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Abstract

Description Logics (DLs) are knowledge representation
formalisms that provide, for example, the logical un-
derpinning of the W3C OWL standards. Conjunc-
tive queries (CQs), the standard query language in
databases, have recently gained significant attention
for querying DL knowledge bases. Several different
techniques are available for a wide range of DLs. Nev-
ertheless, for OWL 1 DL and OWL 2 DL, decidabil-
ity of CQ entailment is an open problem. So far, the
combination of nominals, inverse roles, and number re-
strictions caused unsolvable problems. We tackle this
problem and present a decidability result for entail-
ment of unions of CQs in a DL with all three problem-
atic constructors. For queries with only simple roles,
our result also shows decidability in the logic that un-
derpins OWL 1 DL and we believe that the presented
results will pave the way for further progress towards
CQ entailment decision procedures for OWL.

Introduction
Since conjunctive queries were introduced in the context
of Description Logics (DLs) (Calvanese, De Giacomo,
and Lenzerini 1998), the topic has gained significant
attention. Existing techniques for conjunctive query
entailment fail if the queried knowledge base (KB) con-
tains inverse roles, nominals, and functionality (or num-
ber restrictions) simultaneously; in this case even de-
cidability was an open problem. We tackle this prob-
lem and present a decidability result for entailment of
conjunctive queries (CQs) in the very expressive De-
scription Logic (DL) ALCHOIQb (Baader et al. 2003),
which contains all three problematic constructors simul-
taneously.

Given the variety of recent publications which show
a great interest in the problem of conjunctive query en-
tailment over expressive DLs, it is very interesting that
for the DLs SHIF , SHOIN , and SROIQ that under-
pin the widely adopted standards OWL Lite, OWL 1
DL, and OWL 2 DL, respectively, decidability of con-
junctive query entailment has only been established for
OWL Lite. The critical combination of inverse roles (I),
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nominals (O), and number restrictions/counting quan-
tifiers (F stands for functionality, N for unqualified
number restrictions, and Q for qualified number restric-
tions) caused also a major hurdle in the development of
implementable algorithms for knowledge base satisfia-
bility in SHOIN and extensions thereof, but in 2005,
Horrocks et al. devised a tableaux-based decision pro-
cedure (Horrocks and Sattler 2005) that has since been
extended to SROIQ. Meanwhile also alternative ap-
proaches such as resolution (Kazakov and Motik 2008),
and hypertableaux based procedures (Motik, Shearer,
and Horrocks 2009) are available and implemented.

The key obstacle in establishing a decision proce-
dure is the existence of potentially infinitely many new
nominals, i.e., elements that are uniquely identifiable
in any model of a KB. For an example, consider a
KB K containing the axioms {o1} v ∃f.∃s.∃f−.{o2},
{o2} v ∃f.∃s.∃f−.{o3}, {o3} v ∃f.∃s.∃f−.{o1} for
f a functional role (see Figure 1). Due to the func-
tionality of f , each nominal oi can have only one f
successor, which forces the existence of an s-cycle. A
cyclic Boolean query such as {s(x, y), s(y, z), s(z, x)}
that checks for the existence of such a cycle cannot be
answered by replacing variables with individual names
(oi) nor can we rewrite the query into an equivalent
tree-shaped query. The elements in the cycle behave as
if they were nominals, but we do not have names for
them.

{o1} {o2}

{o3}

f s f

s

f

s

Figure 1: A representation for a model of K, where the
three elements in the s-cycle are so-called new nominals.

We tackle the problem of conjunctive query entail-
ment in a very expressive DL that contains all the three
problematic constructors simultaneously and prove de-
cidability of (unions of) conjunctive queries. The most
challenging part is to establish finite representability of
countermodels in case the query given as input is not
entailed by the knowledge base. Our results also hold
for SHOIQ knowledge bases, i.e., with some roles de-
clared as transitive, provided that the queries contain



only simple roles (roles that are neither transitive nor
have a transitive subrole). This is essentially the same
restriction that is placed on roles that can occur in num-
ber restrictions since otherwise the standard reasoning
tasks become undecidable. Under this restriction, we
can use standard techniques for eliminating transitivity
(Kazakov and Motik 2008). Hence, we also show decid-
ability of conjunctive query entailment in OWL DL, for
queries with only simple roles.

We believe that our work is also valuable for under-
standing, in general, the structure of models in DLs
that contain nominals, inverse roles, and number re-
strictions. Furthermore, we devise non-trivial exten-
sions of standard techniques such as unraveling, which
we believe will prove useful when working with such
expressive DLs.

Full proofs and additional material can be found
in the accompanying technical report (Glimm and
Rudolph 2009).

Related Work
Conjunctive queries have been introduced in the con-
text of Description Logics (DLs) by Calvanese, De Gi-
acomo, and Lenzerini 1998. In particular in recent
years, the problem of decidability of conjunctive query
entailment and the complexity of the problem in dif-
ferent logics has gained significant attention. For the
DLs SHIQ and SHOQ decidability and 2-ExpTime-
completeness of the problem is known (Glimm et al.
2008; Glimm, Horrocks, and Sattler 2008; Lutz 2008;
Eiter et al. 2009). Conjunctive query entailment is
already 2-ExpTime-hard in the relatively weak DL
ALCI (Lutz 2008), which was initially attributed to
inverse roles. Recently, it was shown, however, that
also transitive roles together with role hierarchies as
in the DL SH make conjunctive query entailment 2-
ExpTime-hard (Eiter et al. 2009). The techniques by
Glimm et al. for SHIQ and SHOQ (Glimm et al.
2008; Glimm, Horrocks, and Sattler 2008) reduce query
entailment to the standard reasoning task of knowledge
base satisfiability checking in the DL extended with
role conjunctions. An alternative technique is the so-
called knots technique (Ortiz, Simkus, and Eiter 2008),
which is an instance of the mosaic technique originat-
ing in Modal Logic. This technique also gives worst-
case optimal algorithms for SHIQ and several of its
sub-logics. Further, there are automata-based decision
procedures for positive existential path queries (Cal-
vanese, Eiter, and Ortiz 2007; 2007). Positive exis-
tential path queries generalize unions of conjunctive
queries and, therefore, decision procedures for this kind
of query also provides decision procedures for unions of
conjunctive queries. In particular the most recent ex-
tension (Calvanese, Eiter, and Ortiz 2007) is very close
to a conjunctive query entailment decision procedure for
OWL 2, which corresponds to the DL SROIQ, because
it covers SRIQ, SROQ, and SROI. The use of the
three problematic constructors for nominals, inverses,
and number restrictions is, however, not covered.

Regarding data complexity, i.e., the complexity with
respect to the ABox (the data) only, CQ entailment is
usually NP-complete for expressive logics. For exam-
ple, for DLs from ALE up to SHIQ this is the case
(Glimm et al. 2008) and this holds also for CQ entail-
ment in the two variable guarded fragment with count-
ing (Pratt-Hartmann 2009). The latter work is quite
closely related since many Description Logics can be
translated into the two variable guarded fragment with
counting, i.e., the results of Pratt-Hartmann also holds
for SHIQ with only simple roles (roles that are not
transitive and have no transitive subrole) in the query.

Query entailment and answering have also been stud-
ied in the context of databases with incomplete infor-
mation (Rosati 2006b; van der Meyden 1998; Grahne
1991). In this setting, DLs can be used as schema lan-
guages, but the expressivity of the considered DLs is
usually much lower than the expressivity of the DL
ALCHOIQb that we consider here and reasoning in
them is usually tractable. For example, the construc-
tors provided by logics of the DL-Lite family (Calvanese
et al. 2007) are chosen such that the standard rea-
soning tasks are in PTime and query entailment is
in LogSpace with respect to data complexity. Thus,
TBox reasoning can be done independently of the ABox
and the ABox can be stored and accessed using a stan-
dard database SQL engine. Another tractable DL is
EL (Baader 2003). Conjunctive query entailment in
EL is, however, not tractable as the complexity in-
creases to coNP-complete (Rosati 2007b). Moreover
for EL++ (Baader, Brandt, and Lutz 2005), a still
tractable extension of EL, query entailment is even un-
decidable (Krötzsch, Rudolph, and Hitzler 2007). This
is mainly because in EL++, one can use unrestricted
role compositions. This allows for encoding context-free
languages, and conjunctive queries can then be used to
check the intersection of such languages, which is known
to be an undecidable problem. Since the logics used in
databases with incomplete information are considerable
less expressive than ALCHOIQb, the techniques devel-
oped in that area do not transfer to our setting.

Given that query entailment is a (computationally)
harder task than, for example, knowledge base satisfia-
bility, it is not very surprising that decidability of the
latter task does not necessarily transfer to the problem
of CQ entailment. Most of the undecidability results
can be transferred from FOL since many DLs can di-
rectly be translated into an equivalent FOL theory. For
example, it is known that conjunctive query entailment
is undecidable in the two variable fragment of First-
Order Logic L2 (Rosati 2007a), and Rosati identifies a
relatively small set of constructors that cause the unde-
cidability (most notably role negation axioms, i.e., ax-
ioms of the form ∀x, y (¬R(x, y)→ P (x, y)) for R,P bi-
nary predicates). Pratt-Hartmann 2009 recently estab-
lished decidability for CQ entailment in the two variable
guarded fragment with counting (GC2). It is worth not-
ing that Pratt-Hartmann assumes that the background
theory (that is the knowledge base in our case) is con-



stant free and formulae of the form ∃=1x(P (x)), which
can be used to simulate constants/nominals, are not
considered guarded. His result covers, therefore, only
the DL ALCHIQb and is not applicable to the case,
when the input knowledge base (the background the-
ory) contains nominals (individual constants).

Most of the implemented DL reasoners, e.g.,
KAON2,1 Pellet, and RacerPro,2 provide an interface
for conjunctive query answering, although KAON2 and
RacerPro consider only named individuals in the ABox
for the assignments of variables. Under that restric-
tion queries do no longer have the standard FOL se-
mantics and decidability is obviously not an issue since
conjunctive query answering with this restriction can
be reduced to standard instance retrieval by replac-
ing the variables with individual names from the ABox
and then testing entailment of each conjunct separately.
Pellet goes beyond that and also provides an interface
for conjunctive queries with FOL semantics under the
restriction that the queries have a kind of tree shape.
Under this restriction decidability is known since CQs
can then be expressed as normal concepts (possibly by
adding role conjunctions).

The Big Picture
Before going into the technical details, we will describe
our overall line of argumentation establishing decidabil-
ity of conjunctive query entailment in ALCHOIQb.

Decidability via Finitely Representable Coun-
termodels. Let K be an ALCHOIQb knowledge base
and q be the conjunctive query in question, i.e., we aim
to determine whether

K |= q.

Clearly, as ALCHOIQb is a fragment of first-order
predicate logic with equality, K can be translated into
a FOL sentence FOL(K). Likewise we find a FOL sen-
tence FOL(q) for q being just an existentially quanti-
fied formula. Hence, checking the above entailment is
equivalent to determining whether the first-order theory
FOL(K) entails FOL(q). As a result of the complete-
ness theorem for FOL (Gödel 1929), the consequences of
a finite FOL theory are recursively enumerable, which
provides us with a procedure that terminates if K |= q.
Hence, we can establish decidability by providing an-
other algorithm that terminates iff the entailment above
does not hold – i.e., if there is a so-called countermodel
being a model I of K for which I 6|= q.

We will provide such an algorithm by showing that,
whenever such a countermodel I exists at all, there
is also a countermodel I that is finitely representable.
More precisely, I can be encoded into a word Rep(I)
of finite length over a finite alphabet, whereby the en-
coding Rep has the property that for every such finite
word it can be effectively checked whether it represents
a countermodel for a given knowledge base and query.

1http://kaon2.semanticweb.org
2http://www.racer-systems.com

As a consequence thereof, we can create the desired
algorithm that enumerates all words, checks each for
being a countermodel, and terminates as soon as it has
found one.

Finite Representability by Bounding Nomi-
nals and Blocking. We now outline how we are go-
ing to show that there is always a finitely representable
countermodel, if there is one at all. We do this by taking
an arbitrary countermodel and cautiously transform-
ing it into a countermodel that is finitely representable.
Cautiously means that we have to make sure that the
transformation does preserve the two properties of 1)
being a model of the underlying knowledge base K and
2) not entailing the considered query q.

The result of the overall transformation is going to
be a regular model, i.e., a structure where substructures
are being in a certain sense periodically repeated. It is
common practice in DL theory to construct this kind
of models from arbitrary ones by blocking techniques,
whereby certain element configurations occurring twice
in the original model are detected and the new model
is generated by infinitely stringing together the same
finite substructure that is delimited by those two con-
figurations.

In the case we consider, this technique cannot be ap-
plied directly to the original countermodel. This is due
to an intricate interplay of nominals, inverse roles and
cardinality constraints by which an arbitrary – even an
infinite – number of domain elements can be forced to
“behave” like nominals; this is why those elements are
usually referred to as new nominals in a DL setting.
In FOL, nominals are often called kings and the new
nominals are called the court. In our case, the presence
of infinitely many new nominals in the model may pre-
vent the existence of repeated configurations needed for
blocking.

We overcome this difficulty by first applying a trans-
formation by means of which the original countermodel
is converted into a countermodel with only finitely
many new nominals. This guarantees that the subse-
quent blocking-based transformation is applicable and
will yield the desired regular (and thus finitely repre-
sentable) model.

Bounding Nominals by Transformations of
Forest Quasi-Models. For our argumentation, we
introduce the notion of forest quasi-models. These
are structures not satisfying the originally considered
knowledge base but a weakened form of it. In return to
this concession, they exhibit a proper forest structure
that is easier to handle and manipulate.

We employ two techniques to turn “proper” models
into forest quasi-models and vice versa: a model can be
unraveled yielding a forest quasi-model. A forest quasi-
model can be collapsed to obtain a “proper” model.
Both techniques preserve certain structural properties.

Our strategy to construct a countermodel with
finitely many nominals consists of the following three
steps:



• Take an arbitrary countermodel and unravel it.
• Transform the obtained forest quasi-model by substi-

tuting critical parts by well-behaved ones,
• Collapse the obtained structure into a (proper)

model.
The mentioned “critical parts” are those giving rise

to new nominals. They have to be – at least largely
– avoided (we do not care about a finite set of those
critical parts remaining).

The central question is: where do these mysterious
well-behaved substitutes come from? Fortunately, the
plethora of critical parts brings about its own remedy.
We can use infinite sets of critical parts to construct
well-behaved ones in an infinite approximation process.
We thereby obtain parts which have not been present
in our structure before, but are well compatible with it
and can hence be used for its reorganization.

After having informally introduced our main line of
argumentation, we now move on to the technical details.

Preliminaries
The basic elements in a DL are atomic concepts (unary
predicates), atomic roles (binary predicates), and in-
dividuals (constants). In the basic DL ALC, com-
plex concepts can be built from atomic ones by us-
ing negation (¬C), conjunction (C1 u C2), disjunction
(C1 t C2), or by quantification over a role (∀r.C and
∃r.C), which have typical set-theoretic first-order logic
interpretations. The DL ALCOIFb further allows for
nominals, which are concepts defined as a singleton
set containing a constant ({o}), inverse roles (r− in-
terpreted as {〈y, x〉 | 〈x, y〉 ∈ rI}), functionality con-
straints (func(f)), which require that the interpretation
of f is a functional relation, and safe Boolean combi-
nations of roles. A Boolean role expression is “safe”
if its disjunctive normal form contains a positive con-
junct in every disjunct. The DL ALCHOIQb further
allows for role hierarchies and qualified number restric-
tions (counting quantifiers), but these features can be
eliminated by a polynomial reduction, while preserving
query (non-)entailment (Rudolph, Krötzsch, and Hit-
zler 2008) and, w.l.o.g., we consider only ALCOIFb.

In the remainder, we use A and B for atomic con-
cepts, o for an individual name, r for an atomic role,
U for a safe Boolean role expression, and f for a role
(atomic or inverse) that is declared functional.

An ALCOIFb knowledge base is a finite set of gen-
eral concept inclusions (GCIs) C v D (C ≡ D abbrevi-
ates C v D and D v C) and functionality constraints,
where C and D are ALCOIFb concepts. W.l.o.g., we
do not consider ABoxes since with nominals, the ABox
can be internalized into the TBox, and we assume that
GCIs are simplified into the following forms:
l
Ai v

⊔
Bj | A ≡ {o} | A v ∀U.B | A v ∃U.B

If i = 0, we interpret
d
Ai as > and if j = 0, we inter-

pret
⊔
Bj as ⊥. We use con(K), rol(K), and nom(K) to

denote, respectively, the set of concept, role, and indi-
vidual names occurring in K, and cl(K) to denote the
closure of K. A role f is (inverse) functional in K if K
contains an axiom func(f) (func(f−)).

Let NV be a countably infinite set of variables con-
taining x and y. An atom is an expression A(x) or
r(x, y). A Boolean conjunctive query q is a non-empty
set of atoms. We use var(q) to denote the set of (ex-
istentially quantified) variables occurring in q and ](q)
for the number of atoms in q. For I = (∆I , ·I) an in-
terpretation, A(x), r(x, y) atoms, and π : var(q)→ ∆I a
total function, we write (i) I |=π A(x) if π(x) ∈ AI and
(ii) I |=π r(x, y) if 〈π(x), π(y)〉 ∈ rI . If I |=π At for all
atoms At ∈ q, we write I |=π q and say that I satisfies
q. We write I |= q if there exists a function π such
that I |=π q and call π a match for q in I. If I |= K
implies I |= q, we say that K entails q and write K |= q.
W.l.o.g., we assume that queries are connected. Given
a KB K and a CQ q, the query entailment problem is
to decide whether K |= q.

Unless stated otherwise, we use q for a con-
nected Boolean conjunctive query, K for a simplified
ALCOIFb knowledge base, and I for an interpreta-
tion (∆I , ·I). As a running example, we use a KB
K containing the axioms {o} v ∃r.A,A v ∃r.A,A v
∃s.B,B v C t D,C v ∃f.E,D v ∃g.E,E v B t
{o}, func(f−), func(g−). Figure 2 a) (p. 6) displays a
representation of a model for K.

Model Construction

We first introduce interpretations and models that have
a kind of forest shape. However, the notion of a forest is
very weak since we do also allow for arbitrary relations
between tree elements and roots.

Definition 1. A tree T is a non-empty, prefix-closed
subset of IN∗. A forest F is a subset of R × IN∗,
where R is a countable, possibly infinite set of ele-
ments {ρ1, . . . , ρn} such that, for each ρ ∈ R, the set
{w | (ρ, w) ∈ F} is a tree. Each pair (ρ, ε) ∈ F is called
a root of F . For (ρ, w), (ρ′, w′) ∈ F , we call (ρ′, w′) a
successor ( predecessor) of (ρ, w) if ρ′ = ρ and w′ = w·c
(w = w′ · c) for some c ∈ IN, where “·” denotes con-
catenation; (ρ′, w′) is a neighbor of (ρ, w) if (ρ′, w′) is
a successor of (ρ, w) or vice versa. A node (ρ, w) is an
ancestor ( descendant) of a node (ρ′, w′) if ρ = ρ′ and
w is a prefix of w′ (w′ is a prefix of w). We use |w| to
denote the length of w. The branching degree d(w) of
a node w in a tree T is the number of successors of w.

A forest interpretation of K is an interpretation I
that satisfies:
FI1 ∆I is a forest with roots R;
FI2 there is a total and surjective function
λ : nom(K) → R × {ε} s.t. λ(o) = (ρ, ε) iff
oI = (ρ, ε);

FI3 for each role r ∈ rol(K), if 〈(ρ, w), (ρ′, w′)〉 ∈ rI ,
then either (a) w = ε or w′ = ε, or (b) (ρ, w) is a
neighbor of (ρ′, w′).



If I |= K we say that I is a forest model for K.
With nomFree(K), we denote a knowledge base obtained
from K by replacing each nominal concept {o} with
o ∈ nom(K) with a fresh concept name No. A for-
est quasi-interpretation for K is an interpretation J
that satisfies FI1 and FI3, and the adapted version FI2′

of FI2 that there is a total and surjective function
λ : nom(K)→ R × {ε} s.t. λ(o) = (ρ, ε) iff (ρ, ε) ∈ NJo
(there might be other (ρ, w) ∈ ∆J with w 6= ε s.t.
(ρ, w) ∈ NJo ). If J |= nomFree(K) we say that J is
a forest quasi-model for K. A forest (quasi) interpre-
tation I is a strict forest (quasi) interpretation if, in
condition FI3, only (b) is allowed; it is a tree interpre-
tation, if it has a single root. If there is a k such that
d(w) ≤ k for each (ρ, w) ∈ ∆I , then we say that I has
branching degree k.

Let I, I ′ be two forest interpretations of K with
δ1, δ2 ∈ ∆I , δ′1, δ

′
2 ∈ ∆I

′
. The pairs 〈δ1, δ2〉, 〈δ′1, δ′2〉

are isomorphic w.r.t. K, written 〈δ1, δ2〉 ∼=K 〈δ′1, δ′2〉 iff

• 〈δ1, δ2〉 ∈ rI iff 〈δ′1, δ′2〉 ∈ rI
′

for each r ∈ rol(K),
• δi ∈ AI iff δ′i ∈ AI

′
for each i ∈ {1, 2}, A ∈ con(K),

• δi = oI iff δ′i = oI
′

for each i ∈ {1, 2}, o ∈ nom(K).
We say that I and I ′ are isomorphic w.r.t. K, written:
I ∼=K I ′, if there is a bijection ϕ : ∆I → ∆I

′
such that,

for each δ1, δ2 ∈ ∆I , 〈δ1, δ2〉 ∼=K 〈ϕ(δ1), ϕ(δ2)〉 and δ1
is a successor of δ2 iff ϕ(δ1) is a successor of ϕ(δ2).

If clear from the context, we omit the subscript K
of ∼=K and we extend the definition to forest quasi-
interpretations in the obvious way. Forest quasi-models
represent, intuitively, an intermediate step between ar-
bitrary models of K and forest models of K.

Since KBs are assumed to be simplified, it can mostly
be checked locally (by looking at an element of the do-
main and its direct neighbors) whether an interpreta-
tion I is a model of K. Only nominals impose a global
restriction on the cardinality of concepts. We call an
element δ ∈ ∆I locally K-consistent if it satisfies each
GCI in K (a functionality restriction func(f) is satis-
fied if δ has at most one f -neighbor); I is a model of
K if each δ ∈ ∆I is locally K-consistent and, for each
o ∈ nom(K), there is exactly one element δ ∈ ∆I such
that oI = δ. We now show how we can obtain a forest
quasi-model from a model of K by using an adapted
version of unraveling (Glimm et al. 2008).
Definition 2. Let I be a model for K and choose a
function that returns, for a concept C = ∃U.B ∈ cl(K)
and δ ∈ CI some δC,δ ∈ ∆I s.t. 〈δ, δC,δ〉 ∈ UI and
δC,δ ∈ BI . For each δ ∈ CI1 ∩ CI2 with Ci = ∃Ui.Bi ∈
cl(K) and choose(Ci, δ) = δi for i ∈ {1, 2}, w.l.o.g., we
assume that if 〈δ, δ1〉 ∼= 〈δ, δ2〉, then δ1 = δ2.

An unraveling for some δ ∈ ∆I , denoted ↓(I, δ), is
an interpretation obtained from I and δ as follows: we
define the set S ⊆ (∆I)∗ of sequences to be the smallest
set such that δ is a sequence and δ1 · · · δn · δn+1 is a
sequence, if

• δ1 · · · δn is a sequence,

• if n > 2 and 〈δn, δn−1〉 ∈ fI for some functional role
f , then δn+1 6= δn−1,

• δn+1 = choose(C, δn) for some C = ∃U.B ∈ cl(K).
Now fix a set F ⊆ {δ} × IN∗ and a bijection λ : F →
S such that (i) F is a forest, (ii) λ(δ, ε) = δ, (iii) if
(δ, w), (δ, w · c) ∈ F with w · c a successor of w, then
λ(δ, w ·c) = λ(δ, w)·δn+1 for some δn+1 ∈ ∆I . For each
(δ, w) ∈ F , set Tail(δ, w) = δn if f(δ, w) = δ1 · · · δn.
The unraveling for δ is the interpretation J with ∆J =
F and, for each (δ, w) ∈ ∆J :
(a) for each o ∈ nom(K), NJo = {(δ, w) ∈ ∆J |
Tail(δ, w) ∈ oI} for No ∈ NC a fresh concept name;

(b) for each concept name A ∈ con(K), (δ, w) ∈ AJ
iff Tail(δ, w) ∈ AI ;

(c) for each role name r ∈ rol(K), 〈(δ, w), (δ, w′)〉 ∈
rJ iff (δ, w′) is a neighbor of (δ, w), and
〈Tail(δ, w),Tail(δ, w′)〉 ∈ rI .
Let R ⊆ ∆I contain each δ s.t. oI = δ for some

o ∈ nom(K). The union of all ↓(I, δ) with δ ∈ R is
called an unraveling for I, denoted ↓(I), where unions
of interpretations are defined in the natural way.

Please note that the function Tail can also be seen as
a homomorphism (up to signature extension) from the
elements in the unraveling to elements in the original
model. Figure 2 b) shows the unraveling for our exam-
ple KB and model. The dotted lines for the non-root
elements labeled No indicate that a copy of the whole
tree should be appended.

Unravelings are the first step in the process of trans-
forming an arbitrary model of K into a forest model
since the resulting interpretation is a strict forest quasi-
model of K.
Lemma 3. Let I be a model of K, then J =↓(I) is
a strict forest quasi-model for K with branching degree
bounded in |cl(K)|.

We now show how we can collapse an unraveling back
into a model. Without any modifications to the unrav-
eling, we have not gained much other than a “tidier”
model that does not contain unnecessary elements, but
we later introduce modifications for an unraveling such
that we can collapse a modified unraveling into a model
that contains only a finite number of nominals. In the
following steps, we traverse a forest quasi-model in an
order in which elements with smaller tree depth are al-
ways of smaller order than elements with greater tree
depth. Elements with the same tree depth are ordered
lexicographically. The bounded branching degree of un-
ravelings then guarantees that, after a finite number of
steps, we go on to the next level in the forest and process
all nodes eventually. Further, we can merge nodes such
that, finally, all nominal placeholders (in the extension
of some No) can be interpreted as nominals without
violating functionality restrictions. In fact, we do not
only have to merge nominal placeholders, but also el-
ements that are related to a nominal placeholder by
an inverse functional role since, by definition of the se-
mantics, these elements have to correspond to the same
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Figure 2: a) A representation of a model for the running example (left). b) Result of unraveling this model (middle).
c) Result of collapsing this unraveling with infinitely many new root elements displayed in the top line (right).

element in a model. In order to identify such elements,
we define backwards counting paths as follows:
Definition 4. Let I be a (quasi) forest model for K.
We call p = δ1 · . . . · δn a path from δ1 to δn if, for
each i with 1 ≤ i < n, 〈δi, δi+1〉 ∈ rIi for some role
ri ∈ rol(K). The length |p| of a path p is n − 1. We

write δ1
U1→ δ2 . . .

Un−1→ δn to denote that 〈δi, δi+1〉 ∈ UIi
for each 1 ≤ i < n. The path p is a descending path if
there is some (ρ, ε) ∈ ∆I s.t., for each 1 ≤ i ≤ n, δi =
(ρ, wi) and, for each 1 ≤ i < n, |wi| < |wi+1|; p is a
backwards counting path (BCP) in I if δn ∈ oI (δn ∈
NIo ) for some o ∈ nom(K) and, for each 1 ≤ i < n,
〈δi, δi+1〉 ∈ fIi for some inverse functional role fi; p
is a descending BCP if it is descending and a BCP.
Given a BCP p = δ1

f1→ δ2 . . .
fn→ δn+1 with δn+1 ∈ oJ

(δn+1 ∈ NJo ), we call the sequence f1 · · · fno a path
sketch of p.

Let < be a strict total order over NI , K a consistent
ALCOIFb KB, and J a forest quasi-interpretation for
K. We extend the order to elements in ∆J as follows:
let w1 = wp · c11 · · · cn1 , w2 = wp · c12 · · · cm2 ∈ IN∗ where
wp ∈ IN∗ is the longest common prefix of w1 and w2,
then w1 < w2 if either n < m or both n = m and
c11 < c12. For i ∈ {1, 2} and (ρi, ε) ∈ ∆J , let oi ∈
nom(K) be the smallest nominal such that (ρi, ε) ∈ NJoi .
Now (ρ1, w1) < (ρ2, w2) if either (i) |w1| < |w2| or (ii)
|w1| = |w2| and o1 < o2 or (ii) |w1| = |w2|, o1 = o2 and
w1 < w2. When collapsing, we create new elements
of the form (ρw,w′) from (ρ, ww′). We extend, there-
fore, the order as follows: (ρ1w1, w

′
1) < (ρ2w2, w

′
2) if

(ρ1, w1w
′
1) < (ρ2, w2w

′
2).

Please note that (ρ, w) is already a descending BCP if
(ρ, w) ∈ oI (NIo ). We now show how we can “collapse”
a forest quasi-model into a forest model provided it sat-
isfies some admissibility restrictions. During the traver-
sal, we distinguish two situations: (i) we encounter an
element (ρ, w) that starts a descending BCP and we
have not seen another element before that starts a de-
scending BCP with the same path sketch. In this case,
we promote (ρ, w) to become a new root node of the
form (ρw, ε) and we shift the subtree rooted in (ρ, w)
with it; (ii) we encounter a node (ρ, w) that starts a de-
scending BCP, but we have already seen a node (ρ′, w′)
that starts a descending BCP with that path sketch and

which is now a root of the form (ρ′w′, ε). In this case,
we delete the subtree rooted in (ρ, w) and identify (ρ, w)
with (ρ′w′, ε). If (ρ, w) is an f -successor of its prede-
cessor for some inverse functional role f , we delete all
f−-successors of (ρ′w′, ε) and their subtrees in order to
satisfy the functionality restriction. We use a notion of
collapsing admissibility to characterize models s.t. the
the predecessor of (ρ, w) satisfies the same atomic con-
cepts as the deleted successor of (ρ′, w′), which ensures
that local consistency is preserved.
Definition 5. Let K′ = nomFree(K) and J a forest
quasi-interpretation for K. We define ∼ as the smallest
equivalence relation on ∆J that satisfies δ1 ∼ δ2 if δ1, δ2
start descending BCPs with identical path sketches.

If J is a strict forest quasi-model for K, we call J0 =
J an initial collapsing for J and the smallest element
(ρ0, w0) ∈ ∆J0 with w0 6= ε that starts a descending
BCP the focus of J0. Let Ji be a collapsing for J and
(ρi, wi) ∈ ∆Ji the focus of Ji. We obtain a collapsing
Ji+1 for J from Ji with focus (ρi+1, wi+1) the smallest
element starting a descending BCP and (ρi+1, wi+1) >
(ρi, wi) according to the following two cases:

1. There is no element (ρ, ε) ∈ ∆Ji s.t. (ρ, ε) < (ρi, wi)
and (ρ, ε) ∼ (ρi, wi). Then Ji+i is obtained from
Ji by renaming each element (ρi, wiw′i) ∈ ∆Ji to
(ρiwi, w′i).

2. There is an element (ρ, ε) ∈ ∆Ji s.t. (ρ, ε) < (ρi, wi)
and (ρ, ε) ∼ (ρi, wi). Let (ρ, ε) be the smallest such
element.

(a) ∆Ji+1 = ∆Ji \ ({(ρi, wiw′i) | w′i ∈ IN∗} ∪ {(ρ, w) |
w = c · w′, c ∈ IN, w′ ∈ IN∗, (ρi, wi) has a prede-
cessor (ρi, w′i) such that 〈(ρi, w′i), (ρi, wi)〉 ∈ fJi

for an inverse functional role f in rol(K) and
〈(ρ, c), (ρ, ε)〉 ∈ fJi});

(b) for each A ∈ con(K) and δ ∈ ∆Ji+1 , δ ∈ AJi+1 iff
δ ∈ AJi ;

(c) for each r ∈ rol(K) and δ1, δ2 ∈ ∆Ji+1 , 〈δ1, δ2〉 ∈
rJi+1 iff (a) 〈δ1, δ2〉 ∈ rJi or (b) δ1 is the predeces-
sor of (ρi, wi) in Ji, δ2 = (ρ, ε), and 〈δ1, (ρi, wi)〉 ∈
rJi .

For a collapsing Ji, safe(Ji) is the restriction of Ji to
elements (ρ, w) s.t. (ρ, w) ∈ Jj for all j ≥ i. With
Jω we denote the non-disjoint union of all interpreta-
tions safe(Ji) obtained from subsequent collapsings Ji



for J . The interpretation obtained from Jω by inter-
preting each o ∈ nom(K) as (ρ, ε) ∈ NJωo is denoted by
collapse(J ) and called a purified interpretation w.r.t.
J. If collapse(J ) |= K, we call collapse(J ) a purified
model of K.

We use the notion of collapsing-admissibility to char-
acterize quasi-interpretations that become forest mod-
els of the KB after we collapse them.

Definition 6. Let J be a forest quasi-interpretation
for K, then J is collapsing-admissible if there exists a
function ch : (cl(K) × ∆J ) → ∆J s.t., for each C =
∃U.B ∈ cl(K) and δ ∈ CJ ,

1. 〈δ, ch(C, δ)〉 ∈ UJ , ch(C, δ) ∈ BJ and, if there is no
functional role f s.t. 〈δ, ch(C, δ)〉 ∈ fJ , then ch(C, δ)
is a successor of δ,

2. if there is some δ′ ∈ CJ s.t. δ and δ′ start de-
scending BCPs with identical path sketches, then
〈δ, ch(C, δ)〉 ∼= 〈δ′, ch(C, δ′)〉.
Since, in unravelings, elements that start (desccend-

ing) BCPs with identical path sketches have been gen-
erated from the same element in the unravelled model,
collapsing-admissibility is immediate and the function
ch can be defined using the function choose from the un-
raveling. We can use collapsing-admissibility to show
that, whenever we delete an element and the subtree
rooted in it during the collapsing, the predecessor of
the focus is a suitable replacement.

Lemma 7. Let J be a strict forest quasi-model for
K with branching degree b that is collapsing-admissible.
Then collapse(J ) is a forest model for K that still has
branching degree b.

Since unravelings are strict forest quasi-models with
bounded branching degree by Lemma 3 and collapsing-
admissible, it is an immediate consequence of Lemma 7
that collapsing an unraveling yields a forest model with
bounded branching degree. At this point, the number of
roots might still be infinite and we could have obtained
the same result by unraveling an arbitrary model, where
we take all elements on BCPs as roots instead of taking
just the nominals and creating new roots in the col-
lapsing process. In the next sections, however, we show
how we can transform an unraveling of a counter-model
for the query such that it remains collapsing-admissible
and such that it can in the end be collapsed into a for-
est model with a finite number of roots that is still a
counter model for the query. For this transformation
it is much more convenient to work with real (strict)
trees and forests, which is why use (strict) forest quasi-
interpretations.

Quasi-Entailment in Quasi-Models
In this section, we provide a characterization for query
entailment in forest quasi-models that mirrors query en-
tailment for the corresponding “proper models”. In our
further argumentation, we talk about the initial part of
a tree, i.e., the part that remains if one cuts branches

down to a fixed length. For a forest interpretation I
and some n ∈ IN, we denote, therefore, with cutn(I)
the interpretation obtained from I by restricting ∆I
to those pairs (ρ, w) for which |w| ≤ n. One can show
that, in the case of purified models, we find only finitely
many unraveling trees of depth n that “look different”
(i.e., that are non-isomorphic).

Lemma 8. If K is consistent, then there is a purified
interpretation I such that I |= K and, for every n ∈
IN, there are only finitely many non-isomorphic trees of
depth n.

For our further considerations, we introduce the no-
tion of “anchored n-components”. These are certain
substructures of forest quasi-interpretations that we use
to define a notion of quasi entailment.

Definition 9. Let J be a forest quasi-interpretation
and δ ∈ ∆J . An interpretation C is called anchored
n-component of J with witness δ if C can be created by
restricting J to a set W ⊆ ∆J obtained as follows:

• Let Jδ be the subtree of J that is started by δ and let
Jδ,n := cutn(Jδ). Select a subset W ′ ⊆ ∆Jδ,n that is
closed under predecessors.

• For every δ′ ∈ W ′, let P be a finite set (possibly
empty) of descending BCPs p starting from δ′ and
let Wδ′ contain all nodes from all p ∈ P .

• Set W = W ′ ∪
⋃
δ′∈W ′Wδ′ .

The following definition and lemma employ the no-
tion of anchored n-components to come up with the
notion of quentailment (short for quasi-entailment), a
criterion that reflects query-entailment in the world of
forest quasi-models.

Definition 10. Let J be a forest quasi-model for K
and q a CQ with ](q) = n and V = var(q). We say
that J quentails q, written J |≈ q, if J contains an-
chored n-components C1, . . . , C` and there are variable
assignment functions µi : V → 2∆Ci such that:
Q1 For every x ∈ V , there is at least one Ci, such that
µi(x) 6= ∅

Q2 For all A(x) ∈ q, we have µi(x) ⊆ AJ for some i.
Q3 For every r(x, y) ∈ q there is a Ci such that there
are δ1 ∈ µi(x) and δ2 ∈ µi(y) such that 〈δ1, δ2〉 ∈ rJ .

Q4 If, for some x ∈ V , there are anchored n-
components Ci and Cj with δ ∈ µi(x) and δ′ ∈ µj(x),
then there is
• a sequence Cn1 , . . . , Cnk with n1 = i and nk = j

and
• a sequence δ1, . . . , δk with δ1 = δ and δk = δ′ as

well as δm ∈ µnm(x) for all 1 ≤ m < k,
such that, for every m with 1 ≤ m < k, we have that
• Cnm contains a descending BCP p1 started by δm,
• Cnm+1 contains a descending BCP p2 started by
δm+1,
• p1 and p2 have the same path sketch.
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Figure 3: An example for the correspondence between
entailment and quentailment.

Note that an anchored component may contain
none, one or several instantiations of a variable x ∈ V .
Intuitively, the definition ensures, that we find matches
of query parts which when fitted together by iden-
tifying BCP-equal elements yield a complete query
match. In Figure 3, we illustrate the correspondence
between entailment and quentailment for the query q =
{A(x1), D(x3), s(x1, x2), g(x3, x2), s(x4, x3), r(x1, x4)}.
The dotted lines indicate a match into the “proper
model” (left) and the dashed lines a match into the
quasi-model (right) for a single anchored n-component.
Note that the function witnessing the quentailment
maps x2 to a set containing two elements, but these
two elements will be merged during the collapsing
process because they are on a BCP.

Lemma 11. For any model I of K, ↓(I) |≈ q implies
I |= q and, for any collapsing-admissible strict forest
quasi-model J of K, collapse(J ) |= q implies J |≈ q.

Limits and Forest Transformations

One of the major obstacles for a decision procedure
for CQ entailment is that for DLs including inverses,
nominals, and cardinality restrictions (or alternatively
functionality), there are potentially infinitely many new
roots. If we want to eliminate new roots such that only
finitely many remain, they have to be replaced by “un-
critical” elements. We will construct such elements as
“environment-limits” – new domain elements which can
be approximated with arbitrary precision by already
present domain elements – possibly without themselves
being present in the domain.3

Definition 12. Let I be a model of K and let δ ∈ ∆I .
A tree interpretation J is said to be generated by δ,
written: J C δ, if it is isomorphic to the restriction of
↓ (I, δ) to elements of {(δ, cw) | (δ, cw) ∈ ∆↓(I,δ), c 6∈
H} for some H ⊆ IN. The set of limits of I, written
lim I, is the set of all tree interpretations J s.t., for
every k ∈ IN, there are infinitely many δ ∈ ∆I with
cutk(L) ∼= cutk(J ) for some LC δ.

3As an analogy, consider the fact that any real number
can be approximated by a sequence of rational numbers,
even if it is itself irrational.

Figure 4 a) displays a limit element for our example
model. The following lemma gives some useful proper-
ties of limits.
Lemma 13. Let K′ = nomFree(K), I a purified model
of K, and n some fixed natural number. Then the fol-
lowing hold:

1. Let L′ be a tree interpretation such that there are
infinitely many δ ∈ ∆I with L′ ∼= cutn(L) for some
L C δ. Then, there is at least one limit J ∈ lim I
such that cutn(J ) ∼= L′.

2. Every J ∈ lim I is locally K′-consistent apart from
its root (ρ, ε).

3. For every J ∈ lim I, every root (ρ, ε) in J has no
BCP to any (ρ, w) ∈ ∆J .

4. Every J ∈ lim I is collapsing-admissible.
Having defined and justified limit elements as conve-

nient building blocks for restructuring forest quasi-in-
terpretations, the following definition states how this
restructuring is carried out.
Definition 14. Let I be a model for K and J some
forest quasi-model for K with δ ∈ ∆J . A strict tree
quasi-interpretation J ′ ∈ lim I is called an n-secure
replacement for δ if (i) cutn(↓(J , δ)) is isomorphic to
cutn(J ′) and (ii) for every anchored n-component of J ′
with witness δ′, there is an isomorphic anchored n-com-
ponent of J with witness δ. If δ ∈ ∆J has an n-secure
replacement in lim I, δ is n-replaceable w.r.t. I and it
is n-irreplaceable w.r.t. I otherwise.

Now, let (ρ, w) ∈ ∆J be n-replaceable w.r.t. I and J ′
an according n-replacement for (ρ, w) from lim I with
root (ς, ε). The result of replacing (ρ, w) by J ′ is an
interpretation R with ∆R = ∆Jred∪{(ρ, ww′′) | (ς, w′′) ∈
∆J

′} for ∆Jred = (∆J \ {(ρ, ww′) | |w′| > 1}) s.t.

• for each A ∈ con(K′), AR = (AJ ∩∆Jred)∪{(ρ, ww′) |
(ς, w′) ∈ AJ ′}
• for each r ∈ rol(K′), rR = (rJ ∩ ∆Jred × ∆Jred) ∪
{〈(ρ, ww′), (ρ, ww′′)〉 | 〈(ς, w′), (ς, w′′)〉 ∈ rJ ′}
For J =↓(I), an interpretation J ′ is called an n-

secure transformation of J if it is obtained by (possibly
infinitely) repeating the following step:

Choose one unvisited w.r.t. tree-depth minimal node
(ρ, w) that is n-replaceable w.r.t. I. Replace (ρ, w) with
one of its n-secure replacements from lim I and mark
(ρ, w) as visited.

Figure 4 a) displays a 2-secure replacement in the
considered unraveling of our example model shown in
Figure 4 b). Figure 4 c) displays the result of carrying
out this replacement step on our example. The follow-
ing lemma ensures that not too many elements (actually
defined in terms of the original model) are exempt from
being replaced.
Lemma 15. Every purified model I of K contains only
finitely many distinct elements that start a BCP and are
the cause for n-irreplaceable nodes in the unraveling of
I.
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Figure 4: From left to right: a) a 2-secure replacement for δ in b) the quasi-forest model for K. c) The result of
replacing δ by the 2-secure replacement (the inserted component is highlighted). d) The result of collapsing the
forest quasi-model from c).

Proof. Assume the converse: let a purified model I of
K contain an infinite set D of elements giving rise to n-
irreplaceable nodes in ↓(I). Then there must be an L′
such that there is an infinite set D′ ⊆ D such that every
d′ ∈ D′ generates an L for which cutn(L) ∼= L (since by
Lemma 8, there are only finitely many non-isomorphic
choices for L′). This set D′ can be used to guide the
construction of a specific limit element J ∈ lim I ac-
cording to Lemma 13.1. Now, for an element (ρ, w)
from J starting a BCP, let l(ρ,w) ∈ IN be the length of
the shortest such BCP starting from (ρ, w). Then, let k
be the maximum over all l(ρ,w) of individuals (ρ, w) from
J that start a BCP and for which |w| ≤ n. By con-
struction, D′ contains one element d′′ generating an L
with cutk(L) ∼= cutk(J ) (actually infinitely many). By
the choice of k, we can conclude that J is an n-secure
replacement for the irreplaceable ↓(I)-node caused by
d′′ which gives us a contradiction.

Next, we can show that the process of unraveling,
n-secure transformation and collapsing preserves the
property of being a model of a knowledge base and
(with the right choice of n) also preserves the prop-
erty of not entailing a conjunctive query. Moreover,
this model conversion process ensures that the resulting
model contains only finitely many new nominals (wit-
nessed by a bound on the length of BCPs). Figure 4 d)
illustrates these properties for our example model. Note
that only one new nominal is left whereas collapsing the
original unraveling yields infinitely many.
Lemma 16. Let I be a purified model of K, J = ↓(I),
and J ′ an n-secure transformation of J . Then the fol-
lowing hold:

1. collapse(J ′) is a model of K.
2. There is a natural number m such that J ′ does not

contain any node whose shortest descending BCP has
a length greater than m.

3. If, for some CQ q, we have J |6≈ q and n > ](q), then
J ′ |6≈ q.

4. If, for some CQ q, we have I 6|= q and n > ](q), then
collapse(J ′) 6|= q.
Now we are able to establish our first milestone on the

way to showing finite representability of countermodels.

Theorem 17. For every ALCOIFb KB K and CQ q
s.t. K 6|= q, there is a forest model I of K with finitely
many roots and bounded branching degree s.t. I 6|= q.

Finite Representations of Models
We can now use standard techniques from tableau al-
gorithms (adapted to work on models) to construct fi-
nite representations for a forest model of K with finitely
many roots. In particular the tableau algorithm with
n-tree-blocking, n ≥ ](q), for deciding CQ entailment
in SHIQ, SHOQ, and SHOI with only simple roles
in the query (Ortiz 2008; Ortiz, Calvanese, and Eiter
2008) works exactly like that. We call an interpreta-
tion, on which we applied n-tree-blocking and discarded
all blocked elements, an n-representation. Such an n-
representation corresponds to a complete and clash-free
completion graph in tableau algorithms.
Definition 18. Let n ∈ IN be a fixed natural num-
ber and I with (δ, w) ∈ ∆I , w 6= ε a forest interpre-
tation for K. An n-blocking-tree w.r.t. (δ, w), denoted
blocknI(δ, w), is the interpretation obtained from I by re-
stricting I to elements in {(δ, ww′) | |w′| ≤ n}∪{(ρ, ε) |
(ρ, ε) ∈ ∆I}. An n-blocking-tree blocknI(δ, w) n-blocks
an n-blocking-tree blocknI(δ, ww′) if

1. blocknI(δ, w) and blocknI(δ, ww′) have disjoint do-
mains except for root elements,

2. there is a bijection ϕ from elements in blocknI(δ, w)
to elements in blocknI(δ, ww′) that witnesses
blocknI(δ, w) ∼= blocknI(δ, ww′), and

3. for each descendant (δ, wv) of (δ, w), there is no in-
verse functional role f and root (ρ, ε) ∈ ∆I such that
〈(δ, wv), (ρ, ε)〉 ∈ fI .

A node (δ, v) ∈ ∆I is n-blocked, if (δ, v) is either
directly or indirectly n-blocked; (δ, v) is indirectly n-
blocked, if one of its ancestors is n-blocked; (δ, v) is di-
rectly n-blocked if none of its ancestors is n-blocked and
(δ, v) is a leaf of some n-blocking-tree blocknI(δ, ww′)
in I that is n-blocked. W.l.o.g., we assume that the
n-blocking-trees are minimal w.r.t. the order over ∆I
(cf. Def. 4).

A forest interpretation I = (∆I , ·I) for K is an n-
representation of K if (i) ∆I is finite, (ii) ∆I contains



no indirectly n-blocked nodes, (iii) each δ ∈ ∆I that is
not directly n-blocked is locally K-consistent, and (iv)
for each o ∈ nom(K), there is one δ ∈ ∆I s.t. δ = (ρ, ε)
and oI = δI .

Since we fixed a bound on the number of roots in
Theorem 17 and otherwise only consider the closure
cl(K) of K, one can show that there are only finitely
many non-isomorphic n-blocking-trees even though we
take links back to roots into account. It is worth noting
that, for DLs as expressive as ALCOIFb, n has to be
greater than 0 (at least trees of depth 1) if we want to
transform n-representations into models of the knowl-
edge base. We now show that each knowledge base has
an n-representation for some fixed n ∈ IN and, after-
wards, that we can use an n-representation to build a
model for the knowledge base.

Lemma 19. Let n ≥ ](q). If K 6|= q, then there is an
n-representation R of K s.t. R 6|= q, and from R one
can build a model I of K such that I 6|= q.

Sketch. By Theorem 17, there is a forest model I of K
with finitely many roots and branching degree bounded
in |cl(K)|s.t. I 6|= q. Using an an argumentation similar
to the one in the proof of Lemma 8, one can show that
there are only finitely many non-isomorphic n-blocking
trees. Together with the fact that I is obtained from a
collapsing and relations from elements within a tree to a
root in collapsings are never for inverse functional roles,
this shows that there is an n-representation of I because
for each tree rooted in a node (δ, ε) ∈ ∆I trees can only
grow to a limited depth before two nodes (δ, w) and
(δ, ww′) occur s.t. blocknI(δ, w) n-blocks blocknI(δ, ww′).
We can then simply discard indirectly n-blocked nodes
from I to obtain the desired n-representation.

Since I 6|= q and the n-representation is a restriction
of I, non-entailment of q is clearly preserved.

Please note that we would not obtain such a bound if
we had not fixed a bound on the number of new nom-
inals (roots) beforehand and that we cannot use the
standard tableau algorithms to obtain this result.

In order to obtain a model for a knowledge base K
from some n-representation, the techniques for tableau
algorithms with tree blocking (Ortiz 2008; Ortiz, Cal-
vanese, and Eiter 2008) for building a tableau from a
complete and clash-free completion graph can straight-
forwardly be adapted to our case.

Lemma 20. Let K be a consistent ALCOIFb knowl-
edge base, q a conjunctive query, and n ≥ ](q). If R is
an n-representation of K such that R 6|= q, then there
is a model I of K s.t. I 6|= q.

Now Lemma 19 guarantees that, in case K 6|= q, there
is always a finite n-representation R for K such that
R 6|= q and Lemma 20 guarantees that R can be trans-
formed into a model I of K such that I 6|= q. This
suffices to show that we can enumerate all (finite) n-
representations for K and check whether they entail
the query. Since role hierarchies and qualified number

restrictions can be encoded in ALCOIFb, we get, to-
gether with the semi-decidability result for FOL (Gödel
1929), the desired theorem.
Theorem 21. It is decidable whether K |= q for K an
ALCHOIQb knowledge base and q a Boolean conjunc-
tive query.

Conclusions
This solves the long-standing open problem of deciding
conjunctive query entailment in the presence of nom-
inals, inverse roles, and qualified number restrictions.
Our result generalizes to unions of conjunctive queries
and to SHOIQ provided the query contains only sim-
ple roles, and we are confident that the technique also
extends to SROIQ under the same restriction.

Entailment of unions of conjunctive queries is also
closely related to the problem of adding rules to a
DL knowledge base, e.g., in the form of Datalog rules.
Augmenting a DL KB with an arbitrary Datalog pro-
gram easily leads to undecidability (Levy and Rous-
set 1998). To ensure decidability, the interaction be-
tween the Datalog rules and the DL knowledge base
can be restricted by imposing a safeness condition.
The DL+log framework (Rosati 2006a) provides the
least restrictive integration proposed so far and Rosati
presents an algorithm that decides the consistency of
a DL+log knowledge base by reducing the problem to
entailment of unions of conjunctive queries. Notably,
his results (Rosati 2006a, Thm. 11) imply that the con-
sistency of an ALCHOIQb knowledge base extended
with (weakly-safe) Datalog rules is decidable if and
only if entailment of unions of conjunctive queries in
ALCHOIQb is decidable, which we have established.
Corollary 22. The consistency of ALCHOIQb+log-
knowledge bases (both under FOL semanticsand under
non-monotonic semantics) is decidable.

Another related reasoning problem is query contain-
ment. Given a schema (or TBox) S and two queries q
and q′, we have that q is contained in q′ w.r.t. S iff every
interpretation I that satisfies S and q also satisfies q′. It
is well known that query containment w.r.t. a TBox can
be reduced to deciding entailment for unions of conjunc-
tive queries w.r.t. a knowledge base (Calvanese, De Gi-
acomo, and Lenzerini 1998). Decidability of unions of
conjunctive query entailment in ALCHOIQb implies,
therefore, also decidability of query containment w.r.t.
to an ALCHOIQb TBox.

There are two obvious avenues for future work.
Firstly, we will embark on extending our results in or-
der to allow non-simple roles as query predicates. This
is a non-trivial task as our current approach heavily re-
lies on a certain locality of query matches, which has to
be relinquished when considering non-simple roles. Sec-
ondly, since the approach is purely a decision procedure,
the computational complexity of the problem remains
open, and we are eager to determine the associated com-
putational complexities and provide techniques that can
form the basis for implementable algorithms.
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