a), then QP (~a) can be derived from the set of
clauses P ∪QC ∪A using SLD resolution [4]. First, we nondeterministically
choose a query Qi ∈ QC and ground it by nondeterministically choosing a set
of constants from A. We then initialize the goal G to be the resolvent of Qi and
← QP (~a); if resolution is not possible, the algorithm halts. Then, we start the
following loop. We first eliminate all atoms with EDB predicates in G by resolv-
ing them with facts in A; if some atom cannot be resolved, the algorithm halts.
If G has an empty body, the algorithm accepts. Otherwise, we nondeterministi-
cally choose a rule R ∈ P and generate its grounding R′ by nondeterministically
choosing a set of constants from A. Finally, we set our goal G to be the resolvent
between R′ and G; if this is not possible, the algorithm halts. We now repeat the
loop. To ensure termination, we maintain a counter that is initialized in the be-
ginning to the number of ground clauses of P and A multiplied by the number of
the query rules in QC . We decrease the counter after each pass through the loop,
and we terminate the loop if the counter reaches zero. Clearly, if the algorithm
accepts, then SLD resolution for QP (~a) from P ∪QC ∪A exists. Conversely, if
an SLD resolution exists, then we can assume that each ground instance of a
rule is used only once, so an accepting run of our algorithm exists.
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Since we are interested in data complexity, the number of predicates p and
their arity r is bounded. Hence, if A contains c constants, we can describe each
ground atom in p · r · dlog(c)e bits. The number of atoms in G depends on the
number of rules in P ∪QC , so storing G requires k1dlog(c)e bits for k1 a con-
stant that does not depend on c. Finally, the number of ground clauses depends
polynomially on c, so we can store the counter using k2dlog(c)e bits for k2 a
constant that does not depend on c. Clearly, the algorithm requires kdlog(c)e
bits of space in total for k a constant that does not depend on c. The algorithm
is nondeterministic, so it can be implemented in NLogSpace. ut

We now apply Lemma 9 to show that answering conjunctive queries over
DL-Lite+ knowledge bases is NLogSpace-complete.

Theorem 2. For a conjunctive query Q = 〈QP , {QC}〉 and a DL-Lite+ knowl-
edge base K = 〈T ,A〉, deciding whether ~a ∈ ans(Q,K) is NLogSpace-complete
w.r.t. data complexity.

Proof. In [6], it was shown that checking entailment of a ground concept as-
sertion is NLogSpace-hard if we allow for assertions of the form ∃P.A v B.
Membership follows immediately from Theorem 1, Lemmata 7 and 9, and the
observation that the size of rew(Q, T ) does not depend on the size of A. ut

By Lemma 8, if T is a DL-Lite TBox, then rew(Q, T ) is a union of conjunctive
queries, so we can compute answers to rew(Q, T ) over A in LogSpace with
respect to data complexity [13], just as is the case in [7].

6 Conclusion

Motivated by the use of DL ontologies in Information Integration systems, we
have presented a resolution-based algorithm for rewriting conjunctive queries
over DL-Lite+ TBoxes. We have used this algorithm to show that query answer-
ing in DL-Lite+ can be implemented in NLogSpace w.r.t. data complexity.
Together with the hardness result from [6], it follows that query answering in
DL-Lite+ is NLogSpace-complete with respect to data complexity,which closes
what was, to the best of our knowledge, an open problem. Moreover, we have
shown that our algorithm exhibits good “pay-as-you-go” behavior: on the subset
of DL-Lite+ for which query answering is in LogSpace, our algorithm is also
worst-case optimal.

As part of our future work, we plan to extend the technique to deal with
more expressive DLs, and in particular with an extended version of EL; a sketch
describing how this could be done was given at the end of Section 3. Such an
algorithm would be optimal for the full spectrum of languages from DL-Lite to
extended EL—that is, languages for which the data complexity of query answer-
ing ranges from LogSpace to PTime-complete. Finally, we plan to implement
our query answering technique in a prototype Information Integration system—
we have established a promising relationship with researchers at the Univer-
sity of Newcastle who are using Information Integration in their ComparaGRID
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project,1 and we plan to use ComparaGRID as an evaluation framework for our
prototype system.
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