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1 Introduction

The commonly accepted basis for functional programming is the λ-calculus;
and it is folklore that the λ-calculus is the prototypical functional language in
purified form. But what is the λ-calculus? The syntax is simple and classical;
variables, abstraction and application in the pure calculus, with applied calculi
obtained by adding constants. The further elaboration of the theory, covering
conversion, reduction, theories and models, is laid out in Barendregt’s already
classical treatise [Bar84]. It is instructive to recall the following crux, which
occurs rather early in that work (p. 39):

Meaning of λ-terms: first attempt

• The meaning of a λ-term is its normal form (if it exists).

• All terms without normal forms are identified.

This proposal incorporates such a simple and natural interpretation of the λ-
calculus as a programming language, that if it worked there would surely be
no doubt that it was the right one. However, it gives rise to an inconsistent
theory! (see the above reference).

Second attempt

• The meaning of λ-terms is based on head normal forms via the notion of
Bohm tree.

• All unsolvable terms (no head normal form) are identified.

This second attempt forms the central theme of Barendregt’s book, and gives
rise to a very beautiful and successful theory (henceforth referred to as the
“standard theory”), as that work shows.
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This, then, is the commonly accepted foundation for functional program-
ming; more precisely, for the lazy functional languages, which represent the
mainstream of current functional programming practice. Examples: MIRANDA
[Tur85], LML [Aug84], LISPKIT [Hen80], ORWELL [Wad85], PONDER [Fai85],
TALE [BvL86]. But do these languages as defined and implemented actually
evaluate terms to head normal form? To the best of my knowledge, not a single
one of them does so. Instead, they evaluate to weak head normal form, i.e. they
do not evaluate under abstractions.

Example

λx.(λy.y)M is in weak head normal form, but not in head normal form, since
it contains the head redex (λy.y)M .

So we have a mismatch between theory and practice. Since current practice
is well-motivated by efficiency considerations and is unlikely to be abandoned
readily, it makes sense to see if a good modified theory can be developed for it.
To see that the theory really does need to be modified:

Example

Let Ω ≡ (λx.xx)(λx.xx) be the standard unsolvable term. Then

λx.Ω = Ω

in the standard theory, since λx.Ω is also unsolvable; but λx.Ω is in weak head
normal form, hence should be distinguished from Ω in our “lazy” theory.

We now turn to a second point in which the standard theory is not com-
pletely satisfactory.

Is the λ-calculus a programming language?

In the standard theory, the λ-calculus may be regarded as being characterised
by the type equation

D = [D → D]

(for justification of this in a general categorical framework, see e.g. [Sco80,
Koy82, LS86]).

It is one of the most remarkable features of the various categories of domains
used in denotational semantics that they admit non-trivial solutions of this
equation. However, there is no canonical solution in any of these categories (in
particular, the initial solution is trivial – the one-point domain).

I regard this as a symptom of the fact that the pure λ-calculus in the
standard theory is not a programming language. Of course, this is to some
extent a matter of terminology, but I feel that the expression “programming
language” should be reserved for a formalism with a definite computational
interpretation (an operational semantics). The pure λ-calculus as ordinarily
conceived is too schematic to qualify.

A further indication of the same point is that studies such as Plotkin’s “LCF
Considered as a Programming Language” [Plo77] have not been carried over to
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the pure λ-calculus, for lack of any convincing way of doing do in the standard
theory. This in turn impedes the development of a theory which integrates the
λ-calculus with concurrency and other computational notions.

We shall see that by contrast with this situation, the lazy λ-calculus we
shall develop does have a canonical model; that Plotkin’s ideas can be carried
over to it in a very natural way; and that the theory we shall develop will run
quite strikingly in parallel with our treatment of concurrency in [Abr87a].

The plan of the remainder of the paper is as follows. In the next section, we
introduce the intuitions on which our theory is based, in the concrete setting
of λ-terms. We then set up the axiomatic framework for our theory, based on
the notion of applicative transition systems. This forms a bridge both to the
standard theory, and to concurrency and other computational notions. We then
introduce a domain equation for applicative transition systems, and use it to
derive a domain logic in the sense of [Abr87c, Abr87b]. We prove Duality, Char-
acterisation, and Final Algebra theorems; and obtain a strikingly simple proof
of a Computational Adequacy Theorem, which asserts that a term converges
operationally if and only if it denotes a non-bottom element in our domain.

We then show how the ideas of [Plo77] can be formulated in our setting.
Two distinctive features of our approach are:

• the axiomatic treatment of concepts and results usually presented con-
cretely in work on programming language semantics

• the use of our domain logic as a tool in studying the equational theory
over our “programs” (λ-terms).

Our results can also be interpreted as settling a number of questions and con-
jectures concerning the Domain Interpretation of Martin-Lof’s Intuitionistic
Type Theory raised at the 1983 Chalmers University Workshop on Semantics
of Programming Languages [DNPS83].

Finally, we consider some extensions and variations of the theory.
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2 The Lazy Lambda-Calculus

We begin with the syntax, which is standard.

Definition 2.1 We assume a set Var of variables, ranged over by x, y, z. The
set Λ of λ-terms, ranged over by M, N, P, Q, R is defined by

M ::= x | λx.M |MN.

For standard notions of free and bound variables etc. we refer to [Bar84]. The
reader should also refer to that work for definitions of notation such as: FV(M),
C[·], Λ0. Our one point of difference concerns substitution; we write M [N/x]
rather than M [x := N ].

Definition 2.2 The relation M⇓N (“M converges to principal weak head nor-
mal form N”) is defined inductively over Λ0 as follows:

• λx.M⇓λx.M • M⇓λx.P P [N/x]⇓Q
MN⇓Q

Notation
M⇓ ≡ ∃N.M⇓N (“M converges”)

M⇑ ≡ ¬(M⇓) (“M diverges”)

It is clear that ⇓ is a partial function, i.e. evaluation is deterministic.
We now have an (unlabelled) transition system (Λ0, ⇓ ). The relation ⇓ by

itself is too “shallow” to yield information about the behaviour of a term under
all experiments. However, just as in the study of concurrency, we shall use it as a
building block for a deeper relation, which we shall call applicative bisimulation.
To motivate this relation, let us spell out the observational scenario we have in
mind.

Given a closed term M , the only experiment of depth 1 we can do is to
evaluate M and see if it converges to some abstraction (weak head normal form)
λx.M1. If it does so, we can continue the experiment to depth 2 by supplying
a term N1 as input to M1, and so on. Note that what the experimenter can
observe at each stage is only the fact of convergence, not which term lies under
the abstraction. We can picture matters thus:

Stage 1 of experiment: M⇓λx.M1;

environment “consumes” λ,

produces N1 as input

Stage 2 of experiment: M1[N1/x]⇓ . . .
...
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Definition 2.3 (Applicative Bisimulation) We define a sequence of rela-
tions {@

∼k}k∈ω on Λ0:

M@
∼0N ≡ true

M@
∼k+1N ≡ M⇓λx.M1 ⇒ ∃N1.[N⇓λy.N1 & ∀P ∈ Λ0.M1[P/x]@∼kN1[P/y]]

M@
∼
BN ≡ ∀k ∈ ω.M@

∼kN

Clearly each @
∼k and @

∼
B is a preorder. We extend @

∼
B to Λ by:

M@
∼
BN ≡ ∀σ : Var → Λ0.Mσ@

∼
BNσ

(where e.g. Mσ means the result of substituting σx for each x ∈ FV (M) in
M). Finally,

M ∼B N ≡ M@
∼
BN & N@

∼
BM.

Using standard techniques [Mos74, Mil83], ∼B can be shown to be the maximal
fixpoint of a certain function, and hence to satisfy:

M@
∼
BN ⇐⇒ M⇓λx.M1 ⇒ ∃N1.[N⇓λy.N1 & ∀P ∈ Λ0.M1[P/x]@∼

BN1[P/y]]

Further details are given in the next section.
The applicative bisimulation relation can be described in a more traditional

way (from the point of view of λ-calculus) as a “Morris-style contextual con-
gruence” [Mor68, Plo77, Mil77, Bar84].

Definition 2.4 The relation @
∼
C on Λ0 is defined by

M@
∼
CN ≡ ∀C[·] ∈ Λ0. C[M ]⇓ ⇒ C[N ]⇓.

This is extended to Λ in the same way as @
∼
B.

Proposition 2.5 @
∼
B = @

∼
C .

This is a special case of a result we will prove later. Our proof will make essential
use of domain logic, despite the fact that the statement of the result does not
mention domains at all. The reader who may be sceptical of our approach is
invited to attempt a direct proof.

We now list some basic properties of the relation @
∼
B (superscript omitted).

Proposition 2.6 For all M,N,P ∈ Λ:

(i) M@
∼M

(ii) M@
∼N & N@

∼P ⇒ M@
∼P

(iii) M@
∼N ⇒ M [P/x]@∼N [P/x]

(iv) M@
∼N ⇒ P [M/x]@∼P [N/x]

(v) λx.M ∼ λy.M [y/x]

(vi) M@
∼N ⇒ λx.M@

∼λx.N

(vii) Mi
@
∼Ni (i = 1, 2) ⇒ M1M2

@
∼N1N2.
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Proof. (i)–(iii) and (v)–(vi) are trivial; (vii) follows from (ii) and (iv), since
taking C1 ≡ [·]M2, M1M2

@
∼N1M2, and taking C2 ≡ N1[·], N1M2

@
∼N1N2, whence

M1M2
@
∼N1N2. It remains to prove (iv), which by 2.5 is equivalent to

M@
∼
CN ⇒ P [M/x]@∼CP [N/x].

We rename all bound variables in P to avoid clashes with M and N , and replace
x by [·] to obtain a context P [·] such that

P [M/x] = P [M ], P [N/x] = P [N ].

Now let C[·] ∈ Λ0 and σ ∈ Var → Λ0 be given. Let C1[·] ≡ C[P [·]σ]. M@
∼
CN

implies
C1[Mσ]⇓ ⇒ C1[Nσ]⇓

which, since (P [M/x])σ = (P [·]σ)[Mσ], yields

C[(P [M/x])σ]⇓ ⇒ C[(P [N/x])σ]⇓,

as required.
This Proposition can be summarised as saying that @

∼
B is a precongruence.

We thus have an (in)equational theory λ` = (Λ,v,=), where:

λ` `M v N ≡ M@
∼
BN

λ` `M = N ≡ M ∼B N.

What does this theory look like?

Proposition 2.7 (i) The theory λ [Bar84] is included in λ`; in particular,

λ` ` (λx.M)N = M [N/x] (β).

(ii) Ω ≡ (λx.xx)(λx.xx) is a least element for v, i.e.

λ` ` Ω v x.

(iii) (η) is not valid in λ`, e.g.

λ` 0 λx.Ωx = Ω,

but we do have the following conditional version of η:

(⇓η) λ` ` λx.Mx = M (M⇓, x 6∈ FV (M))

(M⇓ ≡ ∀σ ∈ Var → Λ0. (Mσ)⇓).

(iv) YK is a greatest element for v, i.e.

λ` ` x v YK.
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Proof. (i) is an easy consequence of 2.6.
(ii). Ω⇑, hence Ω@

∼
BM for all M ∈ Λ0.

(iii). λx.Ωx/@∼1Ω, since (λx.Ωx)⇓. Now suppose M⇓, and let σ : Var → Λ0 be
given. Then (Mσ)⇓λy.N . For any P ∈ Λ0,

(Mσ)P⇓Q ⇔ ((Mσ)x)[P/x]⇓Q since x 6∈ FV (M),

⇔ ((λx.Mx)σ)P⇓Q,

and so M ∼B λx.Mx, as required.
(iv). Note that YK⇓λy.N , where N ≡ (λx.K(xx))(λx.K(xx)), and that for all
P ,

N [P/y]⇓λy.N.

Hence for all P1, . . . , Pn (n ≥ 0),

YKP1 . . . Pn⇓,

and so M@
∼
BYK for all M ∈ Λ0.

To understand (iv), we can think of YK as the infinite process

λ
	

solving the equation
ξ = λx.ξ.

This is a top element in our applicative bisimulation ordering because it con-
verges under all finite stages of evaluation for all arguments—the experimenter
can always observe convergence (or “consume an infinite λ-stream”).

We can make some connections between the theory λ` and [Lon83], as
pointed out to me by Chih-Hao Ong. Firstly, 2.7(ii) can be generalised to:

• The set of terms in Λ0 which are least in λ` are exactly the PO0 terms in
the terminology of [Lon83].

Moreover, YK is an O∞ term in the terminology of [Lon83], although it is not
a greatest element in the ordering proposed there.
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3 Applicative Transition Systems

The theory λ` defined in the previous section was derived from a particular
operational model, the transition system (Λ0,⇓). What is the general concept
of which this is an example?

Definition 3.1 A quasi-applicative transition system is a structure (A, ev) where

ev : A ⇀ (A→ A).

Notations:
(i) a⇓f ≡ a ∈ dom ev & ev(a) = f

(ii) a⇓ ≡ a ∈ dom ev

(iii) a⇑ ≡ a 6∈ dom ev

Definition 3.2 (Applicative Bisimulation) Let (A, ev) be a quasi-ats. We
define

F : Rel(A) → Rel(A)

by
F (R) = {(a, b) : a⇓f =⇒ b⇓g & ∀c ∈ A. f(c)Rg(c)}.

Then R ∈ Rel(A) is an applicative bisimulation iff R ⊆ F (R); and @
∼
B ∈ Rel(A)

is defined by

a@
∼
Bb ≡ aRb for some applicative bisimulation R.

Thus @
∼
B =

⋃
{R ∈ Rel(A) : R ⊆ F (R)}, and hence is the maximal fixpoint of

the monotone function F . Since the relation ⇓ is a partial function, it is easily
shown that the closure ordinal of F is ≤ ω, and we can thus describe @

∼
B more

explicitly as follows:

• a@
∼
Bb ≡ ∀k ∈ ω. a@

∼kb

• a@
∼0b ≡ true

• a@
∼k+1b ≡ a⇓f =⇒ b⇓g & ∀c ∈ A. f(c)@

∼kg(c)

• a ∼B b ≡ a@
∼
Bb & b@

∼
Ba.

It is easily seen that @
∼
B, and also each @

∼k, is a preorder; ∼B is therefore an
equivalence.

We now come to our main definition.

Definition 3.3 An applicative transition system (ats) is a quasi-ats (A, ev)
satisfying:

∀a, b, c ∈ A. a⇓f & b@
∼
Bc ⇒ f(b)@

∼
Bf(c).
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An ats has a well-defined quotient (A/∼B, ev/∼B), where

ev/∼B([a]) =

 [b] 7→ [f(b)], a⇓f

undefined otherwise.

The reader should now refresh her memory of such notions as applicative
structure, combinatory algebra and lambda model from [Bar84, Chapter 5].

Definition 3.4 A quasi-applicative structure with divergence is a structure
(A, · ,⇑) such that (A, · ) is an applicative structure, and ⇑ ⊆ A is a diver-
gence predicate satisfying

x⇑ =⇒ (x· y)⇑.

Given (A, · ,⇑), we can define

a@
∼
Ab ≡ a⇓ =⇒ b⇓& ∀c ∈ A. a· c@

∼
Ab· c

as the maximal fixpoint of a monotone function along identical lines to 3.2.
Applicative transition systems and applicative structures with divergence

are not quite equivalent, but are sufficiently so for our purposes:

Proposition 3.5 Given an ats B = (A, ev), we define A = (A, · ,⇑) by

a· b ≡

 a, a⇑

f(b) a⇓f.

Then
a@
∼
Ab ⇐⇒ a@

∼
Bb,

and moreover we can recover B from A by

ev(a) =

 b 7→ a· b, a⇓

undefined otherwise.

Furthermore, · is compatible with @
∼
B, i.e.

ai@∼
Bbi (i = 1, 2) ⇒ a1· a2

@
∼
Bb1· b2.

We now turn to a language for talking about these structures.

Definition 3.6 We assume a fixed set of variables Var. Given an applicative
structure A = (A, · ), we define CL(A), the combinatory terms over A, by

• Var ⊆ CL(A)

• {ca : a ∈ A} ⊆ CL(A)

• M,N ∈ CL(A) ⇒ MN ∈ CL(A).
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Let Env(A) ≡ Var → A. Then the interpretation function

[[·]]A : CL(A) → Env(A) → A

is defined by:

[[x]]Aρ = ρx

[[ca]]Aρ = a

[[MN ]]Aρ = ([[M ]]Aρ )· ([[N ]]Aρ ).

Given an ats A = (A, ev), with derived applicative structure (A, · ), the satis-
faction relation between A and atomic formulae over CL(A), of the forms

M v N, M = N, M⇓ M⇑

is defined by:

A, ρ |= M v N ≡ [[M ]]Aρ @
∼
B[[N ]]Aρ

A, ρ |= M = N ≡ [[M ]]Aρ ∼B [[N ]]Aρ

A, ρ |= M⇓ ≡ [[M ]]Aρ ⇓

A, ρ |= M⇑ ≡ [[M ]]Aρ ⇑

while
A |= φ ≡ ∀ρ ∈ Env(A).A, ρ |= φ.

This is extended to first-order formulae in the usual way.
Note that equality in CL(A) is being interpreted by bisimulation in A.

We could have retained the standard notion of interpretation as in [Bar84] by
working in the quotient structure (A/∼B, · /∼B). This is equivalent, in the
sense that the same sentences are satisfied.

Definition 3.7 A lambda transition system (lts) is a structure (A, ev, k, s),
where:

• (A, ev) is an ats

• k, s ∈ A, and A satisfies the following axioms (writing K, S for ck, cs):

• K⇓, Kx⇓

• Kxy = x

• S⇓, Sx⇓, Sxy⇓

• Sxyz = (xz)(yz)

We now check that these definitions do indeed capture our original example.
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Example

We define ` = (Λ0, ev), where

ev(M) =

 P 7→ N [P/x], M⇓λx.N

undefined otherwise.

` is indeed an ats by 2.6(iv). Moreover, it is an lts via the definitions

k ≡ λx.λy.x

s ≡ λx.λy.λz.(xz)(yz).

We now see how to interpret λ-terms in any lts.

Definition 3.8 Given an lts A, we define Λ(A), the λ-terms over A, by the
same clauses as for CL(A), plus the additional one:

• x ∈ Var,M ∈ Λ(A) ⇒ λx.M ∈ Λ(A).

We define a translation
(·)CL : Λ(A) → CL(A)

by

(x)CL ≡ x

(ca)CL ≡ ca

(MN)CL ≡ (M)CL(N)CL
(λx.M)CL ≡ λ∗x.(M)CL

where

λ∗x.x ≡ I (≡ SKK)
λ∗x.M ≡ KM (x 6∈ FV (M))

λ∗x.MN ≡ S(λ∗x.M)(λ∗x.N).

We now extend [[·]] to Λ(A) by:

[[M ]]Aρ ≡ [[(M)CL]]Aρ .

Definition 3.9 We define two sets of formulae over Λ:

• Atomic formulae:

AF ≡ {M v N, M = N, M⇓, N⇑ : M,N ∈ Λ}

• Conditional formulae:

CF ≡ {
∧
i∈I

Mi⇓ ∧
∧
j∈J

Nj⇑ ⇒ F : F ∈ AF,Mi, Ni ∈ Λ, I, J finite}
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Note that, taking I = J = ∅, AF ⊆ CF. Now given an lts A, =(A), the theory
of A, is defined by

=(A) ≡ {C ∈ CF : A |= C}.

We also write =0(A) for the restriction of =(A) to closed formulae; and given
a set Con of constants and an interpretation Con → A, we write =(A,Con) for
the theory of conditional formulae built from terms in Λ(Con).

Example (continued). We set λ` = =(`). This is consistent with our usage
in the previous section. We saw there that λ` satisfied much stronger properties
than the simple combinatory algebra axioms in our definition of lts. It might
be expected that these would fail for general lts; but this is to overlook the
powerful extensionality principle built into our definition of the theory of an
ats through the applicative bisimulation relation.

Proposition 3.10 Let A be an ats. The axiom scheme of conditional exten-
sionality over CL(A):

(⇓ext) M⇓&N⇓ ⇒ ([∀x.Mx = Nx] ⇒ M = N) (x 6∈ FV (M)∪FV (N))

is valid in A.

Proof. Let ρ ∈ Env(A).

• A, ρ |= M⇓&N⇓& ∀x.Mx = Nx

⇒ [[M ]]Aρ ⇓& [[N ]]Aρ ⇓& ∀a ∈ A. [[M ]]Aρ · a = [[N ]]Aρ · a

since x 6∈ FV (M) ∪ FV (N)

⇒ [[M ]]Aρ ∼A [[N ]]Aρ

⇒ [[M ]]Aρ ∼B [[N ]]Aρ

⇒ A, ρ |= M = N.

Using this Proposition, we can now generalise most of 2.7 to an arbitrary lts.

Theorem 3.11 Let A = (A, ev, k, s) be an lts. Then
(i) (A, ., k, s) is a lambda model, and hence λ ⊆ =(A).
(ii) A satisfies the conditional η axiom scheme:

(⇓η) M⇓ ⇒ λx.Mx = M (x 6∈ FV (M))

(iii) For all M ∈ Λ0:
λ` ` M⇓ ⇒ A |= M⇓

(iv) A |= x v YK.
(v) v is a precongruence in =(A).

Proof. (i). Firstly, by the very definition of lts, A is a combinatory algebra.
We now use the following result due to Meyer and Scott, cited from [Bar84,
Theorem 5.6.3, p. 117]:
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• Let M be a combinatory algebra. Define

1 ≡ 11 ≡ S(KI), 1k+1 ≡ S(K1k).

Then M is a lambda model iff it satisfies

(I) ∀x. ax = bx ⇒ 1a = 1b

(II) 12K = K

(III) 13S = S.

Thus it is sufficient to check that A satisfies (I)–(III). For (I), note firstly
that A |= 1a⇓ & 1b⇓ by the convergence axioms for an lts. Hence we
can apply 3.10 to obtain

A |= [∀x.1ax = 1bx] ⇒ 1a = 1b.

We now assume ∀x. ax = bx and prove ∀x.1ax = 1bx:

1ax = S(KI)ax
= (KI)x(ax)
= (KI)x(bx)
= S(KI)bx
= 1bx.

(II) and (III) are proved similarly.

(ii). Let ρ ∈ Env(A), and assume A, ρ |= M⇓. We must prove that

A, ρ |= λx.Mx = M.

Firstly, note that for any abstraction λz.P ,

A |= λz.P⇓

by the definition of λ∗z.P and the convergence axioms for an lts. Thus
since x 6∈ FV (M), we can apply (⇓ext) to obtain

A, ρ |= [∀x. (λx.Mx)x = Mx] → λx.Mx = M.

It is thus sufficient to show

A |= (λx.Mx)x = Mx.

But this is just an instance of (β), which A satisfies by (i).

(iii). We calculate:

λ` ` M⇓ ⇒ M⇓λx.N
⇒ λ ` M = λx.N

⇒ A |= M = λx.N

⇒ A |= M⇓,
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since A |= λx.N⇓, as noted in (ii).

(iv). By (i) and (iii),

A |= YK⇓& ∀x. (YK)x = YK.

Hence we can use the same argument as in 2.7(iv) to prove that

A |= x v YK.

(v). This assertion amounts to the same list of properties as Proposition
2.6, but with respect to =(A). The only difference in the proof is that
2.6(vii) follows immediately from 3.5 and the fact that A is an ats, and
can then be used to prove 2.6(iv) by induction on P .

Part (iii) of the Theorem tells us that all the closed terms which we expect
to converge must do so in any lts. What of the converse? For example,
do we have

A |= Ω⇑

in every lts? This is evidently not the case, since we have not imposed
any axioms which require anything to be divergent.

Observation 3.12 Let A = (A, ev) be an ats in which ev is total, i.e.
dom ev = A. Then =(A) is inconsistent, in the sense that

A |= x = y.

This is of course because the distinctions made by applicative bisimulation
are based on divergence.

In the light of this observation and 3.11, it is natural to make the following
definition in analogy with that in [Bar84]:

Definition 3.13 An lts A is sensible if the converse to 3.11(iii) holds, i.e.
for all M ∈ Λ0:

A |= M⇓ ⇐⇒ λ` `M⇓ ⇐⇒ ∃x,N. λ `M = λx.N.

(The second equivalence is justified by an appeal to the Standardisation
Theorem [Bar84].)
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4 A Domain Equation for Applicative Bisimula-
tion

We now embark on the same programme as in [Abr87a]; to obtain a
domain-theoretic analysis of our computational notions, based on a suit-
able domain equation. What this should be is readily elicited from the
definition of ats. The structure map

ev : A ⇀ (A→ A)

is partial; the standard approach to partial maps in domain theory (pace
Plotkin’s recent work on predomains [Plo85]) is to make them into total
ones by sending undefined arguments to a “bottom” element, i.e. changing
the type of ev to

A→ (A→ A)⊥.

This suggests the domain equation

D = (D → D)⊥

i.e. the denotation of the type expression rec t.(t→ t)⊥. This equation is
composed from the function space and lifting constructions. Since SDom
is closed under these constructions, D is a Scott domain. Indeed, by
the same reasoning it is an algebraic lattice. The crucial point is that
this equation has a non-trivial initial solution, and thus there is a good
candidate for a canonical model. To see this, consider the “approximants”
Dk, with D0 ≡ 1, Dk+1 ≡ (Dk → Dk)⊥. Then

D1 = (1 → 1)⊥ ∼= (1)⊥ ∼= O
D2

∼= (O → O)⊥, with four elements
...

etc. We now unpack the structure of D. Our treatment will be rather
cursory, as it proceeds along similar lines to our work in [Abr87a]. Firstly,
there is an isomorphism pair

unfold : D → (D → D)⊥, fold : (D → D)⊥ → D.

Next, we recall the categorical description of lifting, as the left adjoint to
the forgetful functor

U : Dom⊥ → Dom

where Dom⊥ is the sub-category of strict functions. Thus we have:

– A natural transformation up : IDom → U ◦ (·)⊥.

– For each continuous map f : D → UE its unique strict extension

lift(f) : (D)⊥ →⊥ E.
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Concretely, we can take

(D)⊥ ≡ {⊥} ∪ {<0, d> | d ∈ D}
x v y ≡ x = ⊥

or x = <0, d>& y = <0, d′>& d vD d′

upD(d) ≡ <0, d>
lift(f)(⊥) ≡ ⊥E

lift(f)<0, d> ≡ f(d).

We can now define
ev : D ⇀ (D → D)

by

ev(d) =

 f, unfold(d) = <0, f>

undefined unfold(d) = ⊥.

Thus (D, ev) is a quasi-ats, and we write d⇓f , d⇑ etc. Note that we can
recover d from ev(d) by

d =

 fold(<0, f>), d⇓f

⊥D d⇑.

The final ingredient in the definition of D is initiality. The only direct
consequence of this which we will use is contained in

Theorem 4.1 D is internally fully abstract, i.e.

∀d, d′ ∈ D. d v d′ ⇐⇒ d@
∼
Bd′.

Proof. Unpacking the definitions, we see that for all d, d′ ∈ D:

d v d′ ⇐⇒ d⇓f ⇒ d′⇓g & ∀d′′ ∈ D. f(d′′) v g(d′′).

Thus the domain ordering is an applicative bisimulation, and so is in-
cluded in @

∼
B. For the converse, we need some additional notions. We

define dk, fk for d ∈ D, f ∈ [D → D], k ∈ ω by:

• d0⇑

• d⇑ ⇒ dk⇑

• d⇓f ⇒ dk+1⇓fk
• fk : d 7→ (fd)k.

We can use standard techniques to prove, from the initiality of D:

• ∀d ∈ D. d =
⊔
k∈ω

dk.
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The proof is completed with a routine induction to show that:

∀k ∈ ω. d@
∼kd

′ ⇒ dk v d′k.

As an immediate corollary of this result, we see that D is an ats. We thus
have an interpretation function

[[·]]D : CL(D) → Env(D) →→ D.

We extend this to Λ(D) by:

[[λx.M ]]Dρ = fold(up(λd ∈ D.[[M ]]Dρ[x 7→d])).

Note that the application induced from (D, ev) can be described by

d· d′ = lift(Ap) unfold(d) d′

where
Ap : [D → D] → D → D

is the standard application function; and is therefore continuous. This to-
gether with standard arguments about environment semantics guarantees
that our extension of [[]]D is well-defined. Note also that [[λx.M ]]Dρ 6= ⊥D,
as expected.

We can now define

k ≡ [[λx.λy.x]]Dρ ,

s ≡ [[λx.λy.λz.(xz)(yz)]]Dρ

for D. It is straightforward to verify

Proposition 4.2 D is an lts.

Thus far, we have merely used our domain equation to construct a partic-
ular lts D. However, its “categorical” or “absolute” nature should lead us
to suspect that we can use D to study the whole class of lts. The medium
we will use for this purpose is a suitable domain logic in the sense of
[Abr87b].

17



5 A Domain Logic for Applicative Transition Sys-
tems

Definition 5.1 The syntax of our domain logic L is defined by

φ ::= t | φ ∧ ψ | (φ→ ψ)⊥

Definition 5.2 (Semantics of L) Given a quasi ats A, we define the
satisfaction relation |=A ⊆ A× L:

a |=A t ≡ true

a |=A φ ∧ ψ ≡ a |=A φ & a |=A ψ

a |=A (φ→ ψ)⊥ ≡ a⇓f & ∀b ∈ A. b |=A φ ⇒ f(b) |=A ψ.

Notation:

L(a) ≡ {φ ∈ L : a |=A φ}

A |= φ ≤ ψ ≡ ∀a ∈ A. a |=A φ =⇒ a |=A ψ

A |= φ = ψ ≡ ∀a ∈ A. a |=A φ ⇐⇒ a |=A ψ

|= φ ≤ ψ ≡ ∀A.A |= φ ≤ ψ

λ ≡ (t → t)⊥

a vL b ≡ L(a) ⊆ L(b).

Note that: ∀a ∈ A. a⇓ ⇐⇒ a |=A λ.

Lemma 5.3 Let A be a quasi ats. Then

∀a, b ∈ A. a@
∼
Bb =⇒ a vL b.

Proof. We assume a@
∼
Bb and prove ∀φ ∈ L. a |=A φ ⇒ b |=A φ by

induction on φ. The non-trivial case is (φ→ ψ)⊥.

• a |=A (φ→ ψ)⊥

=⇒ a⇓f

=⇒ b⇓g & ∀c. f(c)@
∼
Bg(c)

=⇒ ∀c. c |=A φ =⇒ f(c)@
∼
Bg(c) & f(c) |=A ψ

=⇒ ∀c. c |=A φ ⇒ g(c) |=A ψ ind. hyp.

=⇒ b |=A (φ→ ψ)⊥.

To get a converse to this result, we need a condition on A.

18



Definition 5.4 A quasi ats A is approximable iff

∀a, b1, . . . , bn ∈ A. ab1 . . . bn⇓ ⇒ ∃φ1, · · · , φn.

a |=A (φ1 → · · · (φn → λ)⊥ · · ·)⊥ & bi |=A φi, 1 ≤ i ≤ n.

This is a natural condition, which says that convergence of a function
application is caused by some finite amount of information (observable
properties) of its arguments.

As expected, we have

Theorem 5.5 (Characterisation Theorem) Let A be an approximable
quasi ats. Then

@
∼
B = @

∼
L.

Proof. By 5.3, @
∼
B ⊆ @

∼
L. For the converse, suppose a/@∼Bb. Then for some

k, a/@∼Bk b, and so for some c1, · · · , ck ∈ A:

ac1 · · · ck⇓ & bc1 · · · ck⇑.

By approximability, for some φ1, · · · , φk ∈ L,

a |=A (φ1 → · · · (φk → λ)⊥ · · ·)⊥ & ci |=A φi, 1 ≤ i ≤ k.

Clearly b 2A (φ1 → · · · (φk → λ)⊥ · · ·)⊥, and so a/@∼Lb.

As a further consequence of approximability, we have:

Proposition 5.6 An approximable quasi ats is an ats.

Proof. Suppose a⇓f and b@
∼
Bc. We must show f(b)@

∼
Bf(c). It is sufficient

to show that for all k ∈ ω, d1, . . . , dk ∈ A:

f(b)d1 . . . dk⇓ ⇒ f(c)d1 . . . dk⇓.

Now f(b)d1 . . . dk⇓ implies abd1 . . . dk⇓; hence by approximability, for
some φ, φ1, . . . φk ∈ L:

a |=A (φ→ (φ1 → · · · (φk → λ)⊥ · · ·)⊥

and
b |=A φ, bi |=A φi, 1 ≤ i ≤ k.

By 5.5, c |=A φ, and so abd1 . . . dk |=A λ, and f(c)d1 . . . dk⇓ as required.

We now introduce a proof system for assertions of the form φ ≤ ψ, φ = ψ
(φ, ψ ∈ L).
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Proof System For L

(REF) φ ≤ φ (TRANS)
φ ≤ ψ ψ ≤ ξ

φ ≤ ξ

(= −I) φ ≤ ψ ψ ≤ φ

φ = ψ
(= −E)

φ = ψ

φ ≤ ψ ψ ≤ φ

(t − I) φ ≤ t

(∧ − I)
φ ≤ φ1 φ ≤ ψ2

φ ≤ φ1 ∧ φ2
(∧ − E) φ ∧ ψ ≤ φ φ ∧ ψ ≤ ψ

((→)⊥− ≤)
φ2 ≤ φ1 ψ1 ≤ ψ2

(φ1 → ψ1)⊥ ≤ (φ2 → ψ2)⊥
((→)⊥ − ∧) (φ→ ψ1 ∧ ψ2)⊥ = (φ→ ψ1)⊥ ∧ (φ→ ψ2)⊥

((→)⊥ − t) (φ→ t)⊥ ≤ (t → t)⊥.

We write L ` A or just ` A to indicate that an assertion A is derivable
from these axioms and rules. Note that the converse of ((→)⊥ − t) is
derivable from (t − I) and ((→)⊥− ≤); by abuse of notation we refer to
the corresponding equation by the same name.

Theorem 5.7 (Soundness Theorem) ` φ ≤ ψ =⇒ |= φ ≤ ψ.

Proof. By a routine induction on the length of proofs.

So far, our logic has been presented in a syntax-free fashion so far as the
elements of the ats are concerned. Now suppose we have an lts A. λ-terms
can be interpreted in A, and for M ∈ Λ0, ρ ∈ Env(A), we can define:

M, ρ |=A φ ≡ [[M ]]Aρ |=A φ.

We can extend this to arbitrary terms M ∈ Λ in the presence of assump-
tions Γ : Var → L on the variables:

M, Γ |=A φ ≡ ∀ρ ∈ Env(A). ρ |=A Γ ⇒ [[M ]]Aρ |=A φ

where
ρ |=A Γ ≡ ∀x ∈ Var. ρx |=A Γx.

We write
M, Γ |= φ ≡ ∀A. M, Γ |=A φ.

We now introduce a proof system for assertions of the form M, Γ ` φ.

Notation: Γ ≤ ∆ ≡ ∀x ∈ Var.Γx ≤ ∆x.
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Proof System For Program Logic

M, Γ ` t

M, Γ ` φ M, Γ ` ψ

M, Γ ` φ ∧ ψ
Γ ≤ ∆ M, ∆ ` φ φ ≤ ψ

M, Γ ` ψ

x, Γ[x 7→ φ] ` φ

M, Γ[x 7→ φ] ` ψ

λx.M, Γ ` (φ→ ψ)⊥
M, Γ ` (φ→ ψ)⊥ N, Γ ` φ

MN, Γ ` ψ
.

Theorem 5.8 (Soundness of Program Logic) For all M , Γ, φ:

M, Γ ` φ =⇒ M, Γ |= φ.

The proof is again routine. Note the striking similarity of our program
logic with type inference, in particular with the intersection type discipline
and Extended Applicative Type Structures of [CDCHL84]. The crucial
difference lies in the entailment relation ≤, and in particular the fact that
their axiom (in our notation)

t ≤ (t → t)⊥

is not a theorem in our logic; instead, we have the weaker ((→)⊥). This
reflects a different notion of “function space”; we discuss this further in
section 7.

We now come to the expected connection between the domain logic L and
the domain D. The connecting link is the domain equation used to define
D, and from which L is derived. Since this equation corresponds to the
type expression σ ≡ rec t.(t→ t)⊥, it falls within the scope of the general
theory developed in [Abr87b]. The logic L presented in this section is a
streamlined version of L(σ) as defined in [Abr87b]. Once we have shown
that L is equivalent to L(σ), we can apply the results of [Abr87b] to obtain
the desired relationships between L ' L(σ) and D ' D(σ).1

Firstly, note that L as presented contains no disjunctive structure, while
the constructs →, (·)⊥ appearing in σ generate no inconsistencies accord-
ing to the definition of C in [Abr87b]. Thus (the Lindenbaum algebra
of) L∧(σ), the purely conjunctive part of L(σ), is a meet-semilattice, and
applying [Abr87b, Theorem 2.3.4], we obtain

Spec (L(σ)/=σ,≤σ/=σ) ∼= Filt(L∧(σ)/=σ,≤σ/=σ).

It remains to show that L is pre-isomorphic to L∧(σ). We can describe
the syntax of L∧(σ) as follows:

1The reader unfamiliar with [Abr87b] who is prepared to take Theorems 5.12 and 5.14 on
trust is advised to skip the details till after 5.14.
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– L∧(σ):
φ ::= t | φ ∧ ψ | (φ)⊥ (φ ∈ L(σ → σ))

– L∧(σ → σ):

φ ::= t | φ ∧ ψ | (φ→ ψ) (φ, ψ ∈ L(σ)).

Using (()⊥ − ∧) and (→ −t) (i.e. the nullary instances of (→ −∧)) from
[Abr87b], we obtain the following normal forms for L∧(σ):

φ ::= t | φ ∧ ψ | (φ→ ψ)⊥.

In this way we see that L ⊆ L∧(σ), and that each φ ∈ L∧(σ) is equivalent
to one in L. Moreover, the axioms and rules of L are easily seen to be
derivable in L∧(σ). For example, ((→)⊥ − t) is derivable, since

L∧(σ) ` (φ→ ψ)⊥ = (t)⊥ = (t → t)⊥.

It remains to show the converse, i.e. that for φ, ψ ∈ L:

L∧(σ) ` φ ≤ ψ =⇒ L ` φ ≤ ψ.

For this purpose, we use ((→)⊥−∧) and ((→)⊥− t) to get normal forms
for L.

Lemma 5.9 (Normal Forms) Every formula in L is equivalent to one
in NL, where:

• NL = {
∧
i∈I φi : I finite, φi ∈ SNL, i ∈ I}

• SNL = {(φ1 → · · · (φk → λ)⊥ · · ·)⊥ : k ≥ 0, φi ∈ NL, 1 ≤ i ≤ k}.

Now by [Abr87b, Propositions 3.4.5 and 3.4.6], we have

Lemma 5.10 For φ, ψ with

φ ≡
∧
i∈I

(φi → φ′i)⊥, ψ ≡
∧
j∈J

(ψj → ψ′j)⊥ :

L(σ) ` φ ≤ ψ ⇐⇒ ∀j ∈ J.L(σ) `
∧
{φ′i : L(σ) ` ψj ≤ φi} ≤ ψ′j .

Proposition 5.11 For φ, ψ ∈ NL, if L(σ) ` φ ≤ ψ then there is a
proof of φ ≤ ψ using only the meet-semilattice laws and the derived rule
((→)⊥).

Proof. By induction on the complexity of φ and ψ, and the preceding
Lemma.

We have thus shown that

L(σ) ∼= L∧(σ) ∼= L,

and we can apply the Duality Theorem of [Abr87b] to obtain
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Theorem 5.12 (Stone Duality) L is the Stone dual of D:

(i) D ∼= Filt L

(ii) (K(D))op ∼= (L/=,≤/=)

(where K(D) is the sub-poset of finite elements of D).

Corollary 5.13 D |= φ ≤ ψ ⇐⇒ L ` φ ≤ ψ.

We can now deal with the program logic over λ-terms in a similar fashion.
The denotational semantics for Λ in D given in the previous section can
be used to define a translation map

(·)∗ : Λ → Λ(σ).

The logic presented in this section is equivalent to the endogenous logic
of [Abr87b] in the sense that

M, Γ ` φ ⇐⇒ M∗, Γ ` φ

where M ∈ Λ, Γ : Var → L, φ ∈ L ⊆ L(σ). We omit the details, which by
now should be routine. As a consequence of this result, we can apply the
Completeness Theorem for Endogenous Logic from [Abr87b], to obtain:

Theorem 5.14 D is L-complete, i.e. for all M ∈ Λ, Γ : Var → L,
φ ∈ L ⊆ L(σ):

M, Γ ` φ ⇐⇒ M, Γ |=D φ.

In the previous section, we defined an lts over D; and we have now shown
that D is isomorphic as a domain to Filt L. We can in fact describe the
lts structure over Filt L directly; and this will show how D, defined by a
domain equation reminiscent of the D∞ construction, can also be viewed
as a graph model or “PSE algebra” in the terminology of [Lon83].

Notation. For X ⊆ L, X† is the filter generated by X. This can be
defined inductively by:

– X ⊆ X†

– t ∈ X†

– φ, ψ ∈ X† ⇒ φ ∧ ψ ∈ X†

– φ ∈ X†, L ` φ ≤ ψ ⇒ ψ ∈ X† .

Definition 5.15 The quasi-applicative structure with divergence

(Filt L, · ,⇑)
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is defined as follows:

x⇑ ≡ x = {t}

x· y ≡ {ψ : ∃φ. (φ→ ψ)⊥ ∈ x& φ ∈ y} ∪ {t}.

It is easily verified that in this structure

x@
∼
By ⇐⇒ x ⊆ y,

and hence that application is monotone in each argument, and Filt L is
an ats. Thus we have an interpretation function

[[·]]Filt L : CL(Filt L) → Env(Filt L) → Filt L

which is extended to Λ(Filt L) by

[[λx.M ]]Filt L
ρ = {(φ→ ψ)⊥ : ψ ∈ [[M ]]Filt L

ρ[x 7→↑φ]
}†.

We then define

Definition 5.16

s ≡ [[λx.λy.λz.(xz)(yz)]]Filt L

k ≡ [[λx.λy.x]]Filt L.

Proposition 5.17 FiltL is an lts. Moreover, FiltL and D are isomorphic
as combinatory algebras.

Proof. It is sufficient to show that the isomorphism of the Duality Theo-
rem preserves application, divergence and the denotation of λ-terms, since
it then preserves s and k and so is a combinatory isomorphism, and FiltL
is an lts, since D is.

Firstly, we show that application is preserved, i.e. for d1, d2 ∈ D:

(?) L(d1· d2) = L(d1)· L(d2)

The right to left inclusion follows by the same argument as the soundness
of the rule for application in 5.7. For the converse, suppose ψ ∈ L(d1· d2),
L 0 ψ = t. By the Duality Theorem, each ψ in L corresponds to a
unique c ∈ K(D) with L(c) = ↑ψ. Since application is continuous in D,
c v d1· d2, c 6= ⊥ implies that for some b ∈ K(D), fold(<0, [b, c]>) v d1

and b v d2. (Here [b, c] is the one step function mapping d to c if b v d, and
to ⊥ otherwise). Let L(b) = ↑φ, then (φ → ψ)⊥ ∈ L(d1) and φ ∈ L(d2),
as required.

Next, we show that denotations of λ-terms are preserved, i.e. for all
M ∈ Λ, ρ ∈ Env(D):

(??) L([[M ]]Dρ ) = [[M ]]Filt L
L◦ρ .
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This is proved by induction on M . The case when M is a variable is
trivial; the case for application uses (?). For abstraction, we argue by
structural induction over L. We show the non-trivial case. Let φ, b be
paired in the isomorphism of the Duality Theorem. Then

λx.M, ρ |=D (φ→ ψ)⊥

⇐⇒ M, ρ[x 7→ b] |=D ψ

⇐⇒ M, L() ◦ (ρ[x 7→ b]) |=Filt L ψ ind. hyp.

⇐⇒ M, (L() ◦ ρ)[x 7→ ↑φ] |=Filt L ψ

⇐⇒ λx.M, L() ◦ ρ |=Filt L (φ→ ψ)⊥.

Finally, divergence is trivially preserved, since the only divergent elements
in D, Filt L are ⊥, {t}, and these are in bi-unique correspondence under
the isomorphism of the Duality Theorem.

Theorem 5.18 (Computational Adequacy) For all M ∈ Λ,

M⇓ ⇐⇒ [[M ]]Dρ⊥ 6= ⊥

where ρ⊥ : x 7→ ⊥.

Proof. Firstly, let σΩ : x 7→ Ω. M⇓ ⇒ (MσΩ)⇓λx.N ⇒ [[M ]]Dρ⊥ =
[[λx.N ]]Dρ⊥ 6= ⊥. For the converse, let Γt : x 7→ t.

[[M ]]Dρ⊥ 6= ⊥ ⇒ [[M ]]Filt L
ρ⊥

6= {t} by 5.17

⇒ M,Γt ` λ

⇒ M,Γt |= λ by 5.8

⇒ M⇓.

The triviality of this proof is notable, since analogous results in the lit-
erature have required lengthy arguments involving recursively defined in-
clusive predicates (cf. [Plo85]).

We can now proceed in exact analogy to [Abr87a], and use Stone Duality
to convert the Characterisation Theorem into a Final Algebra Theorem.

Definition 5.19 We define a number of categories of transition systems:

ATS Objects: applicative transition systems; morphisms A → B: maps
f : A→ B satisfying

a |=A φ ⇐⇒ f(a) |=B φ.

LTS The subcategory of ATS of lts and morphisms which preserve ap-
plication, s and k.
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CLTS The full subcategory of LTS of those A satisfying continuity:

ψ 6= t, ab |=A ψ =⇒ ∃φ. a |=A (φ→ ψ)⊥ & b |=A φ,

and also
L(s) = [[s]]Filt L, L(k) = [[k]]Filt L.

Note that continuity implies approximability.

Theorem 5.20 (Final Algebra) (i) D is final in ATS.
(ii) Let A be an approximable lts. The map

tA : A → D

from (i) is an LTS morphism iff A is continuous.
(iii) D is final in CLTS.

Proof. (i). Given A in ATS, define

tA : A → D

by

tA ≡ A L()→ Filt L η→ D

where η is the isomorphism from the Stone Duality Theorem. For a ∈ A,

L(a) = L ◦ η ◦ L(a) = L ◦ tA(a),

and so tA is an ATS morphism; moreover, it is unique, since for d, d′ ∈ D:

L(d) = L(d′) ⇒ K(d) = K(d′) ⇒ d = d′.

(ii). That L() is a combinatory morphism iffA is in CLTS is an immediate
consequence of the definitions; the result then follows from the fact that
η is a combinatory isomorphism.
(iii). Immediate from (ii).

Note that if A is approximable, we have:

a@
∼
Bb ⇐⇒ tA(a)@

∼
BtA(b).

Thus we can regard the Final Algebra Theorem as giving a syntax-free
fully abstract semantics for approximable ats. However, from the point of
view of applications to programming language semantics, this is not very
useful. In the next section, we shall study full abstraction in a syntax-
directed framework, using our domain logic as a tool.
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6 Lambda Transition Systems considered as Pro-
gramming Languages

The classical discussion of full abstraction in the λ-calculus [Plo77, Mil77]
is set in the typed λ-calculus with ground data. As remarked in the
Introduction, this material has not to date been transferred successfully
to the pure untyped λ-calculus. To see why this is so, let us recall some
basic notions from [Plo77, Mil77].

Firstly, there is a natural notion of program, namely closed term of ground
type. Programs either diverge, or yield a ground constant as result. This
provides a natural notion of observable behaviour for programs, and hence
an operational order on them. This is extended to arbitrary terms via
ground contexts; in other words, the point of view is taken that only
program behaviour is directly observable, and the meaning of a higher-
type term lies in the observable behaviour of the programs into which it
can be embedded. Thus both the presence of ground data, and the fact
that terms are typed, enter into the basic definitions of the theory.

By contrast, we have a notion of atomic observation for the lazy λ-calculus
in the absence of types or ground data, namely convergence to weak head
normal form. This leads to the applicative bisimulation relation, and
hence to a natural operational ordering. We can thus develop a theory
of full abstraction in the pure untyped λ-calculus. Our results will cor-
respond recognisably to those in [Plo77], although the technical details
contain many differences. One feature of our development is that we
work axiomatically with classes of lts under various hypotheses, rather
than with particular languages. (Note that operational transition sys-
tems and “programming languages” such as λ` actually are lts under our
definitions.)

Definition 6.1 Let A be an lts. D is fully abstract for A if =(A) = =(D).

This definition is consistent with that in [Plo77, Mil77], provided we ac-
cept the applicative bisimulation ordering on A as the appropriate oper-
ational preorder. The argument for doing so is made highly plausible by
Proposition 2.5, which characterises applicative bisimulation as a contex-
tual preorder analogous to those used in [Plo77, Mil77]. We shall prove
2.5 later in this section.

We now turn to the question of conditions under which D is fully abstract
for A. As emerges from [Plo77, Mil77], this is essentially a question of
definability.

Definition 6.2 An ats A is L-expressive if for all φ ∈ L, for some a ∈ A:

L(a) = ↑φ ≡ {ψ ∈ L : L ` φ ≤ ψ}.

In the light of Stone Duality, L-expressiveness can be read as: “all finite
elements of D are definable in A”.
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Definition 6.3 Let A be an ats.

– Convergence testing is definable in A if for some c ∈ A, A satisfies:

∗ c⇓
∗ x⇑ ⇒ cx⇑
∗ x⇓ ⇒ cx = I.

In this case, we use C as a constant to denote c.

– Parallel convergence is definable in A if for some p ∈ A, A satisfies:

∗ p⇓, px⇓
∗ x⇓ ⇒ pxy⇓
∗ y⇓ ⇒ pxy⇓
∗ x⇑& y⇑ ⇒ pxy⇑ .

In this case, we use P to denote such a p.

Note that if C is definable, it is unique (up to bisimulation); this is not so
for P.

The notion of parallel convergence is reminiscent of Plotkin’s parallel or,
and will play a similar role in our theory. (A sharper comparison will
be made later in this section.) The notion of convergence testing is less
expected. We can think of the combinator C as a sort of “1-strict” version
of F ≡ λx.λy.y:

Cxy = Kxy = y if x⇓

Cxy⇑ if x⇑.

This 1-strictness allows us to test, sequentially, a number of expressions
for convergence. Under the hypothesis that C is definable, we can give a
very satisfactory picture of the relationship between all these notions.

Theorem 6.4 (Full Abstraction) Let A be a sensible, approximable lts
in which C is definable. The following conditions are equivalent:

(i) Parallel convergence is definable in A.

(ii) A is L-expressive.

(iii) A is L-complete.

(iv) tA is a combinatory embedding with K(D) ⊆ Im tA.

(v) D is fully abstract for A.

Proof. We shall prove a sequence of implications to establish the theo-
rem, indicating in each case which hypotheses on A are used.

(i) =⇒ (ii) (A sensible, C definable).

Since A is sensible, Ω diverges in A.
Notation. Given a set Con of constants, Λ(Con) is the set of λ-terms
over Con.
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For each φ ∈ NL we shall define terms Mφ, Tφ ∈ Λ({P,C}) such that, for
all ψ ∈ NL:

• Mφ |=A ψ ⇐⇒ L ` φ ≤ ψ

•

 TφMψ⇓ if Mψ |=A φ,

TφMψ⇑ otherwise.

The definition is by induction on the complexity of

φ ≡
∧
i∈I

(φi,1 → · · · (φi,ki
→ λ)⊥ · · ·)⊥.

If I = ∅, Mφ ≡ Ω. Otherwise, we define Mφ ≡ M(φ, k), where k =
max {ki | i ∈ I}:

M(φ, 0) ≡ KΩ

M(φ, i+ 1) ≡ λxj .CN
jM(φ, i)

where

j ≡ k − i

N j ≡
∑
{N j

i : j ≤ ki}

N j
i ≡ C(Tφi,1

x1)(C(Tφi,2
x2)(. . . (C(Tφi,j

xj)) . . .))∑
∅ ≡ Ω∑

{N} ∪Θ ≡ PN(
∑

Θ).

Tφ ≡ λx.
∏
{xMφi,1

. . .Mφi,ki
: i ∈ I}∏

∅ ≡ KΩ∏
{N} ∪Θ ≡ CN(

∏
Θ).

We must show that these definitions have the required properties. Firstly,
we prove for all φ ∈ NL:

(1) Mφ |=A φ

(2) a |=A φ ⇒ Tφa⇓

by induction on φ:

• ∀i ∈ I. aj |=A φi,j (1 ≤ j ≤ ki)

⇒ Mφa1 . . . aki
⇓ by induction hypothesis (2),

∴ Mφ `A φ.

• a |=A φ

⇒ Tφa⇓ by induction hypothesis (1).
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We complete the argument by proving, for all φ, ψ ∈ NL:

(3) Mφ |=A ψ ⇒ L ` φ ≤ ψ

(4) Mψ |=A φ ⇒ L ` ψ ≤ φ

(5) TφMψ⇓ ⇒ Mψ |=A φ

(6) TψMφ⇓ ⇒ Mφ |=A ψ.

The proof is by induction on n +m, where n,m are the number of sub-
formulae of φ, ψ respectively. Let

φ ≡
∧
i∈I(φi,1 → · · · (φi,ki

→ λ)⊥ · · ·)⊥,

ψ ≡
∧
j∈J(ψj,1 → · · · (ψj,kj

→ λ)⊥ · · ·)⊥.

(3):

• Mφ |=A ψ

⇒ ∀j ∈ J.MφMψj,1
. . .Mψj,kj

⇓ by (1) ,

⇒ ∀j ∈ J.∃i ∈ I. kj ≤ ki & Tφi,l
Mψj,l

⇓, 1 ≤ l ≤ kj

⇒ Mψj,l
|=A φi,l, 1 ≤ l ≤ kj ind. hyp. (5)

⇒ L ` ψj,l ≤ φi,l, 1 ≤ l ≤ kj ind. hyp. (4)

⇒ L ` φ ≤ ψ.

(4): Symmetrical to (3).

(5):

• TφMψ⇓

⇒ ∀i ∈ I.MψMφi,1
. . .Mφi,ki

⇓

⇒ ∀i ∈ I.∃j ∈ J. ki ≤ kj & Tψj,l
Mφi,l

⇓, 1 ≤ l ≤ ki

⇒ Mφi,l
|=A ψj,l, 1 ≤ l ≤ ki ind. hyp. (6)

⇒ L ` φi,l ≤ ψj,l, 1 ≤ l ≤ ki ind. hyp. (3)

⇒ L ` ψ ≤ φ

⇒ Mψ |=A φ by (1).

(6): Symmetrical to (5).

(ii) =⇒ (iii) (A approximable).

Notation. For each φ ∈ L, aφ ∈ A is the element representing φ. Given
Γ : Var → L, ρΓ ∈ Env(A) is defined by

ρΓx = aΓx.
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Finally, Γt : Var → L is the constant map x 7→ t.

We begin with some preliminary results.

(1) A |= φ ≤ ψ ⇐⇒ L ` φ ≤ ψ.

One half is the Soundness Theorem for L. For the converse, note that

A |= φ ≤ ψ ⇒ aφ |=A ψ

⇒ L ` φ ≤ ψ.

(2) ∀ψ ∈ NL. ψ 6= t & ab |=A ψ ⇒ ∃φ. a |=A (φ→ ψ)⊥ & b |=A φ.

This is shown by induction on ψ.

• ab |=A
∧
i∈I ψi (I 6= ∅)

⇒ ∀i ∈ I. ab |=A ψi

⇒ ∀i ∈ I.∃φi. a |=A (φi → ψi)⊥ & b |=A φi by ind. hyp.

⇒ ∀i ∈ I. a |=A (
∧
i∈I φi → ψi)⊥ & b |=A

∧
i∈I φi

⇒ a |=A (
∧
i∈I φi →

∧
i∈I ψi)⊥ & b |=A

∧
i∈I φi.

• ab |=A (ψ1 → · · · (ψk → λ)⊥ · · ·)⊥
⇒ abaψ1 . . . aψk

⇓

⇒ ∃φ, φ1, . . . , φk. b |=A φ& aψi
|=A φi (1 ≤ i ≤ k)

& a |=A (φ→ (φ1 → · · · (φk → λ)⊥ · · ·)⊥,

since A is approximable

⇒ L ` ψi ≤ φi (1 ≤ i ≤ k)

⇒ L ` (φ→ (φ1 → · · · (φk → λ)⊥ · · ·)⊥
≤ (φ→ (ψ1 → · · · (ψk → λ)⊥ · · ·)⊥

⇒ a |=A (φ→ ψ)⊥ & b |=A φ.

(3) ∀M ∈ Λ.M,Γ |=A φ ⇐⇒ M,ρΓ |=A φ.

The right to left implication is clear, since ρΓ |=A Γ. We prove the
converse by induction on M .

x,Γ |=A φ ⇐⇒ A |= Γx ≤ φ

⇐⇒ L ` Γx ≤ φ by(1)
⇐⇒ aΓx |=A φ

⇐⇒ x, ρΓ |=A φ.
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The case for λx.M is proved by induction on φ. We show the non-trivial
case.

• λx.M, ρΓ |=A (φ→ ψ)⊥

=⇒ M,ρΓ[x 7→ aφ] |=A ψ

=⇒ M,Γ[x 7→ φ] |=A ψ by (outer) induction hypothesis

=⇒ λx.M,Γ |=A (φ→ ψ)⊥.

• MN, ρΓ |=A ψ

=⇒ [[M ]]AρΓ [[N ]]AρΓ |=A ψ

=⇒ ∃φ. [[M ]]AρΓ |=A (φ→ ψ)⊥ & [[N ]]AρΓ |=A φ by (2)

=⇒ M,Γ |=A (φ→ ψ)⊥ &N,Γ |=A φ ind. hyp.

=⇒ MN,Γ |=A ψ.

(4):

(i) x,Γ[x 7→ φ] |=A ψ ⇐⇒ L ` φ ≤ ψ

(ii) λx.M,Γ |=A (φ→ ψ)⊥ ⇐⇒ M,Γ[x 7→ φ] |=A ψ

(iii) MN,Γ |=A ψ ⇐⇒ ∃φ.M,Γ |=A (φ→ ψ)⊥

&N,Γ |=A φ.

4(i) is proved using (1).

4(ii):

• λx.M,Γ |=A (φ→ ψ)⊥

⇒ ∀ρ, a. ρ |=A Γ & a |=A φ ⇒ [[λx.M ]]Aρ .a |=A ψ

⇒ ∀ρ. ρ |=A Γ[x 7→ φ] ⇒ M,ρ |=A ψ

since [[λx.M ]]Aρ .a = [[M ]]Aρ[x 7→a],

⇒ M,Γ[x 7→ φ] |=A ψ.

The converse follows from the soundness of L.

4(iii):

MN,Γ |=A ψ ⇐⇒ MN, ρΓ |=A ψ by (3)

⇐⇒ [[M ]]AρΓ [[N ]]AρΓ |=A ψ

⇐⇒ ∃φ. [[M ]]AρΓ |=A (φ→ ψ)⊥ & [[N ]]AρΓ |=A φ by (2)

⇐⇒ ∃φ.M,Γ |=A (φ→ ψ)⊥ &N,Γ |=A φ by (3)

32



We can now prove
M,Γ |=A φ ⇒ M,Γ ` φ

by induction on M , using (4).

(iii) =⇒ (i).

Firstly, note that (iii) implies

A |= φ ≤ ψ ⇐⇒ L ` φ ≤ ψ.

One half is the Soundness Theorem. For the converse, suppose A |= φ ≤ ψ
and L 0 φ ≤ ψ. Then I |=A (φ→ ψ)⊥ but I 0 (φ→ ψ)⊥, and so A is not
L-complete.

Now suppose that P is not definable in A, and consider

φ ≡ (λ→ (t → λ)⊥)⊥ ∧ (t → (λ→ λ)⊥)⊥,

ψ ≡ (t → (t → λ)⊥)⊥.

Clearly, L 0 φ ≤ ψ. However, for a ∈ A, if a |=A φ, then x⇓ or y⇓
implies axy⇓; since P is not definable in A, and in particular, a does not
define P, we must have axy⇓ even if x⇑ and y⇑, and hence a |=A ψ. Thus
A |= φ ≤ ψ and so by our opening remark, A is not L-complete.

(ii) =⇒ (iv) (A approximable).

Clearly Im tA ⊇ K(D), by 5.14(ii). Also, since A is approximable, we
can apply the Characterisation Theorem to deduce that tA is injective
(modulo bisimulation). To show that tA is a combinatory morphism, we
argue as in 5.17. Application is preserved by tA using (2) from the proof
of (ii) ⇒ (iii) and 5.17. The proof is completed by showing that tA
preserves denotations of λ-terms, i.e.

∀M ∈ Λ, ρ ∈ Env(A). tA([[M ]]Aρ ) = [[M ]]DtA◦ρ.

The proof is by induction on M . Since it is very similar to the corre-
sponding part of the proof of 5.17, we omit it. The only non-trivial point
is that in the case for abstraction we need:

∀a ∈ A. a |=A φ =⇒ M,ρ[x 7→ a] |=A ψ

if and only if
M,ρ[x 7→ aφ] |=A ψ,

which is proved similarly to (3) in (ii) ⇒ (iii).

(iv) =⇒ (v).

Assuming (iv), A is isomorphic (modulo bisimulation) to a substructure
of D. Since formulas in HF are (equivalent to) universal (Π0

1) sentences,
this yields =(D) ⊆ =(A). Since K(D) ⊆ Im tA, to prove the converse it is
sufficient to show, for H ∈ HF:
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D, ρ 2 H =⇒ ∃ρ0 : Var → K(D). D, ρ0 2 H.

Let H ≡ P ⇒ F , where P ≡
∧
i∈IMi⇓ ∧

∧
j∈J Nj⇑. There are four cases,

corresponding to the form of F .

Case 1: F ≡M v N . D, ρ 2 P ⇒ F impliesD, ρ |= P andD, ρ 2 M v N .
Since D is algebraic, D, ρ 2 M v N implies that for some b ∈ K(D),
b v [[M ]]Dρ and b 6v [[N ]]Dρ . Since the expression [[M ]]Dρ is continuous in ρ,
b v [[M ]]Dρ implies that for some ρ1 : Var → K(D), ρ1 v ρ and b v [[M ]]Dρ1 .
For all ρ′ with ρ1 v ρ′ v ρ, [[N ]]Dρ′ v [[N ]]Dρ , and hence b 6v [[N ]]Dρ′ . Again,
since D is algebraic,

D, ρ |= Mi⇓ =⇒ ∃ρi : Var → K(D). ρi v ρ&D, ρi |= Mi⇓.

Now let ρ0 ≡
⊔
i∈I ρi t ρ1. This is well-defined since D is a lattice. More-

over, ρ0 v ρ, and ρ0 : Var → K(D). Since ρ0 w ρi (i ∈ I), D, ρ0 |= Mi⇓;
while since ρ0 v ρ, D, ρ0 |= Nj⇑ (j ∈ J). Since ρ1 v ρ0 v ρ, b v [[M ]]Dρ0
and b 6v [[N ]]Dρ0 , and so D, ρ0 2 M v N . Thus D, ρ0 2 P ⇒ F , as required.

The remaining cases are proved similarly.

(v) =⇒ (i) (A sensible).

Consider the formula

H ≡ xΩ(KΩ)⇓ ∧ x(KΩ)Ω⇓ ⇒ xΩΩ⇓.

It is easy to see that A |= H iff P is not definable in A. Since P is definable
in D, the result follows.

We now turn to the question of when the bisimulation preorder on an lts
can be characterised by means of a contextual equivalence, as in [Bar84,
Plo77, Mil77].

Definition 6.5 Let A be an lts, X,Y ⊆ A. Then X separates Y if:

∀M,N ∈ Λ0(Y ).A 2 M v N =⇒

∃P1, . . . , Pk ∈ Λ0(X).A |= MP1 . . . Pk⇓&A |= NP1 . . . Pk⇑.

In particular, if X separates A we say that it is a separating set. For
example, A is always a separating set.

Proposition 6.6 Let A be an approximable lts, and suppose X separates
Y . Then

∀M,N ∈ Λ0(Y ).A |= M v N ⇐⇒

∀C[·] ∈ Λ0(X).A |= C[M ]⇓ ⇒ A |= C[N ]⇓.
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Proof. Suppose A 2 M v N . Then since X separates Y , for some
P1, . . . , Pk ∈ Λ0(X), A |= MP1 . . . Pk⇓ and A |= NP1 . . . Pk⇑. Let C[·] ≡
[·]P1 · · ·Pk. For the converse, suppose A |= M v N and A |= C[M ]⇓.
Since A is approximable and A |= C[M ] = (λx.C[x])M , for some φ
λx.C[x] |=A (φ → λ)⊥ and M |=A φ. Since A |= M v N , by the
Characterisation Theorem N |=A φ, and so A |= C[N ]⇓.

As a first application of this Proposition, we have:

Proposition 6.7 Let A be a sensible, approximable lts in which C and P
are definable. Then {C,P} is a separating set.

Proof. By the Full Abstraction Theorem, for each φ ∈ L there is Mφ ∈
Λ0({C,P}) such that

Mφ |=A ψ ⇐⇒ L ` φ ≤ ψ.

Now

• A 2 M v N

=⇒ ∃φ.M |=A φ&N 2 φ, since A is approximable

=⇒ ∃φ1, . . . , φk.M |=A (φ1 → · · · (φk → λ)⊥ · · ·)⊥
&N 2A (φ1 → · · · (φk → λ)⊥ · · ·)⊥

=⇒ MMφ1 . . .Mφk
⇓&NMφ1 . . .Mφk

⇑.

The hypothesis of approximability has played a major part in our work.
We now give a useful sufficient condition.

Definition 6.8 Let A be an lts, X ⊆ A. Then A is X-sensible if

∀M ∈ Λ0(X).A |= M⇓ ⇒ D |= M⇓.

Here [[M ]]D is the denotation in D obtained by mapping each a ∈ X to
tA(a). Note that if we extend our endogenous program logic to terms in
Λ0(X), with axioms

a,Γ ` φ (φ ∈ L(a)),

then the Soundness and Completeness Theorems for D still hold, by a
straightforward extension of the arguments used above.

Proposition 6.9 Let A be an X-sensible lts. Then A is X-approximable,
i.e.

∀M,N1, . . . , Nk ∈ Λ0(X).A |= MN1 . . . Nk⇓ ⇒ ∃φ1, . . . , φk.

M |=A (φ1 → · · · (φk → λ)⊥ · · ·)⊥ &Ni |=A φi, 1 ≤ i ≤ k.
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Proof.

• A |= MN1 . . . Nk⇓

⇒ D |= MN1 . . . Nk⇓

⇒ ∃φ1, . . . , φk.M |=D (φ1 → · · · (φk → λ)⊥ · · ·)⊥
&Ni |=D φi, 1 ≤ i ≤ k, since D is approximable

⇒ ∃φ1, . . . , φk.M ` (φ1 → · · · (φk → λ)⊥ · · ·)⊥
&Ni ` φi, 1 ≤ i ≤ k, by extended Completeness

⇒ ∃φ1, . . . , φk.M |=A (φ1 → · · · (φk → λ)⊥ · · ·)⊥
&Ni |=A φi, 1 ≤ i ≤ k, by extended Soundness.

In particular, if X generates A and A is X-sensible, then A is approx-
imable. We now turn to a number of applications of these ideas to syn-
tactically presented lts, i.e. “programming languages”.

Firstly, we consider the lts ` = (Λ0, eval) defined in section 3 (and studied
previously in section 2). Since ` is ∅-sensible by 3.11, and it is generated
by ∅, it is approximable by 6.9. Since ∅ is a separating set for Λ0, we
can apply 6.6 to obtain Theorem 2.5.

Next, we consider extensions of `.

Definition 6.10 (i) `C is the extension of ` defined by

`C = (Λ({C}), ⇓ )

where ⇓ is the extension of the relation defined in 2.2 with the following
rules:

• C⇓C • M⇓
CM⇓I

(ii) `P is the extension (Λ({C}), ⇓ ) of ` with the rules

• P⇓P • PM⇓PM • M⇓
PMN⇓I

• N⇓
PMN⇓I

It is easy to see that the relation ⇓ as defined in both `C and `P is a
partial function. Moreover, with these definitions the C and P combinators
have the properties required by 6.3; while C is definable in `P, by

CM ≡ PMM.

Since `C is generated by {C}, and `P by {P}, these are separating sets.
Thus to apply Theorem 6.6, we need only check that `C is C-sensible, and
`P P-sensible.
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To do this for `C, we proceed as follows. Define

c ≡ {(λ→ (φ→ φ)⊥)⊥ | φ ∈ L}† ∈ Filt L.

Then it is easy to see that c ⊆ tA(C), and by monotonicity and the
Soundness Theorem,

[[M [c/C]]]D ⊆ [[M ]]D

for M ∈ Λ0({C}). Thus

(?) D |= M [c/C]⇓ =⇒ D |= M⇓.

Now we prove

(??) ∀M,N ∈ Λ0({C}).

M⇓N =⇒ [[M [c/C]]]D = [[N [c/C]]]D &D |= N [c/C]⇓,

which by (?) yields `C |= M⇓ ⇒ D |= M⇓, as required. (??) is proved
by a straightforward induction on the length of the proof that M⇓N .

The argument for `P is similar, using

p ≡ {(λ→ (t → (φ→ φ)⊥)⊥)⊥ ∧ (t → (λ→ (ψ → ψ)⊥)⊥)⊥ : φ, ψ ∈ L}†.

Altogether, we have shown

Theorem 6.11 (Contextual Equivalence) (i) ∀M,N ∈ Λ0({C}):

`C |= M v N ⇐⇒ ∀C[·] ∈ Λ0({C}). `C |= C[M ]⇓ ⇒ `C |= C[N ]⇓.

(ii) ∀M,N ∈ Λ0({P}):

`P |= M v N ⇐⇒ ∀C[·] ∈ Λ0({P}). `P |= C[M ]⇓ ⇒ `P |= C[N ]⇓.

As a further application of these ideas, we have

Proposition 6.12 (Soundness of D) If A is X-sensible, and X sepa-
rates X in A, then:

=0(D,X) ⊆ =0(A, X).

Proof.

• D |= M v N

=⇒ ∀C[·] ∈ Λ0(X). D |= C[M ] v C[N ]

=⇒ D |= C[M ]⇓ ⇒ D |= C[N ]⇓

=⇒ A |= C[M ]⇓ ⇒ A |= C[N ]⇓

=⇒ A |= M v N.

The argument for formulae of other forms is similar.

As an immediate corollary of this Proposition,
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Proposition 6.13 The denotational semantics of each of our languages
is sound with respect to the operational semantics:

(i) =0(D) ⊆ =0(`)

(ii) =0(D, {C}) ⊆ =0(`C, {C})

(iii) =0(D, {P}) ⊆ =0(`P, {P}).

We now turn to the question of full abstraction for these languages. Since,
as we have seen, `P is P-sensible, and hence sensible and approximable,
and C and P are definable, we can apply the Full Abstraction Theorem
to obtain

Proposition 6.14 D is fully abstract for `P.

We now use the sequential nature of ` and `C to obtain negative full
abstraction results for these languages. This will require a few preliminary
notions.

Definition 6.15 The one-step reduction relation > over terms in Λ is
the least satisfying the following axioms and rules:

• (λx.M)N > M [N/x] • M > M ′

MN > M ′N

This is then extended to Λ({C}) with the additional rules

• C(λx.M) > I • CC > I • M > M ′

CM > CM ′

We then define

• � ≡ the reflexive, transitive closure of >

• M↑ ≡ ∃{Mn}.M = M0 & ∀n.Mn > Mn+1

• M 6> ≡ M 6∈ dom>

• M↓N ≡ M � N &N 6> .

It is clear that > is a partial function. Note that these relations are being
defined over all terms, not just closed ones. For closed terms, these new
notions are related to the evaluation predicate ⇓ as follows:

Proposition 6.16 For M,N ∈ Λ0 (Λ0({C}):

(i) M⇓N ⇐⇒ M↓N

(ii) M⇑ =⇒ M↑.
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We omit the straightforward proof. The following proposition is basic; it
says that “reduction commutes with substitution”.

Proposition 6.17 M � N ⇒ M [P/x] � N [P/x] .

Proof. Clearly, it is sufficient to show:

M > N ⇒ M [P/x] > N [P/x].

This is proved by induction on M , and cases on why M > N . We give
one case for illustration:

M ≡ (λy.M1)M2 > N ≡M1[M2/y].

We assume x 6= y; the other sub-case is simpler.

M [P/x] = (λy.M1[P/x])M2[P/x]

> M1[P/x][M2[P/x]/y]

= M1[M2/y][P/x] by [Bar84, 2.1.16]

= N [P/x].

Now we come to the basic sequentiality property of ` from which various
non-definability results can be deduced.

Proposition 6.18 For M ∈ Λ, exactly one of the following holds:

(i) M↑

(ii) M � λx.N

(iii) M � xN1 . . . Nk (k ≥ 0).

Proof. Since > is a partial function, the computation sequence beginning
with M is uniquely determined. Either it is infinite, yielding (i); or it
terminates in a term N with N 6>, which must be in one of the forms (ii)
or (iii).

As a consequence of this proposition, we obtain

Theorem 6.19 C is not definable in `. Moreover, D is not fully abstract
for `.

Proof. We shall show that ` satisfies

(?) x = I or [xΩ⇓ ⇐⇒ x(KΩ)⇓].
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Indeed, consider any term M ∈ Λ0. Either M⇑, in which case MΩ⇑ and
M(KΩ)⇑, or M⇓. In the latter case, by (⇓η) we have λ` |= M = λx.Mx.
Thus without loss of generality we may take M to be of the form λx.M ′,
with FV (M) ⊆ {x}. Now applying the three previous propositions to
M ′, we see that in case (i) of 6.18, (λx.M ′)Ω⇑ and (λx.M ′)(KΩ)⇑; in
case (ii), (λx.M ′)Ω⇓ and (λx.M ′)(KΩ)⇓; finally in case (iii), if k = 0,
λx.M ′ = I; while if k > 0, (λx.M ′)Ω⇑ and (λx.M ′)(KΩ)⇑. Since C 6= I,
CΩ⇑ and C(KΩ)⇓, this shows that C is not definable. Moreover, (?)
implies

(??) xΩ⇑& x(KΩ)⇓ ⇒ x = I

which is not satisfied by D, since C is definable in D, and taking x = C
refutes (??); hence D is not fully abstract for `.

Note that since C is not definable in `, we could not apply the Full Ab-
straction Theorem. By contrast, to show that D is not fully abstract for
`C, it suffices to show that P is not definable. For this purpose, we prove
a result analogous to 6.18.

Proposition 6.20 For M ∈ Λ({C}), exactly one of the following condi-
tions holds:

(i) M↑

(ii) M � λx.N

(iii) M � C

(iv) M � C(C . . . (C︸ ︷︷ ︸
n

(xN1 . . . Nk) . . .) . . .)P1 . . . Pm (n, k,m ≥ 0)

Proof. Similar to 6.18.

Theorem 6.21 P is not definable in `C; hence D is not fully abstract for
`C.

Proof. We show that `C satisfies

x(KΩ)Ω⇓& xΩ(KΩ)⇓ ⇒ xΩΩ⇓,

and hence, as in the proof of the Full Abstraction Theorem, P is not
definable in `C. As in the proof of 6.19, without loss of generality we con-
sider closed terms of the form λy1.λy2.M . Assume (λy1.λy2.M)(KΩ)Ω⇓
and (λy1.λy2.M)Ω(KΩ)⇓. Applying 6.20, we see that case (i) is impos-
sible; cases (ii) and (iii) imply that (λy1.λy2.M)ΩΩ⇓; while in case (iv),
if x = y1, then (λy1.λy2.M)Ω(KΩ)⇑, contra hypothesis; and if x = y2,
(λy1.λy2.M)(KΩ)Ω⇑, also contra hypothesis. Thus case (iv) is impossi-
ble, and the proof is complete.

For our final non-definability result, we shall consider a different style of
extension of `, to incorporate ground data. We shall consider the simplest
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possible such extension, where a single atom is added. This corresponds
to the domain equation

D? = 1 + [D? → D?]

(where + is separated sum), which is indeed an extension of our original
domain, in the sense that D is a retract of D?. D? is still a Scott domain
(indeed, a coherent algebraic cpo), but it is no longer a lattice; we have
introduced inconsistency via the sum.

This extension is reflected on the syntactic level by two constants, ? and
C. We define

`? = (Λ0({?,C}), ⇓ )

with ⇓ extending the definition for ` as follows:

• ? ⇓ ? • C⇓C • M⇓λx.N
CM⇓T

• M⇓C

CM⇓T
• M⇓?

CM⇓F

where T ≡ λx.λy.x, F ≡ λx.λy.y. We see that the C combinator intro-
duced here is a natural generalisation (not strictly an extension) of the
C defined previously in the pure case. Of course, C corresponds to case
selection, which in the unary case — lifting being unary separated sum
— is just convergence testing.

A theory can be developed for `? which runs parallel to what we have
done for the pure lazy λ-calculus. Some of the technical details are more
complicated because of the presence of inconsistency, but the ideas and
results are essentially the same. Our reasons for mentioning this extension
are twofold:

1. To show how the ideas we have developed can be put in a broader
context. In particular, with the extension to `? the reader should
be able to see, at least in outline, how our work can be applied to
systems such as Martin-Löf’s Type Theory under its Domain Inter-
pretation [DNPS83], and (the analogues of) our results in this section
can be used to settle most of the questions and conjectures raised in
[DNPS83].

2. To prove an interesting result which clarifies a point about which
there seems to be some confusion in the literature; namely, what is
parallel or?

The locus classicus for parallel or in the setting of typed λ-calculus is
[Plo77]. But what of untyped λ-calculus? In [Bar84, p. 375], we find the
following definition:

FMN =

 I if M or N is solvable,

unsolvable otherwise
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which (modulo the difference between the standard and lazy theories)
corresponds to our parallel convergence combinator P. The point we wish
to make is this: in the pure λ-calculus, where (in domain terms) there are
no inconsistent data values (since everything is a function), i.e. we have a
lattice, parallel convergence does indeed play the role of parallel or, as the
Full Abstraction Theorem shows. However, when we introduce ground
data, and hence inconsistency, a distinction reappears between parallel
convergence and parallel or, and it is definitely wrong to conflate them.
To substantiate this claim, we shall prove the following result: even if
parallel convergence is added to `?, parallel or is still not definable. This
result is also of interest from the point of view of the fine structure of
definability; it shows that parallelism is not all or nothing even in the
simple, deterministic setting of `?.

Definition 6.22 `?P is the extension of `? with a constant P and the
rules

• P⇓P • PM⇓PM • M⇓
PMN⇓I

• N⇓
PMN⇓I

Definition 6.23 Let `′ be an extension of `?. We say that parallel or is
definable in `′ if for some term M

(i) M(KΩ)Ω,MΩ(KΩ) converge to abstractions

(ii) M ? ?⇓ ? .

Theorem 6.24 Parallel or is not definable in `?P.

Proof. We proceed along similar lines to our previous non-definability
results. Firstly, we extend our definition of > as follows:

• constructor(M) ≡M is an abstraction, P, C or ?

• constructor(M) &M 6= ? ⇒ CM > T

• C? > F

• M > M ′

CM > CM ′

• constructor(M) or constructor(N) ⇒ PMN > I

• M > M ′ N > N ′

PMN > PM ′N ′

With these extensions, > is still a partial function, and 6.16, 6.17 still hold.
For each M ∈ Λ({?,C,P}), one of the following two disjoint conditions
must hold:

• M↑

• M � N &N 6> .
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We now define T to be the set of all terms M in Λ({?,C,P,⊥}), where
⊥ is a new constant, such that:

• FV (M) ⊆ {y1, y2}

• M contains no >-redex.

Note that T is closed under sub-terms.

Lemma A

For all M ∈ T :

M [KΩ/y1,Ω/y2]↓a & M [Ω/y1,KΩ/y2]↓b & M [?/y1, ?/y2]↓c

⇒ a = b = c = ? or ? 6∈ {a, b, c}.

Proof. By induction on M . Since terms in T contain no >-redexes, M
must have one of the following forms:

(i) xN1 . . . Nk (x ∈ {y1, y2}, k ≥ 0)

(ii) ?N1 . . . Nk (k ≥ 0)

(iii) λx.N

(iv) C (v) P (vi) PN

(vii) CNN1 . . . Nk (k ≥ 0)

(viii) PM1M2N1 . . . Nk (k ≥ 0)

(ix) ⊥N1 . . . Nk (k ≥ 0)

Most of these cases can be disposed of directly; we deal with the two
which use the induction hypothesis.

(vii). Firstly, we can apply the induction hypothesis toN to conclude that
N [c1/y1, c2/y2] converges to the same result (i.e. either an abstraction
or ?) for all three argument combinations c1, c2; we can then apply the
induction hypothesis to either N1N3 . . . Nk or N2N3 . . . Nk.

(viii). Under the hypothesis of the Lemma, we must have

(PM1M2)[c1/y1, c2/y2]⇓I

for all three argument combinations c1, c2; hence we can apply the induc-
tion hypothesis to N1 . . . Nk.
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Lemma B

Let M ∈ Λ ({?,C,P}), with FV (M) ⊆ {y1, y2}. Then for some M ′ ∈ T ,
for all P,Q ∈ Λ0({?,C,P}):

M [P/y1, Q/y2]↓? ⇐⇒ M ′[P/y1, Q/y2]↓?.

Proof. Given M , we obtain M ′ as follows; working in an inside-out
fashion, we replace each sub-term N by: N ′ if N↓N ′

⊥ if N↑.

Now suppose that we are given a putative term in Λ0({?,C,P}) defining
parallel or. As in the proof of 6.21, we may take this term to have the
form λy1.λy2.M . Applying Lemma B, we can obtain M ′ ∈ T from M ; but
then applying Lemma A, we see that λy1.λy2.M

′ cannot define parallel
or. Applying Lemma B again, we conclude that λy1.λy2.M cannot define
parallel or either.
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7 Variations

Throughout this Chapter, we have focussed on the lazy λ-calculus. We
round off our treatment by briefly considering the varieties of function
space.

1. The Scott function space

[D → E], the standard function space of all continuous functions from D
to E. In terms of our domain logic L, we can obtain this construction by
adding the axiom

(1) t ≤ (t → t).

Note that with (1), L collapses to a single equivalence class (corresponding
to the trivial one-point solution of D = [D → D]). For this reason, Coppo
et al. have to introduce atoms in their work on Extended Applicative Type
Structures [CDCHL84].

2. The strict function space

[D →⊥ E], all strict continuous functions. This satisfies (1), and also

(2) (t →⊥ φ) ≤ f (φ 6= t).

3. The lazy function space

[D → E]⊥, which satisfies neither (1) nor (2). This has of course been
our object of study in this Chapter.

4. The Landin-Plotkin function space

[D →⊥ E]⊥, the lifted strict function space. This satisfies (2) but not (1).
The reason for our nomenclature is that this construction in the category
of domains and strict continuous functions corresponds to Plotkin’s [D ⇀
E] construction in his (equivalent) category of predomains and partial
functions [Plo85]. Moreover, this may be regarded as the formalisation
of Landin’s applicative-order λ-calculus, with abstraction used to protect
expressions from evaluation, as illustrated extensively in [Lan64, Lan65,
Bur75].

The intriguing point about these four constructions is that (1) and (2) are
mathematically natural, yielding cartesian closure and monoidal closure
in e.g. CPO and CPO⊥ respectively (the latter being analogous to par-
tial functions over sets); while (3) and (4) are computationally natural, as
argued extensively for (3) in this Chapter, and as demonstrated convinc-
ingly for (4) by Plotkin in his work on predomains [Plo85]. Much current
work is aimed at providing good categorical descriptions of generalisations
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of (4) [Ros86, RR87, Mog86, Mog87, Mog]; a similar programme is being
carried out for (3) by Chih-Hao Ong.

8 Further Directions

Our development of the lazy λ-calculus represents no more than a begin-
ning. An extensive study is being undertaken by Chih-Hao Ong; anyone
interested in pursuing the subject further is strongly recommended to read
his forthcoming thesis (Imperial College, University of London; expected
1988). His results include: a syntactic characterisation of the local struc-
ture of lazy PSE models; a construction of a fully abstract model for `C;
and a category-theoretic characterisation of the lazy λ-calculus.
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